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We present the calculation of the first-order QCD corrections to the process yy — qq,
ncluding virtual gluons and bremsstrahlung of soft and hard collinear gluons The obtained cross
section 1s then used to calculate the a, corrections to the process ete™ — e e ™ +2 jets The
numerical importance of hard acollinear gluons 1s also discussed

1. Introduction

Photon-photon collisions constitute an important class of phenomena produced
by e " e~ collisions in electron storage rings. They have cross sections which increase
with energy in contradistinction with the cross sections in the annihilation channel
[1]. For the study of hadronic processes, they are extremely useful as they provide
information about the C-even states. Moreover, they allow one in principle to
measure properties of quarks which are inaccessible in e * e~ annihilation. Perhaps
the most important quantity in this respect is the sum of the quark charges to the
fourth power, R, .. It is obtained (in the framework of the asymptotically free parton
model) by a measurement of the cross section fore* e~ — ete™ +2 jets, where the
jets have large transverse momenta. In the process ete™ — y* — 2 jets, one
measures the sum of the quark charges to the second power, R, but the complemen-
tary information of R, is important for distinguishing among different quark
models.

Another reason for studying the process e*e” —e*e™ +2 jets is that it is
predicted to have the largest cross section of all the different jet cross sections in
photon-photon collisions [2]. Furthermore, it provides a test of the # ' behavior of
the quark propagator, at least 1n its lowest order description.
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398 F A Berends et al / Two-jet production in yy collisions

However, one knows that QCD can sometimes lead to large one-loop corrections.
It is therefore important to know whether this reaction would also suffer from this
evil, in which case a precise determination of R, would not be very straightforward.

This paper presents the calculation of e e~ — e e~ +2 jets up to order a,. In a
previous letter [3], we gave the results of the calculation, but in view of the extensive
computations which underly them, we think 1t is worthwhile to present their
derivation 1in more detail. Also, in ref. [3] we did not discuss the numernical
importance of the hard acollinear gluon emission, which one must know in order to
extract R, from the data.

As described in ref. [2], to obtain the cross section fore e~ — e e~ +2 jets, one
first calculates the cross section for the subprocess yy — qq, which 1s then folded
with the equivalent photon spectra, approximately given by

« 1+(1—x)
N(x)Z(Elnn)——x——, (1.1)
where
s/4m?, no tagging,
=45 ' (1.2)
02./0rn, tagging of electrons.

Here, s=4E?, E is the beam energy, m, the electron mass, and [, 0,.] the
angular range in the e* e~ c.m. frame in which the electrons can be detected.

In sect. 2, we first derive the lowest order cross section for the subprocess. We
then show how the folding with the equivalent photon spectra (1.1) can be per-
formed, following the methods of appendix A in ref. [2]. In this way, we obtain the
integrated cross section for jets with a trigger momentum larger than some minimum
value. Sect. 3 presents the calculation of the virtual gluon correction, as well as the
bremsstrahlung of soft and hard collinear gluons. We derive these formulae using
dimensional regularization [4] as well infinitesimal mass regularization and list the
different contributions separately. For completeness, we also list the analogous
expressions which are useful for e* e~ annihilation. Finally, we present the result
for the corresponding integrated cross section, which can be seen as an analogue for
vy collisions of the Sterman-Weinberg [5] formula e * ¢ ~ annihilation. In sect. 4, we
give the formula for hard acollinear gluon bremsstrahlung and discuss its numerical
importance. Finally, in sect. 5, we give our conclusions.

2. Lowest order results

From sect. 1 it is clear that we have to know first the cross section for the
subprocess Yy — qq. In the lowest order, we have to consider the two Feynman
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Fig 1 Lowest order Feynman diagrams for yy — qq

diagrams of fig. 1. They lead to the cross section
[,
(244, e

where §, f, and @ are the Mandelstam variables for the subprocess, and e, 18 the
fractional charge of the quark. We assume that all particles are ultrarelativistic, and
we neglect masses whenever possible.

To obtain the jet cross section for ete™ - e*e™ +2 jets (see fig. 2), we follow
the methods of appendix A in ref. [2]. One parametrizes the equivalent photon
spectrum and the cross section for the subprocess as follows:

xN(x)=A(1—x)*,

do® _ 2ma’

4
o g o

0
9(—1‘—’.—:711)5“2)2,—52;”. (2.2)
t
Hence
a
A= '2—7r lnn,
g, ~0or2,

D= 2a2(3e;),

T=-1,U=+1 or r=+1,U=-1, (2.3)

Fig 2 Feynman diagram forete —e*e yy—oete™ +2jets
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as, by definition

£,=—0/5, x,=-—i/s. (2.4)
Denoting the jet four-momentum by p = (E,p), one introduces the vanables

_,_2r _2p,

‘/S Xg —7, (25)

which are defined in the e " e~ c.m. frame. The differential jet cross section is then

1+g,+g,
d—ao = DAzf LdyyE(l—y) PRl Vg, (2.6)
d’p P 0
with p | the jet momentum perpendicular to the beam axis, and
%, =3(1 —xg +e)—ey,

2, =31 +xp —¢)+ey. (2.7)

We find 1t advantageous to introduce new variables, u, v, and z, given by

uZ%(\/xé +z ~xF),

2 2
uv =135z, w1thz:(%) , (2.8)

and to make a change of integration variable*

y=(l—v—1)/e, (2.9)

where u <t <1-—v. Eq. (2.6) then becomes

2 - — ) — 8a — -3 _

do _DA” Udt( 1—v t) (t u) (1—0) 7T, (2.10)
d3p pi u l_t t

If wechangere> 1 —1, T U, g, < g;, We can also write

2 -y —u—t\8ft—p\& _
g4 - PA f‘ dt(1 2 t) (t U) (A-0)'"%"T  (2.11)
d3p pi © l_t t

* In the notation of ref [2] u, v are x, and x,,, respectively The quantity s equals %,
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Thus, for cross sections which are 7 <> i symmetric, it suffices to consider only half
the terms in the cross section, e.g. the first one in eq. (2.1), and to write

—yy— 7\ 8a
gdo do DA / dt( 1-v t)
&p pt L 1=t

— 113
x(’ t“) (1—:)""1'—T+(u<_>u)]. (2.12)
Since
[ Sy pds oo
pi>wpr BT g2 g v
1 V2 /2
:%s'rrf -d—ff il—‘-, (2.13)
Bz a—1—-z)2 U

we can make use of the u <> v symmetry of the integrand, and write for the
integrated jet cross section with trigger momentum p, larger than some minimum
value ; Bys

87DA? (+Vi-2)/2dp
o(pyL >358)= f =/ = f(v,2), (2.14)
s a-y1i—z)2 ©
where
-0 —y — - — &b _
flo,z)= 3 f' dt( ! 1 ° ’) (’ 2/4”) (1—1¢)'7Y%-T. (2.15)
2/40 —t 4
Z4:8»
For our specific case, we have T=1, U= —1 and

f(v,z)=j;bdt[(l —0P (- 0P+ (1 —%)2(1 ~0 (1 —g)z(b—t)z]
=40’ —a’) +2(b—a)(1 +a—b) +(b~a)(1+b%)

+2a(1+a+ab+b2)ln%, (2.16)

where

a=z/4v, b=1-v. (2.17)
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To perform the remaining integrals in (2.14), there is no great problem, but the
calculation is rather lengthy. The integral over v can be done exactly, and for the
z-integration we take 8 — 0, retaining only the terms of order 8 2 and the constant
terms. We refer to appendix A for details of the calculation.

The integrated jet cross section in lowest order then becomes

32 2]
o*(pu>p) =5, (o m |
Py

2s

(psi;m) )} (2.18)

min 2
X {p—‘—5‘+£p—l—) [+ (3 —72)p+128(3) - %]

where

R,_=3 3 ei=3#, (2.19)

g=u,d,s,c

and {(3) = 1.202 is Riemann’s zeta-function of argument 3.

One comment should be made concerning this result. In ref. [2], the photon
spectra terms 1 + (1 — x)* were approximated by 2, and, as a result, these authors
obtain —12 instead of —4¢ for the second term in the curly bracket (they did not
calculate the remaining terms). We find that by taking the complete expression (1.1)
for the photon spectrum, it becomes necessary to calculate also the terms of order
s 7! to obtain sensible results. Indeed, for ;s =30 GeV and pT® =4 GeV, the terms

— 1% alone would have given a negative cross section. Now, we find that jets with
P =>4 GeV contribute 0.2 units of R to the e"e ™ total cross section for s = 30

GeV from this lowest order process.

3. Second-order results

In this section, we calculate successively the virtual gluon corrections of order a;
toeTe” - etTe” +2 jets, the soft gluon bremsstrahlung contribution, and the hard
collinear gluon correction. ’
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31 VIRTUAL GLUON CORRECTIONS

We consider first the cross section to order a; for yy-— qq, which means
evaluating the eight Feynman diagrams of fig. 3. We shall present the calculation in
the Landau gauge, but later on we shall quote our results in the Feynman gauge as
well. In the Landau gauge, the gluon propagator has the form

8w — kuk, /K*

Dayb= —
# k? +ie

8,ps (3.1)

and, for massless quarks, the quark self-energy vanishes at the one-loop level [6]. The
Ward identity then implies that the vertex corrections must not be renormalized.

It 1s well-known that in dealing with massless quarks and gluons one must
regularize ultraviolet divergences as well as infrared divergences and mass singulari-
ties. We find it convenient to use the continuous dimension method to regularize
them all [4,6,7]. The amplitudes at the one-loop level can then develop a double pole
structure in n — 4, where n is the continuous dimension parameter.

For the vertex correction (fig. 4), we have

R

473
x/d4k7“(1"—/é)7p(1’ ‘ﬁ)Y’g( _ kakﬂ)
K(p—k(p—k) \™ k)
but for our applications, the photon and one of the quarks is on the mass-shell,

which considerably simplifies the calculation. For p’? = 0, we find with the standard
methods

A(p'.p)=—

(3.2)

7 ’ ’ as 2
u(p )Au(}’ aP):E[m-f-ﬂn(—pzw)-{-Zy—%]

xa(p)|v. —2p,8/9%. (3.3)
yika€z) qlpy) Y q
s Jgst i
y(k,€) alpy) Y g
Y q Y 9
v a0y M

+ crossed photon diagrams

Fig 3 Virtual gluon corrections of order a, for yy —» qq The solid lines represent quarks, the wavy lines
photons, and the curly ones gluons



404 F A Berends et al / Two-jet production in vy collisions

Fig 4 Vertex correction

where v is Euler’s constant, and for p? =0,

: _a [ 2 ,
A“(””’)"(”)‘z_w[n_ﬁzln(-p 2r)+2y—3

<[y, = 2,8 /0| o(p). (3.4)

Consequently, the two vertex correction diagrams of fig. 3 have amplitudes given by
(e denotes the quark charge)

a 2 -
M'= —te2ﬁ[———n_4 +21n(—tw)+2y—%]

X%E(Pz)[fz(h — )b 24008 v(p)),

M?*= —tezg—;[n—i—4+2ln(—fw)+2y—%]

> —

X L_l(Pz)[fz( ) ) -k _2¢1P2'£2] v(p1), (3.5)

t
with 7= ( p, — k,)?. Taking into account also the crossed diagrams and interfering
them with the lowest order amplitudes, we get the following correction due to the
vertex corrections:

5 _4¢xs[ 1 (—8ut)+ 24t
+a

vertex = 377 n— 4

X(~In(—rm)—In(—an) — 2y +5)|, (3.6)

where all contributions to the cross section in second order are written as

do' _de°

-cm'——d—ﬂ—a. (3.7)

Note the inclusion of the color factor % m eq. (3.6).
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For the box diagrams, the calculations proceed similarly; e.g., the fourth diagram
of fig. 3 is given by

R PR LR ATl D TD

M*=—
4n kz(k+k2)2(k_k|)2(k_k1+P1)2

X[gaB —(k—k, +P1)a(k_k1 +171)/9/(/‘—/‘1 +P|)2]- (3.8)

This time, however, we have an infrared divergence as well as mass singularities to
deal with, resulting in a double pole structure for the amplitude. The calculation is
more lengthy than in the case of the vertex correction, and we made use of the
symbolic manipulation program REDUCE [8] to calculate the traces in n dimen-
sions. The explicit result for the box diagrams can be found in table 1.

32 SOFT GLUON BREMSSTRAHLUNG

For experimental situations, the one-quark state is degenerate with a state
composed of one quark and soft gluons. To order a,, this means we have to calculate

TABLE 1
The various corrections to yy — qq(g) 1n the Landau gauge
with the continuous dimension regulanzation method

3
4: 8§ (n—4)~? (n—4~"! Finite terms
37 —8ut 2ut 2
da, vertex 24l 2 +u2[ ln(utvr ) 2‘y+5]
~ilin(sm) +y P =3+ a4 o
3 8ut 2t
Rsb"" —4 _Zln(sw)_27+3+,_2+_,42 X[(12+ut+%u2)]n2(%t)+u(t—23—%u)
X(ln(—t-n)+y)—ut(1n(svr)+y)—5ut+(t<—>u)]
3m 252 1 252 2_1_2
Za_a“’“ 4 2In(16¢°E“m) + v] 3[In(16e°E“m) +y]° — g7
s
37 1 1 2
E(Sha,d —4In2¢—3 (In28+3In7w +37)(—4In2¢— 3) —2In"2¢
S

—4lnEln2¢—3mME—3252+4

By s, ¢, u we mean, 1n fact, the quantities §, {, @ as defined 1n the text.
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q q

4
T g q
9

+ crossed photon diagrams

Fig 5 Feynman diagrams for soft gluon corrections

the cross section corresponding to fig. 5, with the constraint that the gluon energy &
be smaller than some cut-off value 2¢E < E, E being the energy of the incoming
photons in their c.m. frame. It is well known that in this case the soft gluon matrix
element is proportional to the purely elastic cross section and that the correction
factor for massless quarks is given by

a 1
& =—2p,.- L L . — 39
e L L ey e (39)

The gluon being soft, we have an infrared divergence in eq. (3.9), and, the quarks
being massless, we have an additional mass singularity. Hence, in the continuous
dimension method, we must expect a double pole structure for §,. Indeed, in n
dimensions,

_ 4a, 27r"/2_'f

v 2¢E
=— dfsin" 34 dkk"3, 3.10
s 32 I‘(%n— 1) s _/(') ( )

0

where the factor 2#"/27!/T(4 n — 1) comes from the integration over the angular
variables which do not appear in the integrand. We chose p,-k = Ek(1 — cos8) and
P, k= Ek(1 + cos®). Expanding around n = 4, we find for the soft gluon correction

_ da 4 2 2p2
8 = oy {(n__4)2+n_4[ln(165E 7r)+y]

+4[In(166%E %) +y]2—%7r2}. (3.11)
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33 HARD COLLINEAR GLUON BREMSSTRAHLUNG

Not only the emission of soft gluons leads to an experimental degeneracy, but also
the bremsstrahlung of hard gluons in a direction which is sufficiently parallel to the
quark or antiquark direction. In practice, this means we also have to calculate the
cross section corresponding to the Feynman diagrams of fig. 6 with the constraints
that the gluon energy k lie in the range 2¢eE <k < E, e < 1, and that X (k,p,) or <
(k,p,) be smaller than 2§, 8 < 1. Again, p,(p,) is the antiquark (quark) four-
momentum.

The matrix elements for the six Feynman diagrams are, omitting color matrices
for simplicity,

M= ST p K o+ Dy~ B ho(p),
Mo = BT p ) B2 — KR~ P)0o( ),
My = Gt P fo = FDAE+ AR ),
M, = 4kp’;gp a(p)H f2 + DR — k) bo(p),
My = i p A by~ bW ~ )01,

Mo =G p et P — R+ Bl ). (3.12)

where g 1s the gauge couphing constant (g?/47 = a,), and g, is the polarization
vector of the gluon.

Y ?9 Y Y
q —>—q —~~—1——q
[O0T00T 9 4
~—ta—q WL%H
g

y q y

<

+ crossed photon diagrams

Fig 6 Feynman diagrams for hard collinear gluon corrections
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For the case when k is almost parallel to p,, only the diagrams M; and M, lead to

singularities, hence, for the cross section, we only have to integrate

F, =3 [|M;|* + 2Re M} (M, + M, + M, + M, + M)
+|Mg|? + 2ReMF( M, + M, + M, + M,)], (3.13)
where the summation extends over the polarization states of the photons, the gluon,

and the quarks.
In the continuous dimension method, the gluon has to be treated in n dimensions,
and we made again use of REDUCE (8] to calculate the traces. We thus obtain

2 R
2e'g% |, 17 + 4P (e —a) i @
22— +(n—4 = +2-——=—-=

1 k p]k.p2 /al ( ) tla/ t/
+(;<—>f',ﬁ<—->ﬁ')], (3.14)
R 2 - 2 R 2
§=(k,+k,), t=(k,—p\), a=(k,—p,),
, 2
—(kz —p). (3.15)

2 A 2 N
+Pz) = (k, ‘Pz) > u

Averaging this matrix element squared over the photon polarizations, summing over
the color, and integrating over the gluon phase space with the stated restrictions, we

have for the cross section

9

Hl 20wl | + cos?
d;ﬂ Sk SiIC;;0{nl4(—4ln2£—3)+(ln28+%lnw+%y)(—4ln2£—3)

—21n228—4ln251nE~3lnE—§7r2+%}, (3.16)

where 6 is the polar angle of the quark in the photon c.m. frame.
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For the case where the gluon is emitted almost parallel to the quark, we find an
identical cross section; hence, for hard collinear gluon bremsstrahlung, we have a
correction

4o
3-rr

8y = —( 4In2¢e —3) + (In26 + 4 In7 +4v)(—4In2e — 3)

—2In?2e — 4In2¢lnE — 3InE — 3n? +§]. (3.17)

3.4 THE JET CROSS SECTION

Adding up the corrections due to virtual and real gluons (soft and hard collinear
ones), we see that the various double and single poles cancel, and we obtain an extra
contribution to the cross section for the subprocess yy — qq(g) to order a, i.c.

do! de°
@~ an o (3.18)

with

4a
8t =¥T§{—ln8(4ln26+ 3)—i7? +3

+2(tT:-12_2)[( +t‘2)ln( )+u(2s—u)1n( +(t<—>u)”

(3.19)

This formula can be viewed as an analogue for photon-photon collisions of the
Sterman-Weinberg formula [5] for ete™ — y* — 2 jets. Note that the same Iné
dependence is obtained, as it is a universal factor associated with soft and hard
collinear gluon bremsstrahlung from quarks.

With the same techniques as in sect. 2, we can now evaluate the jet cross section to
order a,, using the cross section for the subprocess to order a,. This time, however,
the calculations are much more involved because the appearance of extra log factors
in eq. (3.19) introduces higher order polylogarithmic integrals. Still, the result can be
expressed in terms of various powers of = and Riemann’s zeta-function {(3). We find
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for the extra contribution to o(p, >pT™):
1 mn 32 2 a 2
[+ (p.L >]7J_ ):T'ﬂ'a RYY(E';IDT)) j—z
P1 )

min 2

—12,.2 @ Pl e
—3ma 77( 29 lnn) (me)z T
(pr)’

1.333p—6.222 +

|

(0.6670° +10.42p — 1.384)]

(priun) 2

X[—In8(41n2e + 3)] — 0.461p +0.213 +

% [0.0333p° — 0.0833p* +0.973p> — 0.942p> — 4.759 + 17.4]

(‘DTZm) )} (3.20)

s

+0

The quantities p and R, are given by eqs. (2.19).
Because of the size of this calculation, we did not attempt to calculate the last
term in this result exactly (i.e. the coefficient 26.1 in the first formula or the
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coefficient 17.4 in the second one). Rather, we determined it numerically, by
performing the integrals numerically and by verifying that, for pT'® <0.17s, eq.
(3.20) was a good approximation within 3%. Comparing egs. (3.20) and (2.12), we
note that we now have p° terms, which is two more powers of p than in the lowest
order result. This is due to the fact that the cross section for the subprocess in higher
order contains two powers of logarithms. Also note that in (3.20) the high powers of
p are combined with small coefficients and that the signs over the various terms tend
to oscillate, resulting in large cancellations. Certainly, in this calculation, a leading
log approximation could not be trusted.

Due to the presence of the ¢,8 terms in (3.20), it is not directly meaningful to ask
for the numerical importance of this higher order result. These terms will cancel
against similar contributions from hard acollinear gluon corrections, but we can
disregard them temporarily and ask how important the remaining terms are. With
a, = 0.3, p7™" =4 GeV and s = 30 GeV, we find that

0'/06% ~ —0.11, (3.21)
which is not an unreasonable number for a QCD correction.

35 REMARKS

As a check on our calculations, we also performed them in the Feynman gauge,
where the gluon propagator has the form

8uv
Dib(k)= — Lz 2+ (3.22)

This time, we have to consider the quark self-energy diagrams as well. We list the
various corrections in this gauge in table 2, and the reader can easily verify that the
same total correction is obtained.

Also one could introduce an infinitesimal gluon mass, A, to regularize the infrared
divergences and a small quark mass, u, for the mass singularities. A gluon mass
would break the gauge invariance of the theory, but the absence of a three-gluon
vertex in our process makes this procedure harmless. The virtual and soft gluon
corrections are then easily obtained from the analogous QED corrections for the
process e e — yy(y) [9):

1

Surtuar + Bone 2 +a?)

4a 5 .
:3_5{%1n—s;+21nizln2e—2ln2.e_+%ﬂ2 “3+
T 1 u

X[( + £2)In? ( )+u(2s—u)ln( +(t<—>u)]}

(3.23)
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TABLE 2
The various corrections to yy — qq(g) tn the Feynman gauge with
the continuous dimension regularization method

37

da A (=4~ Finite terms
—l+;[1 2(1n( — +
3 it (In(—rm) +v)
Esself»energy 1 t“+u
+46(1n(=um) < )]
1
ELP _,__8u l—ﬁ[u(u+2t)(ln(—tﬂ)+y)
4‘xs vertex ’2+u2 t u
—5ut+(t<—)u)]
“in(sm)+y—4+2a2+
2[ (s7) Y] 2 ER
37 Sut
Ta‘sm ! 21n(sw)_2Y+4+12+u2 X[(tz+ut+%u2)1n2(_§t_)+u(tA2~Y)
X(ln(—tvr)+y)—ut(ln(svr)+y)—5m+(,(_,u)]
43%8501‘1 4 2[ln(1652E21r)+y] %[h’l(lGezEZ‘n)ﬁ—y]z _%'”2
37 (In28 + 3 Inm +1y )(—4In2e — 3)
25 Ohard —4In2e—3

—2In*2e—~4InEIn2e — 31nE—§772 +%

Performing the integral over the phase space for the hard collinear gluon, we now
find

4a ~
O hard 2?7—’5{—21niz(1n2£ +3)—(4In2e+ 3)Ind + 21n2e +%—%w2}.
®

(3.24)

In the sum of (3.23) and (3.24), the Inp? terms drop out, and the total correction as
given by (3.19) is recovered.

The same technique can easily be applied to the rederivation of the Sterman-
Weinberg formula [5] for ete™ — y* — 2 jets. The calculation of the various
radiative corrections can be obtained by the appropriate substitutions in the e T e~
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— u* p” (y) formulae [10]. We simply list the results:

F
6venex:%“f _2(1*ln%)ln%‘%ln2%+%]n%—2+%72 ,
[ o I
4o |
ssoft:"é_‘:TS —2(1—ln%)lnf%@—%lnziz—i—ln—sz——%wz},
L Kk p "

B

2

4
8 :-3_‘:75[2(1 —ln-:—)ln2£—(4ln28+3)ln8—%lniz+§—%w2]

4o,
8T=—3;[—(4ln2£+3)1n8+%—§772]. (3.25)

In the continuous dimension method, these corrections would be

4o, | -4 1
=__S —_(— —_ -+
8vertex 37 [(n—4)2 + n_4( 2111(5'77) 2'}’ 3)
—%(ln(sw)+y)2+%ln(s7r)+%y+%w2 —4],
da| 4 2

2
ort =3 m+n—_z(1n(16ezE2w)+y)+%(1n(1652E21r)+y) *%772],

de T
8 hard =£T—S n—_l_—4(—41n2e~3)+(ln28+%lnw+%y)(—4ln2s—3)

—2In’2e —4InEln2e —3InE — %72 + 4|, 3.26
3

and the same result for 8; as in eq. (3.25) is obtained. Once one chooses a
regularization scheme, 8., and 8,, 4 are the same for both processes. Note that in &
the 72 term is also the same.

4. Inclusive large p , jet production

In this section we investigate the properties of the gluon bremsstrahlung matrix
element and evaluate numerically the inclusive jet production cross section (e Te ™ —

eTe” qq(g), pr' >pT™).
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4.1 HARD GLUON BREMSSTRAHLUNG AND MASS SINGULARITIES

The cross section of hard gluon bremsstrahlung can be obtained trivially from the
e*e” — yyy formula [11], with appropriate color and charge factors. Using the
notation for the four-momenta

v(k))+v(ky) > q(p)) +a(py) +8(ks),

the cross section for massless quarks, averaged over the initial spin and summed over
color has the simple form

4o’ 1 d3p, &°p, d*k
do=——R_|M|*— L 22 _3§&(k +k,~p —p,— k), (4.1
3S Yyl ‘ 7T2 2p(]) ng 2k:? ( 1 2 pl pZ 3) ( )
where
24,2
2 | Mt :
|M|%=s u202u3v3+cyChc perm.j, (42)

and u, =k,'p,,v, =k,"p,,s' = 2p,-p,. With the formulae (3.19) and (4.2) we have
all the necessary information for the purpose of numerical evaluation of any O(a,)
correction. There 1s, however, a technical and a conceptual difficulty. The matrix
element squared | M|? has six poles corresponding to collinear configurations when
one of the k,’s is parallel with p, or p,. The technical difficulty is given by the ¢ and
8 dependence of formula (3.19) which will cancel against the contribution of | M |?
integrated over hard acollinear configurations. The IneInd singularities are obtained
in the limit when the gluon momentum is parallel with p, or p, (u; ~ 0,0, >~ 0). The
cancellation of the Inelnd terms must be performed analytically by subtracting and
adding two simple pole terms. A convenient possibility is described in appendix B.

The conceptual difficulty is associated with the quark mass singularities given by
the decays of the initial photons into collinear quark-antiquark pairs (u,, u,, v;, or
v, = 0). Similar mass singularities are present in deep inelastic leptoproduction, 1n
the Drell-Yan process, etc. Assuming the validity of the parton model, they are
factorized into the wave function of the initial particles and give the Q2 evolution or
scale-breaking effects. For example with the help of integration variables E_, E; and
cosd; for the phase-space integral, the condition v, = 0 gives the relation cosf5 ~
cosf; or equivalently

P = AE-Ey)
1 2+(—1+cosby)E, /E "

(4.3)

The corresponding curve on the Dalitz plot of E, and Ey is given in fig. 7.
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Eq/E §

Rl AP P

-+ Eg/E

Fig 7 Dahtz plot indicating the regions of mass singulanties. v; =~ 0 1s shown by the dashed curve,
uy =~ 0, v; == 015 given by the shaded area [see eq (4 2)]

Performing the integration over the momentum components of the quark, in the
leading logarithmic approximation the well known Weizsacker-Williams approxima-
tion is obtained [12, 13] (see fig. 8):

a
o~
Y998 2ar

2
4 3
do, 1n7l2fdx[x2 +(1—x)"] d6 (xk,,k,); (4.4)

Y—qg’

where M, can be considered as either a quark mass or a momentum cut-off. The
function (a/27)In( p3 /M?)[x* + (1 —x)?] is the “wave function of the photon”.
It gives the probability that a quark is found inside the photon with momentum
fraction x. This “Born approximation” of the photon wave function is modified by
higher order QCD corrections. These corrections can also be calculated in the
leading logarithmic approximation to all orders of «,. The x dependence is modified
but the factor (a/27)In( p3 /M?), of course, remains the same. The presence of this
factor given by the QED vertex is a specific feature of the yy processes. The operator
product analysis of the cross section of the reaction Yy — hadrons [13] revealed that
the value of the “quark mass” parameter M, is of the order of the QCD parameter
A, appearing in the running coupling constant a,.

Unfortunately the ambiguity associated with the value of the parameter M, cannot
be eliminated. The photon has also a “p-component”, i.e. in the small p, region the

yiki) q(p,)
Xkl 6(91)

Y(kz) g (k3)

Fig 8 Diagrammatic illustration of the Weizsacker-Williams approximation [see eq (4.4)]
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“photon wave function” is strongly influenced by non-perturbative effects. However,
assuming the validity of the parton model, M, is expected to have a value between
200 and 800 MeV. Such an ambiguity in the leading log approximation is negligible.
Therefore it is important to know quantitatively the regions of p, and 2p, /ys
where the leading logarithmic approximation is valid.

Another specific feature of yy scattering is the appearance of the QED log factor
at both the QED vertices in second or higher order of g2/4x*. As in higher order
the 1/log factor of a; cancels against the log factors coming from collinear
transitions y — qq or q — gq, we obtain a scale invariant answer and O(1) correc-
tions (2, 12]. Increasing p, , however, all of these corrections are suppressed since
they are folded with “photon wave functions” which are soft at x = 1. Therefore, at
large p | , the leading order contribution will be dominant.

42. NUMERICAL EVALUATION OF o(e*e™ — e ™ e~ qi(g), p* > p™™)

From the discussion of the mass singularities 1t is clear that at very large p, the
cross section is dominated by the Born term (yy — q) and we can have a clean
determination of R .. With increasing p, the remaining small positive corrections
further decrease.

With the help of the complete O(a,) corrections {egs. (3.19) and (4.2)] we can
determine quantitatively the kinematical region where the suppression becomes
efficient and we can study its sensitivity to the variation of the value of the cut-off
parameter M_.

We have found very convemient to consider the total cross section o (e e™ —

e e qd(g), pr' > pT™), where pf is defined as

p¥ =max{pq.p%.p%}.

Experimentally this requires the measurement of the transverse momenta of the
hadrons and a subsequent determination of an axis m which is chosen to maximize
the sum Z, p, | -n over the corresponding semicircle. The transverse momentum of
the inclusively produced jet 1s given by the vectonal sum X p,, over the same
semicircle. The cross section of the events with transverse momenta p¥' > p™" is
given by g (e*e” —e"e” qq(g), pI >pT").

We calculate the cross section g, at two different energies s = 30 and 180 GeV,
for various values of pT" and M_. The results are given in table 3, while some details
of the calculation are presented in appendix B. All the cross-section values have been
calculated in units of R =4ma?/3s. o, denotes the Born cross section, o' is the

* In the LLA the corrections can be interpreted as contributions of large p, quark-quark scattering
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complete O(a,) correction* (and o™ is the Weizsicker-Williams approximation [see
egs. (4.4) and (B.16)]). We recall that cross-section values smaller than 0.1 units of R
appear inaccessible experimentally at PETRA, PEP and LEP energies.

At ys = 30 GeV either the M, dependence is strong or the cross section is too small
(p, >8 GeV). So we conclude that at PETRA energies a clean experimental
determination of R is extremely difficult. It would require a better understanding
of the non-leading contributions.

At s =180 GeV, we have much smaller sensitivity to the value of M, and the
cross section is still quite large. At LEP energies for transverse moments p’f* > 12
GeV it might be possible to determine experimentally R with an accuracy of
~ 30%**.

We remark that with increasing p | the suppression of the complete correction o'
is more efficient than the suppression of 6YV. It can be easily understood. The
equivalent photon spectrum gives large weights to configurations, where the jets are
produced at large angles and are almost collinear. In this case the cross section
o(yyY — qq) gets large and negative first-order corrections. As p is increased, this
negative contribution enhances the rate of the suppression of the large positive
O(In( p3 /M2)) corrections.

For completeness we remark that the cross-section values presented in table 3
have been calculated using the formula (B.20) with F©O, FU_ F{, defined by egs.
(B.3), (B.19), (B.16). The errors of the numerical integration are ~ 5-10% for o' and
1% for 6° and o)YV. The log factor Iny appearing in eq. (1.1) was defined as
Iny =Ins/4m?2.

5. Conclusions

The quantity R, can in principle be measured in three kinds of yy processes: two
large p, electrons, one large p, electron or only large p, hadrons. We considered
the last possibility.

For the last possibility one has real yy scattering into hadrons. When the qq
production is dominant in this process, a measurement of R, can be made.
However, 1t has been pointed out that there are important other processes besides qq
production [1] such as three- or four-jet production and non-perturbative effects. We
made attempts to calculate the complete order a, correction to the two-jet cross
section. As a first step the analogue of the Sterman-Weinberg formula was derived,
which is only valid for small e and 8. When one wants to calculate fimte ¢,8 effects
one runs into the problem of the presence of quark mass singularities. Unlike in
deep inelastic photon-photon scattering there does not exist as yet a method to
circumvent this problem.

Nevertheless, one can introduce a cut-off M, to avoid the mass singularities and
one can study the dependence of the a, correction on this cut-off and for various lab

* We used A =05 MeV, four flavours and a, was evaluated at s = 4( pT™")?
** Electroweak radiative corrections, however, may confuse the picture
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energies. Our results are expressed in a total cross section for inclusive jet production
with a certain minimum p | . For small p | the correction is large and sensitive to the
introduced cut-off. For larger p, the « correction becomes small, but unfortunately
the lowest order cross section becomes small as well.

The a, correction was calculated in two ways; on one hand, by using the exact qgg
cross section and on the other hand using the Weizsicker-Williams approximation
for the subprocess qy — qg. At PETRA energies 1t turns out that the WW approxi-
mation ts not good, whereas at LEP energies it is reasonable. Where the WW
approximation gives the dominant O(a,) contributions and the corrections are large,
one must resum all the leading and subleading logarithmic terms up to
O(1/In( p7. /A%)).

In this kinematical region the cross section (ee — ee hadrons) is large (e.g. 6-20
units of R at ys = 180 GeV and pT"" =~ 6-12 GeV). Therefore, the evaluation of the
O(1/In( p% /A)) correction is very important.

Appendix A

In this appendix, we want to illustrate how the integral (2.14) is evaluated. We
must calculate

—f(v,2), (A1)

1dzf(l+\/1 z)/2dyp
Vi—z)2 ©

with f(v,z) given by eqgs. (2.16), (2.17). The indefinite integrals over v can be done
exactly because of the relative simplicity of f(v,z). Let the primitive function be
F(v,z), then inserting the upper limit, we get

IU—/‘dz (3(1+vT=2),2)

1/2 1—2x
= x————— F(x,4x(1 — x)), A2
a+/1=gH2  4x*}(1 - )2 ( ( ) (A2)

where we introduced the new variable x =35(1 + V1 — z).
The analogous manipulations for the lower limit of the v-integration give

1/2 1—2x
I, = dx—F(x,4x(1 — x)); Al
c=f) a0 e T 41 %) (A3)

hence,

I=1,—1, = — [0V 7FD24 —————F(x ax(1—x)). (A4)

a—/i=H2  4x*}(1 -
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For B2 — 0, it is possible to extract the contributions from (A.4) which are singular
and the ones which give a finite contribution. Take, e.g. the Inv contribution arising
from the Inga term in eq. (2.16):

2 2
~ 28 (1 4 g+ ab+b)no= ( —Z——i+—z—+——sz)lnv. (A.5)
v 403 ©?  8v?
Performing the integration over v, we obtain, after a decomposition in partial

fractions,

1nx+—1—(l— ! )lnzx
X

1-BY/4 3 5 1
I,, =~ ~— dxj)|l——s——5——
lne (B2/4)(l+32/4) {[ 2x2 2x 2(1-—x) 2 1—x

5 2 3
+4—x-;—-;+2——2(—117)}. (A.6)

The integrals over x can be done in the limit 8 — 0, but they involve higher order
polylogarithmic functions; e.g.

1 dx iy )
fol_xlnx—uz(l X)L = —ia?,

fol ld" Inx = 2¢(3), (A7)

where the dilogarithm is defined by
. dt
Li,(x)= — f a1 -1), (A8)
o ¢

and {(3) is Riemann’s zeta-function of argument 3. For a compilation of these
polylogarithmic integrals, we refer the reader to ref. [14a]*. In this way, we find

4 8’ 8’ B?
) . :E—i[—-%lnT—-‘T‘]—!—%lﬁT n’ —2ln——+§(3) S7? 42,

(A9)
where we only retained the terms which are singular or finite for 8 — 0. The other
terms in eq. (2.16) give similar expressions and their sum ledas to the result of eq.
(2.18). Note that the In?8 terms drop out in the sum. It should be noted that it is

* For those involving four powers of loganthms 1n the numerator, see ref [14b]
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possible to derive the exact expression for (A.4) and therefore (2.18):

o®(p, >45B)= 167ra2Rw(% lnn)zl,

1 2 a_ 2 2 a_
I—F —%ln%-—%v“—f,za; +—§a+] —('4—7-—%772)1nz—%1n3%—%1n;:
+4ln*a, In(a,a® ) — ¥ +¥a_ +2(Lis(a,)—Lij(a_)), (A.10)
where
a.=4{1=/1-p?) (A.11)

and the trilogarithm
. 4 Li,(x)
L13(y)—f0 —x-—dx, (A.12)
with Li,(1) = {(3). Expanding (A.10) with respect to 8 2 again gives (2.18).

Appendix B
In this appendix we give formulae which have been used in obtaining the cross
section values of table 1.
B.1 CROSS-SECTION FORMULAE

The differential Born cross section can be given as

de’® _ FO(z%)
— (- q@)=4"—=, (B.1)
dz 21 —z?
where
_\2
z? :(ZPJ_/‘/;) ’
F=2E,,
o _ ma?
A = R, (B.2)

Fo(22)=2(2—z?). (B.3)
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The phase-space integration

_ dPl sz d3k3
R—f 2p1f f2k§’6(kl+k2 Py D ka)

was carried out using the simple expression

1
dz =13 f f] dx,de,de,, (B.4)

X
Xy l

where z2 =(2p,//§)*, x, =2E, /3, ¢, is the azimuthal angle of p, around the p,
direction and ¢, is the azimuthal angle of p, around the beam axis. The cross section
for yy — qqg has a form similar to eq. (B.1)

F(z?
—dlz:A‘——-( D , (B.5)
dzi i1 =z}
where
4a
1= % 40
A 377A , (B.6)
1 dR
F(z2)=|M|%231— 22 = iy 2. (B.7)

The matrix element squared, | M |2, was defined earlier by eq. (4.2).
Using egs. (B.1) and (3.19) we can obtain the contribution of the virtual correc-
tions, soft and collinear gluon emission

do” _ f(z*)—8(2—2z*)Iné(lne +3)

dz? 231~z

, (B.8)

where

f(z22)=2(2—22)[3 —{n? + g(2?)], (B.9)

1 .40 ., 0 [} 0) ., 0
2y - 4 22 2 2 2
g(z )—1 ey [(1+sm 2)ln sin 2+cos 2(Z—i-cos 5 Insin >

+(0<—>1r—0)] (B.10)
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and
2% =sin?g.
We also define a pole term

2—23 8 1+(l-x,)

2 — 2 1
IMIPOIe. 22 1_22 § x3(1_x1) Xi 'COSOIITITB’ (B-l )
1 1
where
Ind

if1—2z, >x,,

= In[8(1—x,)]’

_ Iné
ln[8x3(1 —x3)/(1 _Zl)] ’

T, ifx;>1—2z,

T,=1, if 11—z, >182,

- 2lne +3
37 2In(e/v) +20(1 —4v)’

if182>1—z,,

o=4(1-1-4(1-2)/8?). (B.12)

with a similar expression for the pole at x, = 1. These squared matrix elements give

doPole _ 8(2— zz)[—lnﬁ(lne +%)]

, (B.13)
dz? 22

1—z

which cancels the Ind, Ine dependence of eq. (B.8).

The T,, T, factors in eq. (B.11) are introduced to compensate the changes in the
integration region as indicated in the Dalitz plot of fig. 9. Therefore, by definition
we obtain

3

€ 82x3(1——x3)

where y =1 — x,.
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X] 'y
! 1%z 6 23(1-%3)
1
4 ~
i e 1-2,28%4
: Se—
1 Y
| F
1 ]
!
l iR % 1=Zy>x3
: 1-Z=x3
|
1
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1
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|
1
1
[

------------------------ - X,

Fig 9 Dalitz plot of x, and x, illustrating the vanous integration regions at fixed z, When 1 —z, <} 82

only the dotted area 1s relevant When 1 — z; < x; the integration region 1s the area shaded by vertical
lines, when x; <1 —z| 1t 1s given by the area shaded by horizontal lines

Finally, if we use the cross-section formula

do 4770150(( § 4 )
= -qg)=— -3 B.i4
Seosd WY~ ® =773 (B.14)
the integration over x in eq. (4.4) can be carried out and we get
d WWwW FWW 2
A G (B.15)

d:z? N g ’

where

+2y1—z2
2

2 2
FWW(ZZ)=2lnf;%\/1—z2 [(2—322 -!~22")1n2 z
; z

+ (422 —)Y1-27 |, (B.16)

B2 NUMERICAL EVALUATION

In the numerical integration program, three different regions are considered:

regon (1):p,g>pig.Pie PT™=Pig
region (2):p, o >pigP1g PT™ =P

region(3):plg ZPig:P1g P =pi,
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since the phase-space distributions d R /d z? are different in these regions. In order to
cancel the Inelnd singularity analytically instead of |M|>dR/dz? a regularized
distribution has been used:

1 dRM
IMlR—Z—:;{z[IM'z_Ilemle] +'M| 2|M'pole

,dR® dR® dRM+?
dz2 dz2 dz ’

3
(B.17)
where dR®/dz? = dR/dz? in region (i), otherwise it is zero, and
z=max{z,,25,2,} .

The complete O(a,) cross section, after cancelling the Ine, Ind dependence analyti-
cally can be given as

i'_l_zAl_F_lgi)__

. , (B.18)
dz 231 =22
where
2.1 .2
FY(z?) = f(2?) + 22 )3 98 (B.19)
w2 dz?

Finally, we must fold the parton cross sections (B.1), (B.7) and (B.9) with the
equivalent photon spectrum [eq. (1.1)] M(x,):

d
d 02 ( ’PL /dx /dx,,N(x )N(xb) (x be’PJ.)
Py pi

Introducing new variables 7= x,x, and y = x,/x, the y integration can be per-
formed and we have

2
oc“(e*e‘ N >p‘f“): (—;;lnn) A

1 dz2 a1 c(7)
X | ———F%z%/7), (B.20
Sy =7 o T P/ (B20)

where

o(r)=2[-@+7)InT— 42+ 7)1 —7) +2(1—72)]. (B.21)
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The functions F°, F', F*V are defined by egs. (B.3), (B.19) and (B.16). In the
argument of the log factor in eq. (B.16) ( pT™°/M.,)? was used. F' was calculated by
eq. (B.19) using § =s7 and p!, ,p3 > M_.
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