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We present the calculatmn of the first-order QCD corrections to the process yy---, q~, 
including vmual gluons and bremsstrahlung of soft and hard colhnear gluons The obtmned cross 
secuon ~s then used to calculate the a s corrections to the process e + e - ~ e + e - + 2 jets The 
numerical ~mportance of hard acollmear gluons is also &scussed 

1. Introduction 

Pho ton -pho ton  col l is ions const i tu te  an impor t an t  class of  p h e n o m e n a  p roduced  

by  e + e - col l is ions in e lect ron s torage rings. They  have cross sect ions which increase 

with energy in con t rad i s t inc t ion  with the cross sect ions in the ann ih i l a t ion  channel  

[1]. F o r  the s tudy  of  hadron ic  processes,  they are ex t remely  useful as they p rov ide  

in fo rma t ion  abou t  the C-even states. Moreover ,  they al low one in pr inc ip le  to 

measure  p roper t i e s  of  quarks  which are inaccessible  in e + e -  annihi la t ion .  Perhaps  

the most  i m p o r t a n t  quan t i ty  in this respect  is the sum of  the quark  charges to the 

four th  power,  R ~ .  It  is ob ta ined  (in the f ramework  of the a sympto t i ca l ly  free p a t t o n  

model )  by  a measu remen t  of the cross sect ion for e + e - ~ e + e -  + 2 jets ,  where the 

je t s  have large t ransverse  momenta .  In  the process  e + e  - --~'r*--- '  2 je ts ,  one 

measures  the sum of  the quark  charges  to the second power,  Rv, bu t  the complemen-  

ta ry  in fo rmat ion  of  Rvr  is i m p o r t a n t  for d is t inguishing among  different  quark  

models .  

A n o t h e r  reason for  s tudying  the process  e ÷ e - ~  e + e  - + 2  je t s  is that  it  is 

p red ic t ed  to have the largest  cross sect ion of  all the di f ferent  j e t  cross sect ions in 

p h o t o n - p h o t o n  col l is ions [2]. Fu r the rmore ,  it p rovides  a test of  the j - l  behav ior  of  

the quark  p ropaga to r ,  at least  in its lowest  o rde r  descr ipt ion.  
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However, one knows that QCD can sometimes lead to large one-loop corrections. 
It is therefore important to know whether this reaction would also suffer from this 
evil, in which case a precise determination of Rvv would not be very straightforward. 

This paper presents the calculation of e + e -  ~ e ÷ e -  + 2 jets up to order a s. In a 
previous letter [3], we gave the results of the calculation, but in view of the extensive 
computations which underly them, we think ~t is worthwhile to present their 
derivauon in more detail. Also, in ref. [3] we did not &scuss the numerical 
importance of the hard acollinear gluon emission, which one must know in order to 
extract Rvv from the data. 

As described in ref. [2], to obtain the cross section for e + e - ~ e + e -  + 2 jets, one 
first calculates the cross section for the subprocess •3' ~ q~l, which is then folded 
with the eqmvalent photon spectra, approximately given by 

o~ N ( x ) - - - ( ~ - ~ l n ~ )  l + ( 1 - X ) 2 x  (1.1) 

where 

{ s / 4 m ~ ,  no tagging, (1.2) 
1" /=  2 2 

Om~ x/gmm, tagging of electrons. 

Here, s =  4E 2, E is the beam energy, m e the electron mass, and [0mm, 0m~x] the 
angular range in the e + e -  c.m. frame in which the electrons can be detected. 

In sect. 2, we first derive the lowest order cross section for the subprocess. We 
then show how the folding with the equivalent photon spectra (1.1) can be per- 
formed, following the methods of appendix A m ref. [2]. In this way, we obtain the 
integrated cross section for jets with a trigger momentum larger than some minimum 
value. Sect. 3 presents the calculation of the virtual gluon correction, as well as the 
bremsstrahlung of soft and hard collinear gluons. We derive these formulae using 
dimensional regularization [4] as well infinitesimal mass regularization and list the 
different contributions separately. For completeness, we also list the analogous 
expressions winch are useful for e + e -  annihilation. Finally, we present the result 
for the corresponding integrated cross section, which can be seen as an analogue for 
3"/ collisions of the Sterman-Weinberg [5] formula e ÷ e -  anmhilation. In sect. 4, we 
gwe the formula for hard acollinear gluon bremsstrahlung and discuss its numerical 
importance. Finally, in sect. 5, we give our conclusions. 

2. Lowest order results 

From sect. 1 it is clear that we have to know first the cross section for the 
subprocess ~,~, ~ q~l. In the lowest order, we have to consider the two Feynman 
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Fig 1 Lowest order Feynman diagrams for yy --. q~ 
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diagrams of fig. 1. They lead to the cross section 

( °t (,1, d°°  2"n'a2 3e4 f + 7 
d t  g2 ~ ' 

where g, [, and ~ are the Mandelstam variables for the subprocess, and eq is the 
fractional charge of the quark. We assume that all particles are ultrarelativistic, and 
we neglect masses whenever possible. 

To obtain the jet cross section for e + e -  ~ e + e -  + 2 jets (see fig. 2), we follow 
the methods of appendix A in ref. [2]. One parametrizes the equivalent photon 
spectrum and the cross section for the subprocess as follows: 

xN(x)  : A ( 1 - x )  g°, 

Hence 

0~ 
A = ~--~ Inn, 

do 0 
d t  - ~rDg-2~t-r~-v (2.2) 

ga : 0  or2 ,  

D : 2 a 2 ( 3 e ~ ) ,  

T =  - 1 , U =  +1 or T =  + I , U =  - 1 ,  (2.3) 

@- 

04' 
j t  

e- 

F~g 2 Feynmandlagramfore+e --~e+e--rT-,e+e-+2jets 
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as, by definition 

2 t = - t"/g, 2,, = - f i / g .  (2.4) 

Denoting the jet four-momentum by p = (E ,p) ,  one introduces the variables 

_ _ _  _ 2 P z  e = 1 21 P l ,  XF - - - -  , (2.5) 
Cs Cs 

which are defined in the e + e -  c.m. frame. The differential jet cross section is then 

E 
do E 1 +g~ +gl' 

d3p p4  
f01 dyyg ,  . " ~ g h . ~ . l - U - g  ~ l - r - g  h (2.6) - -  DA 2 ( 1 - y )  xa "x t , 

with p±  the jet momentum perpendicular to the beam axis, and 

2t =½(1 - - x  F + e ) - e y ,  

2 u =½(1 + x  v - e ) + e y .  (2.7) 

We find it advantageous to introduce new variables, u, v, and z, given by 

/./I) = I z ,  with z = ( 2p-L ) 2 , (2.8) 
- 7  

and to make a change of integration variable* 

y ---- (1 -- v --  t ) / e ,  (2.9) 

where u < t < 1 - v. Eq. (2.6) then becomes 

E d ° - D A Z f u l - v  ( 1 - v - t ) s " ( ~ f ~ _ ) s b ( 1  
da----p p4  dt  1 - t  - - t ) ' - v t  ' - r  (2.10) 

If we change t <-> 1 - t, T ,-> U, ga ~-) gb, we can also write 

E d ° - D A 2 f v l - U d t ( 1 - u - t ) g " ( ~ - ~ ) g h ( l d 3 - - - p  p4  T - ~ t  - t ) t - U t l - T  (2.11) 

* In the notation of ref [2] u, v are x, and x , ,  respectively The quantity t equals 2, 



F.A Berends et al / Two-jet productzon m y'y colhswns 401 

Thus, for cross sections which are t'<---> t~ symmetric, it suffices to consider only half 
the terms in the cross section, e.g. the first one in eq .  ( 2 . 1 ) ,  and to write 

Since 

[:,v (1 v ,),o E do = DA 2 dt 
d3p p~ 1 - t 

X(  ~ - ) g h ( 1 - - t ) l - U t ' - r  +(u~--~v)]. 

fv d3P =!  fl  dz  fo+d~-~) / :dv  
.i > ~ / s , 8 / 2 T  2STtJfl 2 Z 2 ~[z/2 T 

, r~ dz/.,u/2 du,  

(2.12) 

where 

we can make use of the u ~ v symmetry of the integrand, and write for the 
integrated jet cross section with trigger momentum P_L larger than some minimum 
value ½ #¢s 

where 

o(p_ L >½¢Tf l )_  8~rDA2 f l  d z  /,(,+ ICi-~-~)/2dv "v,z" 
S '/,8 2 Z 2 J ( l -  1¢]-~-z)/2 T I (  ) '  (2.14) 

f ( v , z  ) = ~ f l -V dt(1-- v -- t )s°( t--z/4v )So(1-- t )i-uti-r. (2.15) 
ga,gb., z/4v ~ 1 -- t t 

For our specific case, we have T = 1, U - - -  - 1 and 

f(v,z) =fa bdt[(1 --t)z+ (b-t)2+ (1-t) z(1 -t)2+ (1-t) 2(b-t)2] 
a 

=4(b3 - a 3) + 2 ( b -  a)(1 + a -  b) + ( b -  a)(1 + b2)-~ 

+ 2 a ( 1  + a + ab + b2)ln b ,  (2.16) 

a = z / 4 v ,  b= 1 - v .  (2.17) 

(2.13) 
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To perform the remaining integrals in (2.14), there is no great problem, but the 
calculation is rather lengthy. The integral over v can be done exactly, and for the 
z-integration we take/3 ~ 0, retaining only the terms of order/3 -2 and the constant 
terms. We refer to appendix A for details of the calculation. 

The integrated jet cross section in lowest order then becomes 

321r 2 [ a lnT/) 2 1 o°(p_l_ > p ~un ) = "--'~" ot R v,~ ~--~ ( p~Un)2 

(e n) 
× 2s [ 

where 

S 2 

p = l n  

(2.18) 

4 __ 34 (2.19) Ryr -- 3 ~ eq - - 7 ,  
q = u , d , s , c  

and ~(3)= 1.202 is Riemann's zeta-function of argument 3. 
One comment should be made concerning this result. In ref. [2], the photon 

spectra terms 1 + (1 - x )  2 were approximated by 2, and, as a result, these authors 
obtain - ~  instead of - ~  for the second term in the curly bracket (they did not 
calculate the remaining terms). We find that by taking the complete expression (1.1) 
for the photon spectrum, it becomes necessary to calculate also the terms of order 
s - 1 to obtain sensible results. Indeed, for : = 30 GeV and p~n ___ 4 GeV, the terms 
p - ~  alone would have given a negative cross section. Now, we find that jets wxth 
Pa_ > 4 GeV contribute 0.2 units of R to the e+e  - total cross section for Cs--30 
GeV from this lowest order process. 

3. Second-order results 

In this section, we calculate successively the virtual gluon correcuons of order % 
to e + e -  ~ e + e -  + 2 jets, the soft gluon bremsstrahlung contribution, and the hard 
collinear gluon correction. 
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3 1 VIRTUAL GLUON CORRECTIONS 

We consider first the cross section to order a s for 3 '3 '~  qF:l, which means 
evaluating the eight Feynman diagrams of fig. 3. We shall present the calculation in 
the Landau gauge, but later on we shall quote our results in the Feynman gauge as 
well. In the Landau gauge, the gluon propagator has the form 

g.~ -- k .k~/k  2 
= 8ab, (3.1) - ,  

and, for massless quarks, the quark self-energy vamshes at the one-loop level [6]. The 
Ward identity then implies that the vertex corrections must not be renormalized. 

It is well-known that in deahng with massless quarks and gluons one must 
regularize ultraviolet divergences as well as infrared divergences and mass singulari- 
ties. We find it convenient to use the continuous dimension method to regularize 
them all [4, 6, 7]. The amplitudes at the one-loop level can then develop a double pole 
structure in n - 4, where n is the continuous dimension parameter. 

For the vertex correction (fig. 4), we have 

lO/s 

A,(p ' ,p)  = 4~r3 

[ kok  

but for our applications, the photon and one of the quarks is on the mass-shell, 
which considerably simplifies the calculation. For p,2 __ 0, we find with the standard 
methods 

, , _ a s [ 2  ] 
ff(p )A,(p ,p)--f-~ ~-Z-~_4 + 21n(-p27r) + 2 3 ' - ~  

× if( P')[ 3', - 2 p,,p/p2], (3.3) 

F~g 3 

y(kz, E:2) q(p2) Y q 

Y q y q 

* crossed photon dlagrctms 

Virtual gluon corrections of order a s for y7 ~ q~ The sohd hnes represent quarks, the wavy hnes 
photons, and the curly ones gluons 
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P~ ~ ~p" 

Fig 4 Vertex correcUon 

where 3' is Euler's constant, and for p2 = 0, 

- % I  ~ ] A.(p',p)v(p)-~--~ -n-S~_ 4 + 2 ln(-p'2'rr) + 23' - ~ 

X [3', - 2p;,tC'/p'2]v(p). (3.4) 

Consequently, the two vertex correction diagrams of fig. 3 have amplitudes given by 
(e denotes the quark charge) 

M ' =  -w2~-~ [ n _ ~ 2  4 + 21n(-/Tr)+ 23 ' -5]  

X -Zl~ u(p2)[¢2(¢2 --]~2)¢1 q- 2 ¢ 2 P I ' e , ] v ( P , ) ,  
t 

X ] '~U(P2)[¢2(~2--~2)~1-  2¢,Pz'e2]v(P,), (3.5) 
t 

with [ =  (P2 - k 2 )  2. Taking into account also the crossed diagrams and interfering 
them with the lowest order amplitudes, we get the following correction due to the 
vertex corrections: 

4as[ 1 / - 8 f i [ )  2d; 
Gr,ox -- 4 + ? + a - - - - 7  

- ln(-  art) - 23' + 5)], (3.6) × ( - l n ( -  [1r) 

where all contributions to the cross section in second order are written as 

da I da ° 
d ~  - d ~  ~" (3.7) 

Note the inclusion of the color factor 4 in eq. (3.6). 
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For the box diagrams, the calculaUons proceed similarly; e.g., the fourth diagram 
of fig. 3 is given by 

as f d a k  f f ( P 2 ) Y a ( ~  + ~ 2 ) ¢ 2 ] ~ ¢ 1 ( ~  - ~ l ) - y O t ~ ( p l )  M 4 ~ e 2 

4qr 3 J k - ~  T ~ k j - ~  S k l ~ p l  ~ 

X [ g a o - ( k - k  I + p l ) a ( k - k l  + p l ) g / ( k - k !  + p l ) 2 ] .  ( 3 . 8 )  

This time, however, we have an infrared divergence as well as mass singularities to 
deal with, resulting in a double pole structure for the amplitude. The calculation is 
more lengthy than in the case of the vertex correction, and we made use of the 
symbohc manipulauon program REDUCE [8] to calculate the traces in n dimen- 
sions. The explicit result for the box diagrams can be found in table 1. 

3 2 SOFT G L U O N  BREMSSTRAHLUNG 

For experimental situations, the one-quark state is degenerate with a state 
composed of one quark and soft gluons. To order as, this means we have to calculate 

TABLE 1 
The various correctmns to "r')' -~ qq(g) m the Landau gauge 

w~th the continuous d~menslon regulanzauon method 

3~" 8 ( n _  4) -2  ( n - - 4 )  - I  
4a ,  

F~mte terms 

4•s ~vertex -- 8 Ut 
t 2 + U 2 

2ut [_ln(ut~r2)_2y+ 5 ] 
t 2 + u 2 

3~  
4e% box -- 4 -- 21n(s~r) -- 2y + 3 + -  

± [lngs~.~ 2 7 7 2 1 
- - 2 t  ~ J + Y ] - - ~ + ~ "  4 t 2 + u 2 

8ut 

(In(-- t~r)  + y )  -- ut(ln(s~r) + y)  -- 5ut + (t ~ u) ]  × 

3 ~  
--~'/t 4 a  s soft 4 2[ln(16e2E2~r)+y] ½[ln(16e2E2~r)+T]2 i 2 

3~r 
4 a  s ~ h a r d  - -  41n2e -- 3 (1n28 + ½ lnrr + ½y)(--41n2e -- 3) -- 21n22e 

- -  41nEln2e  - 31nE--2~r 2 + ~  

By s, t, u we mean, m fact, the quantaties 8, t, fi as defined m the text. 
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Y gq Y 

• cro~ed photon dmgrams 

Fig 5 Feynman diagrams for soft gluon corrections 

the cross section corresponding to fig. 5, with the constraint that the gluon energy k 
be smaller than some cut-off value 2eE << E, E being the energy of the incoming 
photons in their c.m. frame. It is well known that in this case the soft gluon matrix 
element is proportional to the purely elastic cross section and that the correction 
factor for massless quarks is given by 

3• £<2~E dak k 1 8s 22P, P2 ( p . k l ( P 2 . k )  
(3.9) 

The gluon being soft, we have an infrared divergence in eq. (3.9), and, the quarks 
being massless, we have an additional mass singularity. Hence, in the continuous 
dimension method, we must expect a double pole structure for 8 s. Indeed, in n 
dimensions, 

8s 4a, 2~'"/2-' fo~"  fo2~edkk,,-5, = 3rr 2 r ( ½ n -  1) dOsin"-50 (3.10) 

where the factor 2rr"/2-t/F(½ n -  1) comes from the integration over the angular 
variables which do not appear in the integrand. We chose p~-k = Ek(1 - cos 8) and 

P2" k = Ek(1 + cos0). Expanding around n = 4, we find for the soft gluon correction 

4 a , {  4 2 [ln(16e2E2~) + 7 ] 8, =-~-- (n_4)z I--n_---~- ~ 

+ ½ [In(16e2E2cr) + 7] 2 - ¼¢r2}. (3.11) 
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3 3 HARD COLLINEAR GLUON BREMSSTRAHLUNG 

Not only the emission of soft gluons leads to an experimental degeneracy, but also 
the bremsstrahlung of hard gluons in a direction which is sufficiently parallel to the 
quark or antiquark direction. In practice, this means we also have to calculate the 
cross section corresponding to the Feynman diagrams of fig. 6 with the constraints 
that the gluon energy k lie in the range 2eE < k < E, e << 1, and that <~(k,Pl) or 
(k,p2) be smaller than 28, 8<< 1. Again, P1(P2) is the antiquark (quark) four- 
momentum. 

The matrix elements for the six Feynman diagrams are, omitting color matrices 
for simplicity, 

-- 'e2g ff(P2)~(lJ2 + ¢ )¢2 (~ , - -~ , ) l / , v (p , ) ,  
MI -- 4k ' p2k l  "Pl 

-- -- 'e2g ff(P2)¢2(/~2 -- ~2)¢(¢~ - I ~ 1 ) ¢ , v ( P , ) ,  
M2 4k  I "plk2"P2 

- i e 2 g  ff( p2)¢2( t~2 _ t2)¢,(l~ + l~,) tv(  p , ) ,  
11,t3 -- 4k .Plk2 .P2 

-~e2g tT(p2)¢(~2 + ¢ ) ¢ , ( g , - ¢ 2 ) ~ 2 v ( P , ) ,  
M 4 - 4k .p2k2 .p l  

- t e 2 g  ff(p2)¢,(l~2 _[ t , )¢([ t2  _ l ~ ) ¢ 2 v ( p , ) ,  345 - 4k2"p lk l  "P2 

- te2g f i(p2)¢,(~2-t , ) t~2(~ +l~l)~v(p,) ,  (3.12) 
M6 - 4k 'p l k~  "P2 

where g is the gauge couphng constant (g2/4~r = as), and e, is the polarization 
vector of the gluon. 

v v v 
~ - _  ~ , . ,  ~ P q ~ P q 

¥ Y 

• crossed photon d=ograms 

Fig 6 Feynman diagrams for hard colhnear gluon correcuons 
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For the case when k is almost parallel top l ,  only the diagrams M 3 and M 6 lead to 
singularities, hence, for the cross section, we only have to integrate 

F, = ~, [IM312 + 2ReM~(M, + M  2 + M  4 + M  s +M6) 

+ IM612 + 2ReM~'(M 1 + M  2 + M  4 + M s ) ] ,  (3.13) 

where the summation extends over the polarization states of the photons, the gluon, 
and the quarks. 

In the continuous dimension method, the gluon has to be treated in n dimensions, 
and we made again use of REDUCE [8] to calculate the traces. We thus obtain 

F_ 2e492g' [2i'2+ft2 ( ( i - f i )  2 i fi) 
k . p l k . p 2  t'ft '  + (n  -- 4) t-z, fi, ~- 2 fi, t" 

+ ( i ,--, ?,c, ~ a')] , (3.14) 

=(k, +k2) 2, i=(k, _?,)2, a=(k, -?2) 2, 

g , = ( p .  +p2)2, t~, = (k2 _p2)2,  f i ,= (k2 _ p , ) 2 .  (3.15) 

Averaging this matrix element squared over the photon polarizations, summing over 
the color, and integrating over the gluon phase space with the stated restrictions, we 
have for the cross section 

do H1 2 ot2Otseq 1 -k- cos20 ( ~ . . . ~  4 
- ~- ( - 4 1 n 2 e  - 3) + (ln26 + ½ ln~r + ½3,)(-41n2e - 3) 

d~  slr sin 20 - 

- 21n22e -- 41n2elnE -- 31nE --2q72 ~ - ~ } ,  (3.16) 

where 0 is the polar angle of the quark in the photon c.m. frame. 
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For the case where the gluon is emitted almost parallel to the quark, we find an 
identical cross section; hence, for hard collinear gluon bremsstrahlung, we have a 
correction 

4 a s [  ~ - 4  ( - 4 1 n 2 e -  3) + (1n28 + ½lair + ½ 7 ) ( - 4 1 n 2 e -  3) 8N = -j~-~ 

- 2 ln22e -- 41n2elnE -- 31nE --2~r2 + ~ ] .  (3.17) 
J 

3.4 THE JET CROSS SECTION 

Adding up the corrections due to virtual and real gluons (soft and hard collinear 
ones), we see that the various double and single poles cancel, and we obtain an extra 
contribution to the cross section for the subprocess yy ---, qF](g) to order a s, i.e. 

d o  I d o  o 
d ~  - d ~  ST, (3.18) 

with 

8T = 3--~ {-- lnS(41n2e + 3)--]¢r2 + 3 

+ 2( t~2 +1 [/~2) (g2 -t- t '2 ) ln2(- -~)+~(2g- f t ) ln( - -~)+([<--->~)]}_  _ . 

(3.19) 

This formula can be viewed as an analogue for photon-photon collisions of the 
Sterman-Weinberg formula [5] for e + e  - ---> y*--->2 jets. Note that the same ln8 
dependence is obtained, as it is a universal factor associated with soft and hard 
collinear gluon bremsstrahlung from quarks. 

With the same techniques as in sect. 2, we can now evaluate the jet cross section to 
order a s, using the cross section for the subprocess to order a s. This time, however, 
the calculations are much more involved because the appearance of extra log factors 
in eq. (3.19) introduces higher order polylogarithmic integrals. Still, the result can be 
expressed in terms of various powers of ~r and Riemann's zeta-function ~(3). We find 
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for the extra contribution to o(p± >p~m): 

o'(p± >p~m)=32~raZR [ a ln~/) 2 1 
,,~ ~ (p2°)  ~ 

4as({ ~-t (PY")2(p3+(~-,r2)O+12~(3)-~) ] x ~ 0 - -  2s 

[53 1 2~ . !~2 × [ - l n S ( a l n 2 e +  3)] +l, T g - ~  1P-~-6+ +4~'(3) 

(Prom)2 [1195 _1104 ..~_ ( . .~_/~2)p3 + (6~.(3)_~)p2 
+ 2-----7--- 

+ (2~9-- 12~2 + 15ff(3) --~r4)O + 26.1] + O ~- }J 

= 32 7/'- 2R [ Ot ) 2 1 a s 
T ,, , 4 ~ l n ~  (p2.)2 

X {[1.3330 - 6.222 + - -  (P~")s 2(0.66703 + 10.420 - 1.384)] 

× [-lnS(41n2e + 3)] --0.4610 + 0.213 + - -  
( 1 )  2 p rllln 

x [0.033305 - 0.083304 + 0.97303 - 0.94202 - 4.7590 + 17.4] 

7 IJ (3.20) 

The quantities O and Ryv are given by eqs. (2.19). 
Because of the size of this calculation, we did not attempt to calculate the last 

term in this result exactly (i.e. the coefficient 26.1 in the first formula or the 
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coefficient 17.4 in the second one). Rather, we determined it numerically, by 
performing the integrals numerically and by verifying that, for p~m <0.17~/S, eq. 
(3.20) was a good approximation within 3%. Comparing eqs. (3.20) and (2.12), we 
note that we now have p5 terms, which is two more powers of p than in the lowest 
order result. This is due to the fact that the cross section for the subprocess in higher 
order contains two powers of logarithms. Also note that in (3.20) the high powers of 
# are combined with small coefficients and that the signs over the various terms tend 
to oscillate, resulting in large cancellations. Certainly, in this calculation, a leading 
log approximation could not be trusted. 

Due to the presence of the e, 8 terms in (3.20), it is not directly meaningful to ask 
for the numerical importance of this higher order result. These terms will cancel 
against similar contributions from hard acollinear gluon corrections, but we can 
disregard them temporarily and ask how important the remaining terms are. With 
a s "~ 0.3, p~n = 4 GeV and s = 30 GeV, we find that 

o l /o  ° ~" - 0 . 1 1 ,  (3.21) 

which is not an unreasonable number for a QCD correction. 

3 5 REMARKS 

As a check on our calculations, we also performed them in the Feynman gauge, 
where the gluon propagator has the form 

D ~ ? ( k ) =  - - i ~  b. (3.22) 

This time, we have to consider the quark self-energy diagrams as well. We list the 
various corrections in this gauge in table 2, and the reader can easily verify that the 
same total correction is obtained. 

Also one could introduce an infinitesimal gluon mass, ~, to regularize the infrared 
divergences and a small quark mass, /~, for the mass singularities. A gluon mass 
would break the gauge invariance of the theory, but the absence of a three-gluon 
vertex in our process makes this procedure harmless. The virtual and soft gluon 
corrections are then easily obtained from the analogous QED corrections for the 
process e+e  - ~ "YY(Y) [9]: 

4as~  g ^ I 
8,~.t~ + 3~o,, = . .~_  ~½ in ~_S + 2in s l n 2 a _  21n2a +}rr2 _ 3 +  ~2 2(t ~2 +122 ) 

(3.23) 
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TAaLE 2 
The various correcnons to TY ~ qq(g) m the Feynman  gauge with 

the continuous dlmens~on regulanzat~on method 

3~7 
- -  8 ( n - 4) - 2 ( n - 4) - t Flmte terms 
4cq 

3qT 
~ s  ~self-energy 

~ 1  [) .2( ln(- t~ + ~) 
12 _~_ U2 k I 

+ '2t2(ln( - u'n') + y ) ]  

3 ~r 8 ut 
4ct, ~vertex -- 2 -- - -  t 2 + u 2 

1 

I - t ~ + u 2 [ U ( U + 2 t ) ( l n ( - - t c r  ) + y )  

- - 5 u t + ( t ~ , u ) ]  

3~r 8ut 
4 a  ~box - -4  --21n(s~r)--2y+4+t2+u------ ~ 

- ½[ln(s~r) + y ] 2 - 4  + 7:~r 2 + 1 
t 2 + u 2 

× [ ( t  e + u t + ½ u 2 ) l n 2 ( - t ) + u ( t - 2 s  ) 

× ( In( - - t~r )  + y )  -- ut(ln(s~r) + y )  - 5ut + (t  ~ u)] 

3 ' h ' ~  I 2 
40ts soft 4 2[ln(16e2E2¢r) + y] ½[ln(16e2E2er) q_ .}112 --~qr 

3~- 
4 a  s ~hard - 41n2e - 3 

(1n28 + Iz ln~r + ½V ) ( - 4 1 n 2 e  - 3) 

- 21n22e - 41nEln2e  - 3 1 n E -  ~ r  2 +1~ 

Performing the integral over the phase space for the hard collinear gluon, we now 
find 

4a~ {--21n ~2 (ln2e +a4) -- (41n2e + 3)1n8 + 21n2e + 9-- 2¢r2}. 

(3.24) 

In the sum of (3.23) and (3.24), the ln/~ 2 terms drop out, and the total correction as 
given by (3.19) is recovered. 

The same technique can easily be applied to the rederivation of the Sterman- 
Weinberg formula [5] for e+e  - ~3'*---~2 jets. The calculation of the various 
radiative corrections can be obtained by the appropriate substitutions in the e + e -  
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~+/~-(V) formulae [10]. We simply list the results: 

8~mex= 3~r - 2  1-1n s~ 211n~ l n 2 7 + ~ l n T - 2 + ~ r 2  ' 

4as [ - 2 ( 1 -  In s } l n - ~  --½1n2 +ln ] s s_, 2 , 

8 o,, = 3 7  / ,  7 / 

4 a s [ (  in s } lng t_  (41nat + 3)1n8_3 s 9 ] Shard =-~-- 2 1-- , 

4as [ 8v = ~ t-- (41nZe + 3)1n8 + ~-- ½~r 2] (3.25) 

In the continuous dimension method, these corrections would be 

4as[ - 4  - -~1  ( - 2 1 n ( s t r ) - 2 y + 3 )  
~vertex-- 3¢/" (n74)=+n-4 

-½(ln(s~r ) + y): + 3 ln(s~r ) + 33' + 77r2 - 4], 

~on 4a~[ 4 n _2 4 (ln(16e2E2,n.) + ] ='-~-~ [ (n 4) - - - - - - ~ +  3')+½(ln(16e2E:~r)+3')2--1rr2 ' 

4a~[ 1 ( -41n2e-3)+(ln28+½1nTr+½3')( -41n2e-3)  

- 21n22e - 41nEln2e - 31nE -]~r 2 + ~ ] ,  (3.26) 

and the same result for 8- r as in eq. (3.25) is obtained. Once one chooses a 
regularization scheme, ~on and 8~ard are the same for both processes. Note that in 8 r 
the rr z term is also the same. 

4. Inclusive large p±  jet production 

In this section we investigate the properties of the gluon bremsstrahlung matrix 
element and evaluate numerically the inclusive jet production cross section (e +e-  
e + e - qCt(g), p.~t > p ~ ) .  
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4.1 HARD GLUON BREMSSTRAHLUNG AND MASS SINGULARITIES 

The cross section of hard gluon bremsstrahlung can be obtained trivially from the 
e + e -  ~VVY formula [11], with appropriate color and charge factors. Using the 
notation for the four-momenta 

y (k , )  + Y(k2) --* Fq(p, ) + q(P2) + g(k3), 

the cross section for massless quarks, averaged over the initial spin and summed over 
color has the simple form 

4a2% ]21 z d3p' d3P2 d3k38~4)tk + k  2 k3), (4.1) 
do="-f~-s Rvr  M ~r 2p  o 2p  o 2k  o ~ I - P t - P 2 -  

where 

= + cyclic perm. , (4.2) 
U 2132 U 31.93 

and u, = k , . p l , v  , = k , . p z , s ' =  2pl .p2 .  With the formulae (3.19) and (4.2) we have 
all the necessary information for the purpose of numerical evaluaUon of any O(as) 
correction. There ~s, however, a technical and a conceptual difficulty. The matrix 
element squared I MI 2 has six poles corresponding to collinear configurations when 
one of the k, 's  is parallel with pj or P2. The technical difficulty is given by the e and 

dependence of formula (3.19) which will cancel against the contribution of I MI z 
integrated over hard acollinear configurations. The lneln6 singularities are obtained 
in the hmit when the gluon momentum is parallel with P l or P2 (u3 ~ 0, v 3 --~ 0). The 
cancellauon of the lneln6 terms must be performed analytically by subtracting and 
adding two simple pole terms. A convenient possibility is described in appendix B. 

The conceptual difficulty is associated with the quark mass singularities given by 
the decays of the initial photons into collinear quark-antiquark pairs (ul, u 2, v j, or 
v~ ----- 0). Similar mass singularities are present in deep inelastic leptoproduction, m 
the Drell-Yan process, etc. Assuming the validity of the parton model, they are 
factorized into the wave function of the initial parUcles and give the Q2 evolution or 
scale-breaking effects. For example with the help of integration variables Eq, Er~ and 
cos0~ for the phase-space integral, the condition v I ~-- 0 gives the relation cOS0q~ ~-- 
cos 0~ or equivalently 

2(E- E~) 
Eq = 2 + ( -  1 + c o s ~ ) E r U E  " (4.3) 

The corresponding curve on the Dalitz plot of Eq and E~ is given in fig. 7. 
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eq/e ¢ 
I 
I 

. . . . . . . . . . . . . . . . . . . .  ~ ErlIE 

Dahtz plot indicating the regaons of mass  singularities, v I ~ 0 is shown by the dashed curve, 
u 3 ~-- 0, v 3 "- 0 is gwen by the shaded area [see eq (4 2)] 

Performing the integration over the momentum components of the quark, in the 
leading logarithmic approximation the well known Weizs~icker-Williams approxima- 
tion is obtained [12, 13] (see fig. 8): 

a l n P l f d x [ x  2 +(l_x)2]d6(xk,,k2)~v__,~g, 
d°vv-~qqg  ' ~  2"--~ M 2 

(4.4) 

where M c can be considered as either a quark mass or a momentum cut-off. The 
function (a/2~r)ln(p 2/M2)[x 2 + (1 - x )  2] is the "wave function of the photon". 
It gives the probability that a quark is found inside the photon with momentum 
fraction x. This "Born approximation" of the photon wave function is modified by 
higher order QCD corrections. These corrections can also be calculated in the 
leading logarithmic approximation to all orders of %. The x dependence is modified 
but the factor ( a / 2  or)In( p ~ / M  E), of course, remains the same. The presence of this 
factor given by the QED vertex is a specific feature of the yy processes. The operator 
product analysis of the cross section of the reaction "/T ---) hadrons [13] revealed that 
the value of the "quark mass" parameter M c is of the order of the QCD parameter 
A, appearing in the running coupling constant a s. 

Unfortunately the ambiguity associated with the value of the parameter M c cannot 
be eliminated. The photon has also a "p-component", i.e. in the small p± region the 

F~g 8 

y(kl) -6o 00-o o ~  ~- q(P2 ) 
Xkl ~ C l ( P  11 

y(k 2) "(S()~ u . . . .  g (k3) 

Dlagrammauc dlustratxon of the Wexzsacker-Wdhams approxamatlon [see eq (4,4)] 
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"photon wave function" is strongly influenced by non-perturbative effects. However, 
assuming the validity of the parton model, M~ is expected to have a value between 
200 and 800 MeV. Such an ambiguity in the leading log approximation is negligible. 
Therefore it is important to know quantitatively the regions of p ±  and 2 p ± / i s  
where the leading logarithmic approximation is valid. 

Another specific feature of ,/,¢ scattering is the appearance of the QED log factor 
at both the QED vertices in second or higher order of g2/4~r*.  As in higher order 
the 1/log factor of a~ cancels against the log factors coming from collinear 
transitions - / ~  qE 1 or q ~ gq, we obtain a scale invariant answer and O(1) correc- 
tions [2, 12]. Increasing p ± ,  however, all of these corrections are suppressed since 
they are folded with "photon wave functions" which are soft at x = 1. Therefore, at 
large p ± ,  the leading order contribution will be dominant. 

4 2. NUMERICAL EVALUATION OF o(e + e - ~ e + e - qcl(g), p~t > p ~ m )  

From the discussion of the mass singularities it is clear that at very large p±  the 
cross section is dominated by the Born term (-/'y ~ qV=l) and we can have a clean 
determination of Rvv. With increasing p±  the remaining small positive corrections 
further decrease. 

With the help of the complete O(c~s) corrections [eqs. (3.19) and (4.2)] we can 
determine quantitatively the kinematical region where the suppression becomes 
efficient and we can study its sensitivity to the variation of the value of the cut-off 
parameter  M c. 

We have found very convement to consider the total cross section %(e + e - ~  
e + e -  q~(g), p~t >p~Un), where p~t  is defined as 

p.~t = m a x ( p l  ,P']_ ,P]_ }. 

Experimentally this requires the measurement of the transverse momenta  of the 
hadrons and a subsequent determination of an axis n which is chosen to maximize 
the sum E p, ± . n  over the corresponding semicircle. The transverse momentum of 
the inclusively produced jet is given by the vectorial sum Y, p, ± over the same 
semicircle. The cross section of the events with transverse momenta  p~t  >p_~ .  is 
given by o¢(e + e -  ~ e + e - qV:l(g), p ~ t  > p~n  ). 

We calculate the cross section o c at two different energies ~/s = 30 and 180 GeV, 
for various values of p~n  and M c. The results are given in table 3, while some details 
of the calculation are presented in appendix B. All the cross-section values have been 
calculated in units of R = 4~ra2/3s.  o o denotes the Born cross section, o 1 is the 

* In the LLA the correcUons can be interpreted as contnbutlons of large p± quark-quark scattenng 
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complete O(as) correction* (and ol ww is the Weizsacker-Williams approximation [see 
eqs. (4.4) and (B. 16)]). We recall that cross-section values smaller than 0.1 units of R 
appear inaccessible experimentally at PETRA, PEP and LEP energies. 

At es = 30 GeV either the M c dependence is strong or the cross section is too small 
( p ±  > 8 GeV). So we conclude that at PETRA energies a clean experimental 
determination of Ryv is extremely difficult. It would require a better understanding 
of the non-leading contributions. 

At es = 180 GeV, we have much smaller sensitivity to the value of M c and the 
cross section is still quite large. At LEP energies for transverse moments p~t > 12 
GeV it might be possible to determine experimentally R with an accuracy of 

30%**. 
We remark that with increasing p± the suppression of the complete correction o 1 

is more efficient than the suppression of o ww. It can be easily understood. The 
equivalent photon spectrum gives large weights to configurations, where the jets are 
produced at large angles and are almost collinear. In this case the cross section 
o(3'3'---> qct) gets large and negative first-order corrections. As p± is increased, this 
negative contribution enhances the rate of the suppression of the large positive 
O(ln(p2 x/M)))  corrections. 

For completeness we remark that the cross-section values presented in table 3 
have been calculated using the formula (B.20) with F <°), F <l), F ~  v defined by eqs. 
(B.3), (B.19), (B.16). The errors of the numerical integration are ~ 5-10% for o 1 and 
1% for o ° and o ww. The log factor lnT1 appearing in eq. (1.1) was defined as 
ln~ = lns/4rn~. 

5. Conclusions 

The quantity R ~  can in principle be measured in three kinds of y3' processes" two 
large p± electrons, one large p± electron or only large p± hadrons. We considered 
the last possibility. 

For the last possibility one has real 3'3' scattering into hadrons. When the qF= l 
production is dominant in this process, a measurement of R ~  can be made. 
However, it has been pointed out that there are important other processes besides qF= l 
production [1] such as three- or four-jet production and non-perturbafive effects. We 
made attempts to calculate the complete order a s correction to the two-jet cross 
section. As a first step the analogue of the Sterman-Wemberg formula was derived, 
which is only valid for small e and & When one wants to calculate fimte ~, 8 effects 
one runs into the problem of the presence of quark mass singularities. Unlike in 
deep inelastic photon-photon scattering there does not exist as yet a method to 

circumvent this problem. 
Nevertheless, one can introduce a cut-off M e to avoid the mass singularities and 

one can study the dependence of the a s correction on this cut-off and for various lab 

* W e  used  A : 0 5 MeV,  f o u r  f i avours  a n d  a s was  e v a l u a t e d  a t  s = 4(p~Un) 2 

**  E l e c t r o w e a k  rad la t lve  cor rec t ions ,  however ,  m a y  con fuse  the  p i c tu r e  
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energies. Our results are expressed in a total cross section for inchisivejet production 
with a certain minimum p j_. For small Px the correction is large and sensitive to the 
introduced cut-off. For larger p± the a s correction becomes small, but unfortunately 
the lowest order cross section becomes small as well. 

The a s correction was calculated in two ways; on one hand, by using the exact q~tg 
cross section and on the other hand using the Weizsiicker-Williams approximation 
for the subprocess q~, ---) qg. At PETRA energies it turns out that the WW approxi- 
mation ~s not good, whereas at LEP energies it is reasonable. Where the WW 
approximation gives the dominant O(as) contribuuons and the corrections are large, 
one must resum all the leading and subleading logarithmic terms up to 
0 ( 1 / l n ( p 2 / A : ) ) .  

In this kinematical region the cross section (ee--)ee hadrons) is large (e.g. 6-20 
units of R at Cs = 180 GeV and p~"--~ 6-12 GeV). Therefore, the evaluation of the 
O( 1/ln( p~_/A)) correction is very important. 

Appendix A 

In this appendix, we want to illustrate how the integral (2.14) is evaluated. We 
must calculate 

= [l d Lz f(,+~ff=;~)/EdVf(vz) ' (A I) 
I ",82 Z 2 1(I--  l~-ff--z)/2 f) 

with f ( v , z )  given by eqs. (2.16), (2.17). The indefinite integrals over v can be done 
exactly because of the relative simplicity of f (v ,z ) .  Let the primitive function be 
F(v,z) ,  then inserting the upper limit, we get 

_ [.1 d Z F [ l f  1 a :i.7 + lff=7,) ) 

= f l / 2  . 1 -- 2x 
ux  ~ - - -  2 e ( x , 4 x ( 1 - x ) ) ,  

Y(, + I-I/i-2~)/2 4x (1 - x)  
(A.2) 

where we introduced the new variable x =½(1 + ~/1 - z). 
The analogous manipulations for the lower limit of the v-integration give 

IL=f '/2 dx 1- -2x  2 F ( x , 4 x ( l _ x ) ) ;  
( I - - I1 - - , 82 ) /2  4x2(1 -- x) 

(A.3) 

hence, 

l 2x F(x4x(l x)) I=I U-I t =-I - -  ox --- 2 
S ( , - ~ ) / 2  4x2(1 - -x )  

(A.4) 
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For f12 ~ 0, it is possible to extract the contributions from (A.4) which are singular 
and the ones which give a finite contribution. Take, e.g. the lnv contribution arising 
from the lna term in eq. (2.16): 

2 a ( l + a + a b + b 2 ) l n v = (  g 2 Z Z2 q_ g . _  ) - - -  ~z lnv. (A.5) 
v 4v 3 v2 F - -  1 8v 2 v 

Performing the integration over v, we obtain, after a decomposiuon in partial 
fractions, 

,._ q 3 ,  1}lnx+l t' ' t  ln2x 
,,,'(,8 2/4)( 1 +/3 2/4 ) 2X 2 2x 2(1- x) x 1 x 

q_ 5 2t_ 2 3 l 
4x 2 x 2 (1 -  x) j • (A.6) 

The integrals over x can be done in the limit 13 ~ 0, but they revolve higher order 
polylogarithmic functions; e.g. 

f01 dx l n x = L i 2 ( l _ x ) l ~ 0 = _ ~ r z  
1 - x  

f01 ~ ln2x = 2~'(3), (A.7) 

where the dilogarithm is defined by 

Li2(x ) = - (  xd t  ln(1 - , ) ,  
s 0 t 

(A.8) 

and ~'(3) is Riemann's zeta-function of argument 3. For a compilation of these 
polylogarithmic integrals, we refer the reader to ref. [14a]*. In this way, we find 

/3 5 , 2  Ilnv - -  /32 --31n _~ t  +{ln3.~___~ln --2In + ~ ( 3 ) - - ~ r  2 + 2  

(A.9) 

where we only retained the terms which are singular or finite for fl ~ 0. The other 
terms in eq. (2.16) give similar expressions and their sum ledas to the result of eq. 
(2.18). Note that the ln2fl terms drop out in the sum. It should be noted that it is 

* For those revolving four powers of logarithms m the numerator, see ref [14b] 
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possible to derive the exact expression for (A.4) and therefore (2.18): 

2 Ot o°(p± > ½ ~ - f l ) =  16~'a R~,~,(~--~ lnT/)2I, 

I=~-~l - -~ln-~-!}+'~a +-}a+ --~'2)ln -~1n3-4 - -  8 ln--a+ 

+ ~-ln2a + ln(a  + a 3_ ) - ~z67 + ~z87 a _ + 2(Li3(a + ) - Li3(a _ )) ,  (A. 10) 

where 

and the trilogarithm 

a_+ '¢7--B2) 

Li3(y)= foY LiE--(xX) dx, 

with L13(1 ) = ~(3). Expanding (A.10) with respect to f12 again gives (2.18). 

(A.11) 

(A.12) 

where 

d°°" A ° F ° ( z 2 )  (B.1) 
~ z  2 (YY ''~ qVq) -- z2¢1 _ z  2 ' 

( Z 2 = 2 p ±  

v~--  2 E  v, 

A o "/J'Ot 2 = g Ryv; 

F ° ( z  2) = 2(2 -- z2) .  

(B.:) 

(B.3) 

B.1 C R O S S - S E C T I O N  F O R M U L A E  

The differential Born cross section can be given as 

Appendix B 
In this appendix we give formulae which have been used in obtaining the cross 

secUon values of table 1. 
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The phase-space integration 

R : f d3p--'-L ( d3p--'~2 | - - r  d3k3 . 
J 2pO J 2pO JEkO + k2  - - p l  - -P2  --  k 3 )  

was carried out using the simple expression 

d R _  g 1 d x  I fl 1 
dz 2 32 fz, 1 , ~ - x ,  

d x 2 d ~ l d ~ 2 ,  (a.4) 

where z 2 ----(2pt//~/J) 2, X z ----2E,//~/J, f~2 is the azimuthal angle of P2 around the Pl 
direction and ~ is the azimuthal angle ofpl  around the beam axis. The cross section 
for yy ~ qV:lg has a form similar to eq. (B.1) 

do _-AI F(__z~) , (B.5) 
dz 2 z2~i - _  z 2 

where 

A I 4as o 
-- -f~- A , (B.6) 

1 dR (B.7) 
F(z2) = IMl=z~ l~-z~ ¢r2 dz 2" 

The matrix element squared, [M[ 2, was defined earlier by eq. (4.2). 
Using eqs. (B.1) and (3.19) we can obtain the contribution of the virtual correc- 

tions, soft and collinear gluon emission 

do v f ( z2) -8(2-z2) lnS( lne+ 3) 
= A '  , (B.8) 

dz 2 z21/1 - - z  2 

where 

f (z2)  = 2(2-- z2)[3 _½~2 + g(z2)] ,  (B.9) 

[( O X 2 2 cos ~ ( 2 +  1 1 + sin 4 -~ ) In sin 0 2 0 2 0 X 2 0 g (z2) - -  1 +COS20 ~ +  COS -~)lnsin -~ 

(o - o)] (B.10) + 
l 
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and 

z 2 = sin 20. 

We  also define a pole term 

where  

_ 2 - - z  A 8 l + ( 1 - - x 3 )  2 2[cosO, ITIT3 (B.11) 
IMl21e, z~ l_~S-~ 2 g x~(-T--x,--)- x| 

In8 
7"1 : l n [ S ( 1 - x 3 )  ] ' if l - - z ,  > x  3, 

In8 
T l =ln[Sx3(l_x3)/(l_z,)] , i f x  3 > l - z , ,  

T 3 = 1, if 1 - z  I >¼8 2, 

21ne + 
T3 21n(e/v)+2v(1-¼v)' if ¼82 > l - Z l '  

(B.12) 

with a similar expression for the pole at x 2 "-" 1. These squared matr ix  elements  give 

d z  2 z21/1 - -  z 2 

dop°l-----~e -- A' 8(2 -- z 2 ) [ - - l n S ( l n e  + 3)] 
(B.13) 

which cancels the lnS, lne dependence  of eq. (B.8). 

The  T l, T 2 factors  in eq. (B.11) are in t roduced to compensa te  the changes in the 
in tegrat ion region as indicated in the Dali tz plot  of  fig. 9. Therefore,  by  definit ion 
we obta in  

f~ ( 2----2+x31fmmlx3'O-z)]dYT, T2=41nS(lne+3), 
v ° r  l d x 3  x3 ]'182x3(l-x3) Y 

where y = 1 - x I. 
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Xl  
I )-x,= 6 2x~()-x3} 

i -< 
,4- I -  ZI= G//t.,. 

|-Z)~ X3 

.... I~ X2 

Fig  9 Dah tz  plot  of x I and  x 2 i l lus t ra t ing  the var ious  in tegra t ion  regmns  at  hxed  z I W h e n  1 - z I < ~  8 2 
on ly  the do t ted  area xs re levant  W h e n  1 - z~ < x3 the mtegrataon region as the area shaded  by  vertxeal 

hnes,  when  x 3 < 1 - z I at as given by  the area shaded  by  hor izonta l  hnes  

Finally, if we use the cross-section formula 

do _ 4 r r a s a  [ g 7/i ) , (B.14) 
d cos0 (q Y ---) qg) -~ t fi s 

the integration over x in eq. (4.4) can be carried out and we get 

do ww _ A  1 FWW(z2) 

dz 2 z2~l - z 2 

where 

p2 [ 
FWW(z2) = 21n-~2 l ~ - Z ~ -  z 2 ( 2 - 3 z  2 + 2z4)ln 2 - z 2  + 2 ~ i - - z  2 

M~ t z2 

+ (4:  - i) I/V~7- z~]. 

(B.15) 

(B.16) 

B 2 N U M E R I C A L  E V A L U A T I O N  

In the numerical integration program, three different regions are considered: 

region (1): p±~ 2>p±q,p±g, 

region (2): p±q >P.l_q,P±g, 

region (3): p±g > p ± q , p ± ~ ,  

p ~  = p ± ~ ,  

p ~  = p ± q ,  

p ~  = p ± g ,  
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since the phase-space distributions d R / d  z 2 are different in these regions. In order to 
cancel the lneln8 singularity analytically instead of [Ml2dR/dz  2 a regularized 
distribution has been used: 

l [ dR 0) dRy) dR 0)+(2) 
IM 2R ~z2dR ~21 2[inl2_lMi21e]_q_5__z -21M12°le dz 2 

where dRO)/dz 2 = d R / d z  2 in region (i), otherwise it is zero, and 

z = max{zq,Z~,Zg}. 

(B.17) 

The complete O(as) cross section, after cancelling the In e, In ~ dependence analyti- 
cally can be given as 

where 

do 1 Fl(z  2) =A' (B.18) 
d z  2 z 2  ] ~ - ~ z 2  ' 

z 2 ~ - - z 2  M 2 dR (B.19) 
F'( zz)--f( zz)+ I gdz  2- 

Finally, we must fold the parton cross sections (B.1), (B.7) and (B.9) with the 
equivalent photon spectrum [eq. (1.1)] N(xq): 

do d o  2 
dP 2 dxaf dxrN(x~)N(xb) d p----~ (xaxbs,pJ - ). 

Introducing new variables "r=xax b and y = x a / x  b the y integration can be per- 
formed and we have 

o~(e +e-,p± >p~")=( a )2Aa ln~/ 

× f, dz  2 f~ c(T) F~(z2/'r), (B.20) 
• t (2p~'n/¢~)2 2 2 ,tZZ , / .~T2 - -  ,l-Z 2 

where 

c(~') = 2 [ - ( 2  + i-)21n~'--4(2 + ~ ) ( 1 -  ~ ) +  2 ( 1 -  ~.2)]. (B.21) 
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The  func t ions  F °, F l, Fi  ww are  de f ined  b y  eqs. (B.3), (B.19) a n d  (B.16). I n  the  

a r g u m e n t  of  the log factor  in  eq. (B.16) ( p ~ U n / M c ) 2  was used.  F 1 was ca lcu la ted  b y  

eq. (B.19) u s ing  g = sz  a n d  p~_ , p 2  > Mc" 
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