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An infinitely long chromoelectric flux tube breaks translation invariance in transverse 
directions spontaneously. We argue that the associated Goldstone bosonss live effectively in 1 + 1 
dimensions and therefore, by the Mermin-Wagner-Coleman theorem, destabilize the flux tube. A 
large class of effective lagrangians describing the long-wavelength fluctuations of (finite) flux 
tubes is furthermore shown to give rise to a quark potential V ( L )  •ffi aL  + fl + yL  - i + O ( L  -2), 
where T is a universal constant. 

1. Introduction 

It  has recently been observed [1-3] that chromoelectric flux tubes roughen when 
stretched: instead of approaching a well localized straight cigar shaped region, the 
support  of the chromoelectric field energy density due to the presence of a static 
quark-antiquark pair broadens indefinitely with the quark separation L. The 
purpose of the present article is to discuss some features of the roughening 
phenomenon,  which are independent of the detailed form of the underlying 
dynamics, but rather are characteristic to the peculiar geometrical situation and to 
the quantum mechanical nature of the problem. 

The central idea, which has previously been formulated in an analogous physical 
context by Giinther, Nicole and Wallace [4], is the following. Suppose it would be 
possible to create an infinitely long straight flux tube by pulling a quark-antiquark 
pair infinitely far apart. As demonstrated by the existence of the Nielsen-Olesen 

vortex [5], such a flux tube can be perfectly stable classically. Quantum mechani- 
cally, however, it is unstable for the following reason. If the flux tube as a whole 
makes a transverse fluctuation with some wavelength ~, the cost in energy is only 
e ( h )  ffi 2 ~ r / h  (for large h). These, of course, are the Goldstone modes associated 
with the spontaneously broken transverse translational symmetry. Since they exist 
only along the flux tube, they live effectively in a 1 + 1 dimensional world. By the 

I Address after October 1st, 1980: Institut f/Jr Theoretische Physik, Sidlerstrasse 5, CH-3012 Bern, 
Switzerland. 
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Mermin-Wagner-Coleman theorem [6], the amplitudes of such Goldstone fluctua- 
tions diverge with ~, so that the flux tube gets completely delocalized. In other 
words, the assumption that an infinitely long quantum mechanical flux tube of 
finite width exists, is self-contradictory. 

The above argument does not apply to lattice gauge theories, because translation 
symmetry is only discrete there. An infinitely long flux tube does therefore not 
necessarily imply the presence of massless modes. In fact, for very strong coupling 
such flux tubes do exist [7]. As has been pointed out [1-3], however, these infinitely 
long flux tubes delocalize for coupling constants g2 smaller than some g2. By the 
above, we thus can consider the roughening transition a transition, where continu- 
ous translational symmetry is effectively restored*. 

Not much can be said about the gluon field energy distribution, when the 
quark-antiquark separation L is finite, except, of course, that its transversal width 
must diverge for L---> oo. It is conceivable, on the other hand, that the gluon field is 
confined to a thin tube (string) connecting the quark with the antiquark, which 
undergoes quantum mechanical fluctuations without losing its identity. The width 
of the string is thought to be related to the glueball mass. This picture is plausible 
for lattice gauge theories with a coupling constant g2 just below the critical value 
g~, where long flux tubes are rough but where the bulk correlation length is still 
small. Whether it is a valid description of the continuum theory is an open 
question. Still, we may take it as an ansatz, write down an effective theory for the 
collective motion of the string and see what the consequences are. 

To illustrate the argumentation above that an infinitely long flux tube is unstable 
quantum mechanically, we calculate (sect. 2) the spectrum of fluctuations around a 
Bloch wall in 2 + 1 dimensions. It would be more appropriate, of course, to do this 
with the Nielsen-Olesen vortex, but a Bloch wall is mathematically much simpler 
than a vortex and yet has the crucial property of being infinitely extended in 1 + 1 
dimensions and localized in the transverse direction. In sect. 3 we write down a 
class of effective lagrangians describing the collective motion of a hypothetical thin 
flux tube. The existence of massless modes in these theories is then shown to be the 
unifying root of the roughening effect and the power corrections to the linear quark 
potential. In sect. 4, we demonstrate by a few examples that the leading correction 
(the term proportional to L - 1 )  is universal, i.e., independent of the parameters in 
the effective lagrangian. Sect. 5 contains some concluding remarks. 

2. Fluctuations around a Bloch wall in 2 + 1 dimensions 

We here consider an Ising-like ferromagnet described by the action** 

1 f d3x{0d?O~,~b_(~b2_m2)2) " (1) S = ~--~m 

* The situation is somewhat reminiscent of the transition from the low temperature to the coulombic 
phase in Z jr (N large) gauge theories, where the discrete Z N symmetry becomes effectively a 
continuous U(1) symmetry. 

** The metric is g0o = -gll m - - g 2 2  m 1 ;  instead of x °, x ~, x 2 we shall also use the symbols t , y ,  z .  
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The familiar Bloch wall solution to the field equat ions is 

¢c1(x) = m tgh m z ,  (2) 

which is independent  of t and  y and  well localized in the transverse direction z. 
Up  to second order,  the ac t ion for a f luctuat ion 

¢ ( x )  = ¢~1(x) + n (x )  (3) 

around  a Bloch wall is 

1 
S = cons tant  + ~ f d3x~(x) .A*aT(x) .  (4) 

The fluctuation opera tor  A * is given by  

A* = - 0  2 + O~ 2 + (0 2 - 2¢~1)(0 2 + 2¢¢1). (5) 

Its eigenfunctions separate according  to 

A*~ = ( k  2 - k 2 - e)T/, (6a) 

17(X ) = ei(k°x° +k'xt)l~( X2) , (6b) 

- (02 - 2¢c~)(a2 + 2 ¢ c l ) ~ ( x  2) = e¢(x~). (6c)  

The m o m e n t u m  k = ( k ° , k  1) is arbitrary and the reduced eigenvalues e can be 

determined explicitly by  making  a clever substitution (ref. [8], p. 1651 if), which 
reduces eq. (6c) to a hypergeometr ic  equation. The  outcome is as follows. There  are 

two discrete eigenvalues 

~o( Z ) = m ( c h  m z  ) - 2  , 

~ t ( z )  -- m sh mz(ch m z )  - 2, 

as well as a line of  cont inuous  eigenvalues 

~ ( z ;  k2)  = m eik~z 13 ( tgh  mz) 2 - 3i k2 tgh mz - - -  - 
t m 

e = k 2 + 4 m  2, - o 0  < k 2 <  o0. 

= o ,  (7a)  

e ----- 3m 2 , (7b) 

l} 
m 2 

(7c) 
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The eigenvalues E of the fluctuation operator A * therefore fall into three classes: 

E = ko 2 - k~, (8a) 

E = k~ - k~ - 3m 2, (8b) 

E = ko 2 -  k ~ -  k ~ -  4m 2. (8c) 

The bulk (80 of the spectrum comes from spin waves scattering off the Bloch wall. 
Their mass is 2m, which is equal to the mass of the fundamental fluctuations 
around the classical vacua ~, = _+ m. The modes (8b) are exponentially localized in 
the transverse direction z for all times t: they represent bounded travelling waves 

along the Bloch wall. They too are massive with a mass equal to m V 3 .  Class (8a), 
finally, also represents bounded travelling waves along the Bloch wall, but these 
modes are massless. From eqs. (6b) and (7a) we see furthermore that the corre- 
sponding fluctuations ~(x)  have the general form 

t~(X) = ¢~el(X) "~ ~(x°,xl)m(chmx2) -2 

--'-- ~cl(X O, X 1 , X 2 --[- ~(X O, XI)) 4- 0 ( ~ 2 ) ,  (9) 

i.e., ~ (x)  is simply a locally translated Bloch wall. In other words, the modes (8a) 
are the Goldstone modes associated with the spontaneously broken translation 
symmetry. The crucial point here is that they are well separated from the rest of the 
spectrum by a mass gap. This is what makes them behaving effectively like 
Goldstone bosons in 1 + 1 dimensions so that the Mermin-Wagner-Coleman theo- 
rem applies: there are no infinitely long Bloch walls in a quantized ferromagnet in 

2 + 1 dimensions. 

3. Effective theories for fluctuating thin flux tubes 

As explained in sect. 1, the glue field in the presence of a static quark-antiquark 
pair at a finite distance L can perhaps be described by a fluctuating thin tube 
containing the chromoelectric flux, which flows from the quark to the antiquark. 
This means that the degrees of freedom of the glue field can be divided into two 
classes containing those, which describe the state inside the thin flux tube, respec- 
tively those describing its position in space. Suppose the quarks are located at 
x = (0, 0, 0) and x = (L,  0, 0). The position of the string can then be specified by a 

two-component vector field 

~(X 0, x l ) ,  0 < X I < L ,  ~(x  0, 0) -~- ~(x  0, L )  ~-- 0 ,  ( I0)  
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?4 ...x-~~ x ~ 
Fig. 1. Thin flux tube at a fixed time x °. The position vector ~ is parallel to the (x 2, x a ) plane. 
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representing the deflection of the thin flux tube from its rest position x = 
(x° ,x l ,0 ,0) ,  0 < x I < L (see fig. 1)*. In what follows we assume that the internal 
degrees of freedom of the flux tube are frozen and concentrate on the resulting 
effective dynamics of the "order parameter" field ~. 

We do not know, of course, what the effective action for ~ is. However, we may 
expect it to have the following general properties: 

(i) It should be local, i.e., 

Serf = fo<x' < L d2x e ( x ) ,  (11) 

where the Lagrange density e ( x )  is a function of ~(x) and its derivatives. 
(ii) E(x)  must be invariant under the following symmetry operations: 

(a) Poincar6 transformations in the (x °, x 1) plane; 
(b) 0(2) rotations and translations of the field vector ~. 

In particular, the last property implies that E(x)  does not depend on ~(x), but on 
its derivatives O~(x),  aoO~(x) . . . .  (/~, v = 0, 1) only. We are thus left with 

Set, f = fo dZx{a~Jj'3~'li+ba~i~ii'O,,O'l~ 
~ ; x  1 6 L  

+ c(O~,~-Ol'~) 2 + d(O~,~ e. O,~e)(O~'/j-O"~e) + . . .  }.  (12) 

Here, a, b, c and d are constants and the terms included are all those having a 
dimension ( =  total number of derivatives) smaller or equal to four. 

The effective action (12) is not renormalizable. This is not a catastrophe, 
however, because the high frequency oscillations of ~ are to be cut off anyhow: 
when ~ wiggles with a wavelength which is not much larger than the diameter of the 
thin flux tube, the internal degrees of freedom of the tube are excited and the 
description of the state in terms of ~ breaks down. Thus, when doing calculations 

* "Overhangs" of the string are excluded here. Within the perturbative analysis presented below, 
overhangs are irrelevant anyhow, 
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with Scff, a systematic cutoff must be introduced. Significant predictions for the 
low-frequency properties of the flux-tube states can then safely be obtained. In this 
regime, all terms in the effective action of dimension larger or equal to four are 
irrelevant: when the corresponding vertices are inserted in a Feynman graph, its 
infrared behaviour improves. We thus arrive at the important conclusion that the 
gaussian action 

S°f = afo<x' <z d2x 0~" 8 ~  (13) 

can be expected to give an at least qualitatively correct description of the long- 
wavelength fluctuations of the thin flux tube*. 

The most important feature of the effective flux tube theory is that the ~ field is 
massless. For example, the roughening effect is due to this fact: if one computes 
the width o of the ground-state wave function in the gaussian approximation (13), 
one finds (ref. [3], sect. 3.2) that the long-wavelength fluctuations of ~ make a large 
contribution: 

o 2 ~ a  l n L ,  (L--> oo). (14) 

Another manifestation of the zero-mass fluctuations of the string is the appearance 
of power corrections to the linear quark potential [10] 

V( L ) = c~L + fl + 3'L-I + O( L - 2 ) ,  ( L---~oo) . (15) 

Namely, V(L) is equal to the ground-state energy of the effective ~-field theory (up 
to an additive term proportional to L),  which would be a linear function of L with 
only exponentially small corrections, if there was a mass gap. The constants a and 
fl in eq. (15) depend on the parameters a, b . . . .  in the effective action (12), but, as 
we shall argue in sect. 4, 3' does not depend on them and can therefore be exactly 
evaluated in the gaussian approximation [10]**: 

1 (16)  y = - - ~ .  

It is this kind of universality, which ultimately makes the effective field theory 
approach quantitatively useful, although we have no theoretical means to de- 
termine the coupling constants. 

* We emphasize that the basis for this conclusion is strictly perturbation thvoretic. Still, perturbation 
theory has recently been shown to be asymptotic (at least for the free energy) in a (V~) 4 theory o n  

a lat t ice  [9]. 
** For a flux tube in d space-time dimensions, this number must be multipfied by ½(d- 2). 
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Recall finally that a mass term for ~(x) has been dismissed because of transla- 
tion symmetry in field space [requirement (iib) above]. This symmetry is explicitly 
broken by the boundary condition ~(x °, 0 )=  ~(x °, L) - -0 ,  which implies that the 
ground-state expectation value of ~ is zero. Making L large thus amounts to an 
attempt to create a state with spontaneous translational symmetry breaking. As has 
been argued before (sects. 1, 2), such a state cannot exist and it is avoided here, 
because the string roughens indefinitely as L---> ~ [eq. (14)]. 

4. Universa l i ty  o f  the  C o u l o m b  potent ia l  correct ion to the  l inear  quark 

potent ia l  

Superficially, one might argue that T [eq. (15)] must be universal, because the 
coupling constants multiplying interaction terms of dimension 8 carry a dimension 
(length) ~-2 so that they cannot, in perturbation theory, contribute to a dimension- 
less number. However, the ~-field theory cannot live without a cutoff and this 
might well upset the naive dimensional analysis. Rather than a general proof, we 
shall now present some sample calculations to demonstrate the universality of T. 

The ground-state energy V(L) of the ~-field theory is most conveniently calcu- 
lated in the euclidean path integral formalism. As a cutoff we use a lattice A = Z 2.. 
V(L) is then given by 

V ( L ) = -  lim 1 T--,oo 'T lnZ ,  (17) 

L - i  T - 1  

z=f II II d2~(z)exp(-S©ff[~]). 
z l ~ l  z 2 ~ l  

(18) 

The effective action appearing here is the euclidean version of expression (12) 
suitably latticized. For concreteness, we shall only consider the following two 
cases: 

S1 2 So + S I  (19a) , ~ 1 ,2 ,  

L - - l  T - l  

S o = - a  ~ ~ ~(z)-A~(z),  (19b) 
z l ~ I  Z 2 m |  

L - - I  T - - I  

S~ = b  ~, ~ A~(z).A~(z),  (19c) 
z l ~ l  z 2 ~ l  

L - - I  T--1  

SJ=c ~ ~ [a~,~(z)-~)~(z)] 2. (19d) 
z l ~ 0  z 2 ~ 0  

* Henceforth, all distances axe measured in units of the lattice spacing, which is set equal to one for 
convenience. 
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The notation here is as follows. 0 r is the lattice derivative, 

Ot~f ( z )=f ( z  + ft ) - f ( z ) ,  

O~f( z) = / ( z )  - f ( z  - f t) ,  (20) 

where /2 denotes the unit vector in the positive /~-direction. The lattice laplacian 
then is 

A = 0~0~ = 0~0~. (21) 

Furthermore, the following boundary conditions have been assumed [cf. eq. (10)]: 

~(0, z 2) --- ~(L,  z 2) = 0, (22a) 

~(z I , 0) = ~(z 1, T) -- 0. (22b) 

the case of the gaussian action S r Decomposing the field into Consider first 
normal modes, 

we have 

It follows that 

and hence 

~(z) = 2(T.L) - 1/2 E ~(p)  sinplz t sinP2z 2 , 
P 

~r 2~r ( L -  1)L 
P I = L  ' L . . . . . .  

~" 2~r ( T -  1)+ 
P 2 = T  ' T . . . . . .  

(23a) 

(23b) 

(23c) 

SI= ~.[~(p)]2(aEp +bE2), 
P 

Ep= 4 - 2 c o s p ~ -  2cosp 2 . 

(24) 

(25) 

Z --_ ( rt )(L- ')(r- ') I~ ( aEp + bEp2 ) - ' , 
P 

V(L) - -  - ( L - 1 ) l n ~ r  +lTr ~ fo 'rdp21n(aEp + b E 2 )  

-- - ( L -  1)lncr + ~  [ f ( p l )  +g(p,)], 
Pl 

1 
f ( P l )  = ~ f0 d p 2  In(4 -- 2 c o s P l  --  2 c o s P 2 ) ,  

(26) 

(27a) 
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/ ,  

g(Pl) = ; / dp2 In[ a + b(4 - 2 cospl - 2 cosP2 ) ] .  
J0 

(27b) 

To determine the large-L behaviour of V(L), we use Euler's sum formula (e.g,, ref. 
[ l l] ,  p. 46ff): 

Lemma: Suppose h(p), 0 <p < ~r is a (2k + 1)-times continuously differentiable 
function. Then, as L--~ oo, 

L - I  

 fo" ~,, h p =--  dph(P)-½(h(O)+h(~r))  
v ~ l "l'i" 

k ~ 2 / ~ -  1 

+ O( L -2k-  , ) ,  (28) 

where the B2~'s are the Bernoulli numbers (ref. [12], sect. 9.6). 
Now, g(p) is obviously differentiable in the interval [0, ~r] and 

g(2~-l)(o) ---- g(2"-')(~r) ---- O, (St = 1,2 . . . .  ) .  

It follows that up to terms smaller than any power of L-1  

~g(pl)=L fo'dpg(p)-l (g(O) + g(~r)). 
Pl 

In particular, there is no contribution to "t and this coefficient is therefore 
independent of the parameters a and b. 

The contribution to V(L) involving f (p )  is what we would have obtained from 
the free field action S o alone. The lemma above cannot immediately be applied 
here, because f (p )  is not obviously differentiable at p = 0: when the integrand is 
differentiated it becomes singular at P t =P2 = 0. However, we may first evaluate 
the integral explicitly (ref. [12], sect. 4.224): 

f ( p ) - - l n { l  + 2 sin½P~/1 + sin 2 ½p + 2sin 2 ½p}. (29) 

This representation is manifestly C ~ in [0, ~r] and 

f (2~,- , ) ( . )  = O, ( # =  1,2 . . . .  ) ,  

f '(O) = 1. 
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Fig. 2. First-order correction to V(L) in the theory with action S 2. 

It thus follows f rom the lemma that 

Lfo " ~ , f ( p , )  = -~ d p f ( p )  - ½ ln(3 + 2 V ~  ) 
PI 

- + (30) 

which proves eq. (16). 
Next, consider the more complicated action S 2 [eq. (19)]. To first order in c, the 

correction to the quark potential comes from a graph with two non-overlapping 

loops (fig. 2): 

L - I  = c  
g X~y ~Z " 4a2 =0 

(31) 

Here, G L denotes the Green function of the lattice laplacian in the strip 0 < g I ~ L:  

-- AGL(x ,Y)  = ~x,y for 1 < x I < L - 1, 

GL(x , y  ) = 0,  for x I = 0, L .  (32) 

Explicitly [cf. eq. (23b)], 

2 f ~  dp  2 GL(x , y  ) = -~ ~ d_~~-~ sinplxl  s inp ly  1 e ip:(x2-y2) 
Pl 

x (4 - 2 cosp i - -  2 cosP2) - I . (33) 

Inserting this expression into eq. (31), performing the P2 integrals and applying 
Euler's sum formula would straightforwardly confirm that there is no correction to 
y to first order in c. Since this is not particularly illuminating, we shall follow a 
position-space method, which was suggested to the author by Symanzik [13]. 
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The idea is to express the Green function GL(x, y) by the infinite-volume Green 
function 

G(x,y) = ( ' ~  d2p (e ip ' (x-y)  - 1)(4 - 2 c o s p l -  2 cosP2)  - l  . 
J -~r  (2¢r) 2 

(34) 

Namely, we have 

o o  

X 
I ' l ~  - - 0 0  

{O~,G(x I - y ,  + 2nL; x 2 - y 2 ) ~  

-3~,G(x, +y, + 2nL;x2-Y2)'O.}. (35) 

The sum here is absolutely convergent, because 

IO~G(x,y)'~, I < constant-(1 + ( x - y ) Z )  - l  . 

It follows that 

R. , (z , )  = E 
t l ~  - - 0 0  

(~,O*G(2nL; 0)(1 - 8,,.o ) 

(36) 

(37a) 

+~,.(8~,,~,- B,.2O~)G(2z, + 2nL; 0)}. (37b) 

The crucial point is that the defect R ~  is small for L---~ oo: either the terms in eq. 
(37b) are constant and of order L -2, or they fall off as z (  2 or (z I - L )  -2 away 
from the boundary z I = 0, L. Inserting eq. (37) into eq. (31) yields 

{ ]} AVO)(L) = ~ 2L + ~ -4R~,~,(z,) + 2R~,,(zl)R~,,(zl) + (Rl,~,(z,)) 2 
4a2 z~ =0 

From the estimate (36) (which also holds if 0~ is replaced by 0") and eq. (37b), it is 
easy to infer that the terms quadratic in R ~  do not contribute to 3,. Furthermore, 
using 

- AG(x ,y)  -- 8x,y, (38) 
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L - I  L - - I  0o 

2 1 m 0  g l m 0  ?1 m - -00  

(al 2 - 0J'02)G(2z I + 2nL; O) 

oo 

= ~, (02-0~ '02)G(2z, ;0) ,  
Z I ~ - - O 0  

which is independent of L. Summing up, we have shown that 

A V ( I ) ( L )  = 2a ----~c L + constant + O(L -2) (39) 

The above proof of universality of 3' to first order in c carries over to all other 
admissible interactions. That higher-order graphs do not contribute either is 
plausible, because diagrams with overlapping loops are less singular in the infrared 
than the simple graph of fig. 2. In fact, the proof technique used above also works 
for higher-order graphs, but we shall not go into any of the rather involved details 
here. We only remark that the (discrete) Lorentz invariance of the effective action 
is essential for the proof. 

5. Conclusions 

The main results obtained are 
(i) that infinitely long localized flux tubes cannot exist in a (continuum) Yang- 

Mills theory; 
(ii) that the coefficient y of the Coulomb potential correction to the linear quark 

potential at large separations is universal within a wide class of effective theories 
describing the vibrations of thin flux tubes. 
Whereas the first result requires very little input (and could in fact be made 
rigorous in an axiomatic framework), the second assumes the picture of a fluctuat- 
ing thin flux tube with frozen internal degrees of freedom. This is also implicit in 
the SOS-type models of roughening and is probably correct in lattice gauge theories 
with a coupling c o n s t a n t  g2  just below the roughening point g2. At least in these 
cases, we thus expect 7 to be equal to the universal value (16), a prediction, which 
is consistent with recent Monte Carlo [ 14] and strong coupling [ 15]* calculations. 

I am indebted to the Institute of Theoretical Physics at Santa Barbara for 
hospitality in July. This work was begun there and I thank the staff of this Institute 
for the stimulating atmosphere. I am also indebted to K. Symanzik for numerous 
helpful discussions and to P. Weisz for a critical reading of the manuscript. 

* -/is sensitive to a violation of (discrete) Lorentz invariance. The velocity of light must therefore be 
carefully renormalized in hamiltonian lattice gauge theories in order to obtain the correct value for 
y. 
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