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A thorough study of lepton-pair production from two-photon anmhilation 1n p (p) collisions 1s
presented. The dufferential cross section is calculated over a large range of energies (27 < vs << 800
GeV) as a function of the dilepton mass M as well as the dilepton transverse momentum Q1 and
the Feynman variable xg No kinematical approximations (such as the equvalent photon ap-
proximation) are made For Q@ = 0 the two-photon mechamsm represents an important fraction
of the pp - et e X cross section already at ISR energies, whereas at ISABELLE energres 1t
dramatically dominates 1n the interval 0 < Q1 51 GeV. At ISR energies these conclusions follow
from a direct companson of the two-photon contnibution with pp —>e* e~ X data For the
ISABELLE energy range the expected O(«,) QCD contnibution to pp — £ "1~ X, corrected for
soft gluon radiation to all orders (in leading biloganithmic approximation), was taken as a
reference At larger Q1 and ISR energies the yy contnbution 1s neghgible, whereas at vs = 800
GeV yy/QCD = 10-20% almost everywhere Furthermore, two-photon candidate events from the
ISR are shown to be 1n reasonable agreement with theory A decomposition of the yy cross section
mto contributions from both proton vertices being elastic, mnelastic and of mixed configuration 1s
given The results provide important clues for a future 1solation of the two-photon mechamsm

1. Introduction

There is increasing theoretical and experimental activity in studying particle
production from photon-photon annihilation. Both, the purely electromagnetic
subprocess yy — £ * £~ and the subprocess yy — hadrons, including yy — g-jet and
g-jet at large transverse momentum, have recently been 1dentified in e * e~ collisions
for the first time [1]). Moreover, first qualitative evidence for two-photon events of
the type

pp =YX
Lop*p~

has recently been reported [2] from the ISR.
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34 B Schrempp, F. Schrempp / Two-photon exchange

In this paper we shall study in detail the two-photon contribution, yy > ¢+ (™, in
©
pp collisions. More specifically, we calculate the two-photon contribution to

p(p) — {107 X over a large range of energies as a function of the dilepton mass M as
well as the dilepton transverse momentum Qr and the Feynman variable xp =
2Q, /.

Up to now, only calculations of the two-photon contribution integrated over
transverse and longitudinal lepton pair momenta, 1.e. do”Y/d M (or at best estimates
of d%s/dM dxg|,.—p) have been available [3-6]. Recently the O(a*) two-photon
contribution to do/d M (pp — £ " { ~ X) has been compared to the O(a?) Drell-Yan
mechanism [5, 6]. The yy contribution was found to increase strongly with c¢.m.
energy and to represent a serious competition process to the Drell-Yan mechanism
for sufficiently high energies, both for r = M?/s < 1 and for 7=0.25, say.

Of course, the relative importance of the two-photon mechanism may also vary
dramatically with Q1 (and xg). Let us briefly discuss the rough expectations.

For small values of Q1 the two-photon subprocess is expected to show a very
steep Q- distribution, much steeper than the total pp — [ * £~ X distribution. Thus it
seems well possible that the yy mechanism becomes important, if not dominant, at
small O (even for values of r and s where its Qr integrated contribution is not
large).

Recently, arguments have been put forward that perturbative QCD predictions for
the lepton pair Q distribution remain reliable down to small O, ASQr <M, if
suitable resummation techniques are used, accounting for the emission of soft gluons
to all orders [7-11]. In such a framework, the peak near Q1 ~ 0 1s predicted to
flatten dramatically (or even show a turnover) with a width proportional to
(M?/A?)°3! Therefore, it is clearly important to investigate, whether this character-
istic QCD effect is swamped by the two-photon contribution at high energies.

At large Q 1, one expects from dimensional analysis the same power behaviour,

d3oY

§ — ~
dyr dQ2dY  Qrlarge
T.Q1/¥s .Y fixed

2
Q;Zf('r,%,Y,logs), (1)

for the two-photon contribution as for the O(a,) QCD corrections to the Drell-Yan
mechanism (involving the subprocess qq — v gluon and gluon + q — yq). However,
whereas the O(a,) QCD contribution [12, 13] decreases for increasing energies due
to logarithmic scaling violations, the two-photon cross section shows a quite dramatic
increase like a power of logs.

One might, therefore, well suspect that at very high energies and largish Q1 the
two-photon mechanism contributes again at least a sizeable fraction to the lepton-pair
cross section.

At the forthcoming very high energy machines (ISABELLE, pp collider,...) there
will certainly be measurements of the lepton pair Q distribution, tailored to test the
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predictions of perturbative QCD. Correspondingly, an important issue in this paper
is an extensive comparison between the two-photon contribution and predictions of
perturbative QCD for pp — £ * £~ X both at small and large Q1 and high energies
vs << 800 GeV.

In summary, the purpose of this paper is to determine the kinematical regions (in
all variables M, Qr, xz and /s), where the two-photon mechanism makes up a

sizeable fraction of the differential pg—» £78~ X cross section. We particularly
concentrate on Q distributions and energies available to the next generation of
experiments.

This investigation is useful

(i) for estimating a significant two-photon background to perturbative QCD
predictions;

(ii) for a future experimental isolation of the two-photon mechanism as a process
of interest in itself.

Moreover, let us mention another possibly interesting aspect of this investigation:
once the calculational machinery is set up for yy —£*{ ™, one may obtain— with
minor modifications— information on signature and rates of events from the sub-

¢
processes Yy — g-jet + g-jet and y + gluon — g-jet + g-jet in pp — 2 jets + X.
The paper is organized as follows. Sect. 2 is devoted to the details of calculation:
subsect. 2.1 contains a short summary of the general formalism for

)
pp —vrX .
Lete

in subsect. 2.2 we introduce the so-called ‘transverse photon’ approximation; sub-
sect. 2.3 contains the parametrizations used for the elastic and inelastic proton form
factors; in subsect. 2.4 we specify the QCD prototype calculation used for compari-
son, and subsect. 2.5 contains some kinematical restrictions, which our external
variables have to satisfy. In sect. 3 we present and discuss our results: subsect. 3.1
contains information on the numerical calculations and various checks of the results;
in subsect. 3.2 we decompose the yy cross section into contributions from elastic and
inelastic proton vertices and point out the dominant configurations in various
kinematical regions. Our results for fixed values of Q; and M and energies
27 < y5s < 800 GeV are presented in subsect. 3.3. The yy mechanism is compared (i)
with ISR data for

pp—>e*e X and pp »yyX
Lourp

(i1) with our QCD reference cross section for pp — £ * £~ X with particular emphasis
on very high (ISABELLE) energies. Subsect. 3.4 contains our results for fixed
xp =2Q1/ys and 7=M?/s=0.1 and again a comparison with the contribution
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expected from QCD. In subsect. 3.5 we briefly discuss the characteristics of the xp
dependence of the yy mechanism. We close with a summary and conclusions in sect.
4. In the appendix we list the exact expressions for the kinematical boundaries of our
four integration variables.

2. Details of calculation

21 GENERAL FORMALISM

A detailed presentation of the general formalism for the two-photon mechanism in
proton-proton (antiproton) collisions

)
pp —yrX
Loete- g

may be found in refs. [3, 4]. Here, we shall only summarize the essential steps. Our
notation is displayed in fig. 1, with proton four-momenta p, (1=1,2), virtual
(space-like) photon four-momenta ¢, (g,2> = —Q,% <0), lepton four-momenta k,,
proton mass m and lepton mass u. Moreover, let

Q—:—k1+k2:‘h+q2:(Q0’QT’QL) (3)
be the dilepton four-momentum with
0> =M. )

All kinematical variables (if not invariant) refer to the overall pp c.m. frame.

pP— YYX
(N
P(p) D x(p)
+Y(q)
e [*(k,)
Zs }ca=k,.|<2
——Q—I-(kz)
‘} Y(g,)
P(py) —>—0==D X(p})
Miz Q? -q,2
Qr=(kyoky)r =840, X =75 q, 1=1,2)
Xg = TZQSL Q%:-q|2>0

Fig 1 Kinematics of the process pp > yyX

Log+rg-
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The cross section for reaction (2) may be expressed [3, 4], according to the optical
theorem, in terms of the absorptive parts of the virtual forward Compton amplitude

and of the yy » £ " { ™ — yy amplitude with  * £~ intermedate state (fig 2):
2m? ay? 1 1
do= (;) S 2 W(=q1.p1)
A(s,m?,m?) (27)" 914
X ay”"wl((IIv‘12)%('3)'(_‘12apz)d4‘11da‘]z’ (5)
where
AMx,y,z)=x*+y2+22 —2xy—2xz—2yz. (6)

a””""¥(q,,q,) is the absorptive part of the yy — £ {~ — yy amplitude, computable
[3, 4] in QED:

., a3k, &%k ‘u,z
a” *(q,,q,) = 2 . 2
lepton spins (277)3 (2'”)3 k?k(Z)
X 84k, + k; — gy — 4)TH (vy > 1 )T (37— £417),
(7)

and W”(,,’) is the absorptive part of the forward (proton) Compton amplitude with
standard decomposition into invariant structure functions W, and W,,

@)’

1 : ql qlV
W—q,.p,) = — W ’(x,,Q?)(g,.r = )

!

m2

I/VZ(I)(XI’QIZ) qlnql.pl qwa'pt
+ w3 w5 (8)
q;

4,

P P
+

Yooy Y i gy Yooy
|
g:::]} ) m }4
y) ity yt o ly vyt tily
Fig 2. The optical theorem for pp — yyX
Lever
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involving the Bjorken scaling vanables

2 2
q, 0,
X = ——tt = ., =12 9
' 2q,'p, 2q,p, ©)

It is convenient [3, 4] to evaluate eq. (5) in terms of helicity amplitudes defined in the
vy c.m.s. The helicity projections of the amplitudes take the standard form in terms
of photon polarization vectors &§(q):

Ao and 983 M?) = & (965 (92)e8 ()8 (42)a,, 4 91042).  (10)

The helicity projections of the tensor W, are defined analogously.
The polarization vectors fulfill the standard orthogonality and completeness
relations

e(q)en(q)g,, =(—1)78,,..,
(=17 (q)e(9) =g —q"¢"/q",
q’¢h(q)g,, =0. (11)

By P and T invariance there remain eight independent yy helicity amplitudes or
equivalently yy cross sections o, for transverse (a,b=T2 A= *+1) and scalar
(a,b=S8 £ A=0) photon polarization and interferences (7,) thereof. They are
given, e.g. in ref. [4]. For our case of unpolarized protons only six yy cross sections
occur. In particular, for |g,2| < Q? = M? the dominant yy cross section is [4]

UTT(MZ,‘IIZ,%Z):(”H,H +‘1|~1,1—1)/(4\/>\(M2,412,‘122))
40 1
:—’l—[g(M2 ~4i = 43)

MM?.qt,43)
2 242 2
XL{2+"——§——
X 9,9,

+

2
a4 +4i , gigM® +§( qiq? )
x 2x(qq,) 4\ x(4192)

B PO N i P/ SR
XX dxltgig 4 X

=47 (L), (12)
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with
2
M*x=(q,-9,)" — qia3 =iMM?.q4}.43). (13)

At=t_ 0 —tom = \/4x(M2 —4p?), (14)

2
L=In= =In 3 5 . (15)
» _-tma.x 4(Q1q2 +4X}L )

The other yy cross sections behave as [4]

2 2.2
- :4’”0! O(L‘h‘h ),

M? M4
_ 47a’ q22 _ 47a’ q12
a7 B R A
s — MZ M2 ’ Oss M2 M*? :

For |g2| < M? the quantities (16) are neghgibly small [4] in comparison with o,

but in o the ¢* dependence is essential in the large domain M2 < glqi < M*.
As outlined in sect. 1 we are interested in the differential cross section

d’s/dM*dQ,2dY, Y being the lepton-pair rapidity in the pp c.m.s., defined as

0
+
y=imZ 1% (17)
Q°—0’
and related to Feynman xp by
2 2yM?* + 03
Xp = ‘%‘ = r Or sinhY. (18)

Furthermore,
Q'=¢q? +q)=yM? + Q% coshY. (19)

A straightforward calculation leads to the jacobian relation:

d%g,d%, _ s 27
(a1)(q) Msmsm®) 4 [2N(0F larel lasrl?)
dx, dx, 4o} dot
xt x% le 03 ’

X dM?dQidY (20)
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where one trivial azimuthal integration has already been performed. The Bjorken
variables are defined in (9) and —¢? = Q2 Obviously, four integrations have to be
performed in eq. (5) in order to calculate d°c /d M2dQ2dY. Let us remark that the
O(2,1) variables used 1n ref. [3] for a calculation of do/dM? are not so advanta-
geous here.

The kinematical boundaries for the four integration variables x, and Q,z, 1=1,2,
are obtained as follows.

First, the range of the integration vanable Q2 as a function of Q%, x, and x, is
restricted from

~NQ%.lg1r 1% 1g2r1?) =(0% ~ (11| — lax)?)
X(— 0% + (igyr| + laxr))’) =0 1)

in order to keep v—A real in eq. (20). The r.hs. of eq. (21) depends on Q3
quadratically (see appendix). Thus, Q%gl}i\:(le,xl,xz)\ is obtained as solution of the

equation A =0 in the form
Q2= 22 (—b Vb2 —4ac ), (22)

with a, b and ¢ given in the appendix.
The range of the integration variable Q7 as a function of x, and x, 1s then
restricted by the condition

b* —dac=0. (23)

Thus Qfmax (x,,x,) is obtained as solution of the equation b? —4ac =0 in the form

lemax:%(—gi\/_Bz——ME), (24)

with 4, B and C given 1n the appendix.
Similarly x, ...(x,) is determined from the roots of the limiting equation B* —
44C =0 (see appendix) and

X max = 1-
Finally
X3mn = X1,mn (Y > ~¥,x; =1) (25)
and
X2 max = 1. (26)
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22 THE TRANSVERSE APPROXIMATION

Usually, in two-photon physics, the so-called equivalent photon approximation
(EPA) is applied [4, S5), effecting great simplification. The essence of the EPA
consists of

(i) treating the two photons on-shell (g2 ~0);

(ii) retaining only transverse photon polarization.

As a result of (i) and (1) the cross section factorizes into a product of a yy cross
section and “flux factors” from the equivalent photon spectra produced by the
colliding particles.

Unfortunately, approximation (1) is not suitable for our purposes. Since we are
interested in a kinematical region where both

(9, +9,)'=0> =M’

and
(qlT + qu)2 = Q% (27)

are large, we must certainly go beyond (i) of the EPA [cf. also appendix, egs. (A.8,
A.12)].

In view of egs. (16) condition (ii) of the EPA also becomes doubtful for large Q.
In principle one ought to take into account all yy cross sections, to treat the g?
dependences 1n egs. (12), (16) exactly and to perform the g integrations. However,
mn order to keep computing efforts within reasonable limits, 1n this investigation we
have taken into account the transverse yy cross section o only. Because of the
numerical smallness [4] of the neglected cross sections relative to o1 for |g?|/M? <
1, our results should be quite accurate for not too large Q% /M?. At very large values
of Q-+ they should at least represent an order of magnitude estimate in the sense of a
lower bound for the yy contribution.

The important point is, that we calculate o exactly [eq. (12)], i.e. we retain the
full g7 dependences and perform the ¢? integrations explicitly.

Moreover, let us point out an important technical detail: one has to be very
careful when making approximations in the expressions for the integration limits
(see appendix). For large Q; significant contributions come from close to the
kinematical boundaries of the integration variables. Even neglecting nucleon mass
effects in the integration limits may lead to negative cross sections. The present
calculation has been performed with the exact expressions for the integration limuts,
given 1n the appendix.
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With the transverse approximation specified above and the jacobian relation (20),
the cross section (5) takes the following form:

ransv G
_djg'___(pp — 77X )

dMZdQ%-dY 'L)eﬂg“
:(ei)zif‘ dx, 1 %/Qimi@ﬁ%mi‘gﬁ
7 sz X3 min x% X1, mn x% le min le Q%mm Q%
X3

X

J(ud +[m?/ (s — 4m®)] x3)(0F — 03 cun N Q3 mex — ©3)
orryM(M2, -0}, 03)

X W, = we,, (28)
with
vWy(x,,0%
g1
1
2 2m?x?
X sx, &+ 0 )(sx £, — M?) —sx,£,02) —— 1,
[)\(MZ’_Q127_Q§) {( lgl Ql)( lél ) I£IQ2} le
Wizzl—: Will(xl (_‘)x27Q]2 «> Q%ygl (_)52)5 (29)

where 0,1 is given in eq. (12), the integration limits in the appendix, and

2 M?
xT=—gI, T=—, Xp = V4T + x4, (30)

Vs s
— A2
glzéfT(coshYIVs :m sinhY), (31)
2
=x1—3ix hY + hY}. 32
ul=x! sz(cos a2 ) (32)
Moreover, in eq. (28)
2 2 2y] .2
(u2 +[m /(s—4m )]xT)
\/_ 2 (Q% —_Q%,mm)(Q% _Q%,max)
2

:‘/—A(Q-zr,lqrrlz’lqﬂ‘lz) . (33)
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We recall that eq. (28) does not contain any approximations so far apart from the
“transverse” one.

23 STRUCTURE FUNCTIONS

The proton structure functions 2mW, and vW, represent the second building
block besides the yy helicity amplitudes, entering the

pp »vrX
bsete~

cross section.
The elastic contribution reads [3, 4]

2mW(x,07) = 8(x~ 1)G}(0?)

2 _ 2( 2 Q% (2 Q?
wWy(x, Q%) =8(x — )| GE(Q?) + =5 G4(Q%)] / {1+ . (34
4m? 4m?
where G and G\, are the usual electric and magnetic proton form factors and have
the normalization Gg(0) =1 and G (0) = p,, with proton magnetic moment g, =
2.79. In our calculations we use the standard dipole fit

-2

G 2
_9ml@?) ,  m2=0.1GeV2. (35)

Bp

2
1+<

2
my

Ge(0?)

For the inelastic structure functions 2mW, and »W,, one may use, in principle, the
experimental data directly as functions of x, and Q2. For simplicity, however, we
a?iopt for »W, the parametrization of Bloom and Gilman [14] in terms of the
variable

1 4

3 5
,,szo.557(1——,) +2.1978(1—i,) —2.5954(1——1—,) , (36)
w w [

together with a more recent fit by Fox [15] for

W 4m>x? 0.8610
2 (1+ mx )—1:—Q— [0?inGevy]. (37)

R=
2mxW, 0 (Q? +0.988)

This parametrization obviously ignores the resonance fluctuations present 1n the
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data. However, since only integrals over the structure functions of the form

/szfdx {2’"W1 x,Q )} (38)

vW,(x,0%)

appear in eq. (28), one may qualitatively invoke duality arguments [16] to argue that
these fluctuations probably will wash out in the integrals and that parametrization
(36), (37) may thus be used right down to the inelastic threshold to good approxima-
tion.

The inelastic threshold condition,

(p,—q)=(m+mu), (39)

gives the constramnt (for x, % 1)

x
Q? >—lt‘;[(m+m,,o)2—m2] ~0.27 GeVz-l—iLx—, (40)

which was built into our calculation.

In fact, one easily finds that the minimal Q? for inelastic scattering in eq. (40)
increases® with Q2 and hence, for large enough Q32, the resonance fluctuations
should not matter anyway

For small Q1 and M we follow ref. [3] and multiply »W, in eq. (36) with a
correction factor

y WD S yWiIQ2/(QF +0.15 GeV?) (41)
in order to restore the gauge-invariance condition

W) o =0, (42)

and to match on to the observed real photoabsorption cross section o, at Q! =0.

24 QCD PROTOTYPE FOR pp— 71~ X

In order to assess the relative importance of the two-photon contribution in
various regions of phase space, a suitable reference cross section 1s needed. Expen-
mental data on pp—{* £~ X from FNAL are, at present, limited [17-19] to
S<27.3 GeV, Q1 <3.5 GeV and M <12 GeV and those from the ISR to 5 <63
GeV, Q1 <6 GeV and M <20 GeV. At small Q1 and ISR energies a direct

*Eg for xp =0 this follows from using (see appendix) x, /(1 = x,) 3 x5 pun /(1 = X5 n) = (3 X1 ~
/(1 = %1 +7—4m?/s) (with X% =47+ x}) in eq (40)
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comparison of our differential two-photon distributions with representative ISR data
1s performed in subsect. 3.3.

For the discussion of our two-photon results in other kinematical regions—in
particular at ISABELLE energies— we take sumple, perturbative QCD estimates for
pp — [ "1~ X as a reference.

For Q@ =O(M) > A, the O(a,) corrections to the Drell-Yan mechanism, i.e. the
subprocesses

qq —v* + gluon, and gluon + q — y* +4q,

Lag*g- Lpte- (43)

may be expected to represent the dominant QCD contributions to the dilepton Q
distribution. The corresponding cross sections do?°P/d M?dQ3dY have been
calculated by various authors [12, 13] and qualitatively agree with existing experi-
mental data for a reasonable value of the running coupling constant [12]

{a ) =0.3 (44)

over the mass range 5 << M < 10 GeV.

The calculation by Kajantie and Raitio [12] represents a simple prototype and we
have chosen to take it as a QCD reference for our yy results in the region
Q1 =O(M) > A. The O(a,) QCD expressions to be used read as follows [12]:

Sdaﬂ(QQ—*Y*g)_B ma® oaf(sT) 4 1

d/7 do2dy 3 (v7)’ 27 9 Q2

1 dx,

f
S e F(x)F(x,)+ (1 2)]

=1

xJ
'xl.mm
2
% 1 +72/(x,x2) —x%‘/(lexz)
x; —ix e’ ’

X)X,

(45)
and
d’s(qg > qy*) 8 ma? as7) 1 1
s =— —_—
drdoidy 3 (m) 27 3 0%
1 dx](%x'r)z

_1l= .Y 3
xl,mm(x] 7X1¢€ )(xlx2)

(xx; — 7Y +4(x,x, 7+ V)
XXy =T+ V

/
x el

=1

FO(x)GD(x,) X

+(le2, Vo —V)l, (46)
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where
1z oY, _ 1z .Y _
= I Xp€e Xy — 71 . _ 2Xqy€ T
2 — » I,min — _y>
x, —4xre¥ 1—4x;e” Y

1/2

V= {(xlxz —a(xg +ET)2)(X1X2 —i(xy _IT)Z)} (47)

Moreover, simple quark ( F,) and gluon (G) distributions have been used 1n ref. [12]:

valence: V(x)=3vx(1—x),
sea: S(x)=0.15(1 — x)’,

(43)
glue: G(x)=(x,)(g+ 1)1 —x), g=1,

(x,)=0.56.

The exponents 3 and 7 in eq. (48) follow from counting rules, V(x) is normalized to
1 when integrated over dx /x, the factor 0.15 in S(x) was determined from neutrino
data and (x,) = 0.56 from energy-momentum sum rules. It should be kept in mind,
however, that the gluon distribution G(x), in particular, is not very well known and
hence introduces considerable uncertainties for large 7.

Instead of working with a fixed value of {a ) = 0.3, as is done 1n ref. [12], we have
taken instead

as:as(s'r)Eas(Mz):m%A—z), (49)
with
a(M?*=1GevV?*)=1, ie. A=~0.5GeV, (50)
leading to
a,(5.5 GeV?) =0.3. (51)

As already pointed out in ref. 12, the argument of a is, of course, ambiguous.

We recall that the above O(a;) QCD expression is formally valid only for
Ot ~M> A. It would clearly be desirable also to have a reliable reference cross
section in the region Q1 < M, /s large, since there the most sizeable manifestation of
the two-photon mechanism is expected.
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Starting with the work of DDT [7], arguments have been put forward that this
region of Q1 may still remain accessible to (suitably resummed) perturbative QCD,
provided that

ASQr <M  and g large. (52)

In this region (52) the leading single logarithmic approximation [~ a”In" M ?] breaks
down, since in addition large logarithms ~ In(M?/Q%) appear.

However, several analyses [8—11] have recently suggested that, analogously to
QED, the sum to all orders of both real and virtual gluon emussion simply
exponentiates to leading double-logarithmic approximation. Qualitatively, in Q1
space, this results [8—11] 1n a “quark form factor”

(M2 02) = ex fM d d%o (order &) (53)
T P T dk2dMdy|,_,/ dMdY |y,

In( M2/ A?) 2
e | )

producing a strong damping [if not a turnover, as implied in approximation (54)] of
the O(a,) Qr distribution [8],

d’ d%(7) d
L ~ M 2
M aagiary, - M amarT,, ag2 F(M?,0}), (55)

at small Q1 = A.

The exponentiation of the O(«,) result presents the advantage of being automati-
cally in agreement with the lowest-order calculation when Q1 ~ M. Moreover, a
characteristic prediction is that the peak near QO =~ 0 flattens [8] with a width
proportional to (M?2/A%)%3,

As a reference for our two-photon results in the region A < Q1 < M, s large, we
take the shape of the Q; distribution as given by Parisi and Petronzio [8] for
ISABELLE energies and M2 = 120, 7500 GeV?2. It is a somewhat refined version of
eq. (55), with exponentiation applied in 1mpact parameter space and an intrinsic
parton transverse momentum (Q3) . =~ 04 GeV? accounted for (the effect of
which turns out, however, to be unimportant [8] at ISABELLE energies and
Q1 =03 GeV).

We fix in addition the absolute normalization of the unnormalized Q distribu-
tions dN/dMdQ3dY|,—, given in ref. [8] as follows:

We normalize them for larger QO+ =2—4 GeV to the O(a,) calculation of
Kajantie and Raitio [12}, eqs. (45), (46), (48), since there the two shapes turn out to
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agree nicely (see fig. 9). This way, the two QCD expressions used are consistent with
each other. As a check for our normahization we extract the corresponding integrated
cross section M3d% /dMdY|,_,

(1) by integrating the normalized Q- distribution of ref. [8] directly over Q3%;

(1) by fitting 1t to the approximate equations (54), (55) at larger Q.
Both methods agree within < 10% and give

PR A {8.4 nb-GeV? for M? = 120 GeV?
dMdY|y_o |3.4nb-GeV?for M2 =7500 GeV?’

and v5 = 800 GeV, (56)

in qualitative agreement with experimental data [17-21] from FNAL and ISR for
y7=0.014 and 0.11.

25 KINEMATICAL RESTRICTIONS

In this subsection we list some kinematical restrictions, which our external
variables

T=—, xF: 5 xT: (57)

have to satisfy.
The fractional dilepton energy in the pp c¢.m.s. reads

0 72
—255 :{47+x§+x%}‘/2:1+7—m7, (58)

where m’ is the total mass recoiling against the lepton pair. From the threshold
restriction m’? = 4m? we obtain from eq. (58)

|xF|S\/(1 +'r-4m2/s)2—41'—x—21-

~ (I—T)Z—X%, (59)
$— 00
xpS1—r1. (60)

Therefore, in order to minimize effects due to the kinematical boundaries when
displaying our results, we shall sometimes use the reduced vanables

og)eFEQQL ~ F <1, (61)
Lomax (1 — 1) —x2
og. ==21 X1 (62)



B Schrempp, F Schrempp / Two-photon exchange 359
besides

O0<r=—x1. (63)

3. Results

31 NUMERICAL EVALUATION AND CHECKS

The four integrations in eq. (28) have been performed numerically with a
Gauss-type integration method. A relative accuracy of 10% was required in every
integration. A Monte Carlo method has also been tried, but, surprisingly, turned out
to be more time consuming than the Gauss method*. Considerable effort was spent
to obtain an estimate of the results in analytical form as well. This attempt
remained, however, unsuccessful, since the dominant portion of the integration
region turned out to depend on the external variables 1n a complicated way.

We have performed, among others, the following quantitative checks with our
numerical results:

(i) The differential cross section d*s/dMdQ%dY corresponding to the elastic-
elastic configuration at the two proton vertices

o _)YL pé)+ - (64)

as well as the total two-photon contribution were integrated over Q% and Y. The
resulting cross sections do /d M ©-<1*Y were then compared to the accurate, existing
calculations in ref. [3] for various values of s and M. The agreement turned out to be
within ~ 5%.

(11) After integration over Q3 only, we have checked our two-photon cross section
do/dMQAY|,—, against ref. [5] for s = 800 GeV? and M?/s= 0.2, 0.02, and /s = 800
GeV, M? =120 GeV? and M? = 7500 GeV? with good agreement.

(1it) The total vy contribution must clearly be symmetric under the substitution

Xp <> —xp. Hence, the comparison of our numerical results at xp and —xy provides
a powerful test of the accuracy of the numerical method used. This test is particu-
larly non-trivial, since with the integration variables used the integrand 1s not
manifestly symmetric in xg.
On the one hand, we faced the computation of a cross section depending on as many
as four variables, M, Q1, xr and ys. On the other hand, we had to keep computer
time within reasonable limits. Therefore, we had to use rather large step sizes for our
variables. In all our figures the points indicate the actually calculated values, whereas
the curves are eyeball interpolations only.

* Probably, because, for large Q+, no vanable transformation leading to an overall slowly varying
integrand could be found
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32 THE DOMINANT CONFIGURATION

The total yy contribution is composed of a sum of terms corresponding to each of
the two pyX vertices in fig. 1 being either elastic or inelastic:

do( pp — YYX \ ) = doel-el + doel-me] + domel-el + domel-mel' (65)
Log+e

In figs. 3, 4 we have displayed™ the various contributions in eq. (65) separately as
functions of ys. Fig. 3 illustrates the situation for fixed (smallish) Q' and fixed M,
fig. 4 refers to fixed x1 = 20+ /s and fixed = M?/s. At very small Q1 ~ 0.1 GeV
and fixed M the double elastic configuration clearly dominates up to very high s,
where the elastic-inelastic configuration takes over (figs. 3a, b). At somewhat larger
Qr, the situation is quite different, however (see figs. 3c, d). There it is the
elastic-inelastic configuration which is generally dominant, in particular over the
presently accessible energy range. For fixed x; and fixed r the elastic-elastic
contribution vanishes extremely fast with increasing ys. Ultimately, at very high
energies, the double (deep) inelastic configuration takes over (fig. 4).

The dominance of the el-el configuration for small Q and the el-inel configura-
tion for larger Q1 is an interesting result of our analysis. Its qualitative interpre-
tation is: as long as Q2 at a given vertex is kinematically allowed to remain small,
this vertex prefers the elastic over the inelastic configuration with an almost on-shell
photon. However, as soon as a Q2 is forced by kinematics (large Q') to become
large at one vertex (Q7 2 m?), the suppression due to the elastic form factor 1s very
much stronger than the one due to the (deep) inelastic structure function. Hence, in
this case, the vertex becomes (deep) inelastic.

Our result has interesting experimental consequences: triggering on one elastic
proton vertex does not significantly reduce the rate for yy — 1"~ and yy — q-jet + -
Jet events and thus helps to 1dentify these subprocesses.

Furthermore, working at large Q+ (and 73 0) automatically selects scattering of a
hughly virtual photon on an almost real photon target at the subprocess level:

(1) the photon at the elastic vertex (Q,, say) remains almost on-shell (03 <m?)
since the elastic proton (dipole) form factor strongly cuts off higher Q3 in addition
to the propagator effect o« 1 /03,

(1) the second photon (Q,) 1n turn, is pulled far off-shell,

07 20(0%). (66)

simply from kinematics (see appendix for le. -

* For histonical reasons the correction factor (41) has not been included in figs 3-5 This may affect
somewhat the absolute values of cross sections for @y <1 GeV
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Fig 3. The (transverse) yy contribution to p( p) — p 7 p~ X for different smallish values of O and M as

a function of ys The total contnbution (@) as well as its decomposition into the three different

components corresponding to both proton vertices being elastic (A), elastic (O) and to the sum of the
mixed configurations ( X) are displayed

33 RESULTS AT FIXED Q@ AND M

This subsection contains our “realistic” results which are (or will be in due time)
accessible to experiment.

Let us first point out the typical features of the two-photon O distributions for
fixed M. In fig. 5 we display d’ /d M?dQ7dY |y, for 0.1 < Q1 <7 GeV at fixed
M =3 GeV and for four values of the energy from =27 to 800 GeV. A
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conspicuous feature is the very steep forward peak, coming mainly from the
elastic-elastic proton vertex configuration (cf. figs. 3a, b). At values of Q1 =2 GeV
the Q1 distribution flattens out considerably and becomes strongly energy depen-
dent. Whereas at Q1 = 0.1 GeV the cross section increases only by a factor ~ 40
over the energy range considered, at Q1 =7 GeV the increase amounts to four
orders of magnitude. This effect becomes even more dramatic at higher masses M.
Fig. 6 shows an increase by almost six orders of magnitude for M = 8.5 GeV and
Or1 =7 GeV.

Since we have four variables, Q1, M, xg and 5, at our disposal, we cannot
possibly present results covering the whole kinematical range.

First generation experiments are obviously most likely to give results at smallish
Q1 and M. Therefore, we present first of all in tables la—f the yy contribution* to
pp—ptr X and pp » e e” X at the ISR energy 5 =63 GeV, for five values of
Qr (0.05< Q1 <1.65 GeV), three values of M (M =4,6,8 GeV) and six values
of X (0 < X =< 0.8). These values have been chosen such that integrations over any
of the three variables, O, M, and %, can be performed with reasonable accuracy.
In view of experiments at ISABELLE in the near future, we present a similar table,
table 2, at /s = 800 GeV, with values of Q1 between 0.05 and 52 GeV, values of M
ranging from 4 to 100 GeV and x = 0; the mass range has been chosen sufficiently
large in view of experiments designed to measure in the mass region of the weak
gauge boson. Notice also, that the two-photon contribution 1s equal for pp and pp
collisions.

Let us now confront these yy results with existing ISR data at s = 63 GeV and
with QCD estimates of the cross section at higher energies, in particular at ys = 800
GeV.

First of all, we compare the calculated yy contribution to recent two-photon
candidate events [2] in pp — p* p~ X. To this end we integrate the theoretical yy
contribution at ys = 62 GeV and xp = 0.2 over M from 2.6 to 6.85 GeV and compare
the resulting do*"/dQ1dY |, _,, to the preliminary data** of ref. [2] in fig. 7. The
qualitative agreement is quite encouraging, even though the data seem to be shifted
by 200-300 MeV towards larger Q1 in comparison with the theoretical curve. One
should, however, keep in mind that the experimental distribution may still have to be
corrected [22] for effects of Q1 resolution, which may well result in an horizontal
shift of the histogram. The separate theoretical contributions from the elastic-elastic
and elastic-inelastic configurations of the pyX vertices are also displayed in fig. 7.
Notice that the elastic-inelastic configuration already dominates at Q1 ~ 1 GeV.

* Notice that for small values of Q1 the e e~ cross section 1s bigger than the p* ™ cross section (due

to the electron-muon mass difference); the cross sections merge together around Q¢ ~ 15 GeV
**In ref [2] raw data for an unnormalized Q1 distbution—integrated over M from 26 to 6 85

GeV—at [22] xp =02 were presented The Q1 acceptance 1s flat [22] for O+ <1 8 GeV Using the

absolute normalization given for do?"/dM 1n ref [2], the theoretical ratio do”"/dMdAY|, _¢,/

doY’/dM and the assumption that the selected events represent the full yy contribution, we
tentatively denived the absolute normahization of the Q1 histogram as shown 1n fig 7
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and four energies (27 3 < vs < 800 GeV) Ths figure 1llustrates the dramatic energy dependence at larger

Or

Next we come back to our qualitative argument of sect. 1, which leads us to expect
a considerable two-photon contribution at very small values of Q1. Figs. 8 and 9
show that this is indeed the case and that the effect becomes increasingly important
for increasing energy. In fig. 8 ISR data [19] for pp — e " e~ X— integrated over xy
and two mass intervals—are shown. With the help of table 1 the corresponding
theoretical yy contributions are obtained. For Q1 ~ 0 and smallish masses 4 < M <
4.5 GeV the yy contribution makes up as much as 70% of the pp — e* e~ X cross
section. However, the yy Q distribution is so steep that its contribution, averaged
over the first Q1 bin, 0 < Q1 < 0.5 GeV, is down to 30% and integrated over all Q
down to a few percent. For somewhat higher masses, (M ) =~ 7 GeV, the effect 15
less important (~ 25% at Q1 =~ 0).

Whereas at ISR energies the two-photon dominance 1s restricted to very small
values of Qr, at ISABELLE energies 1t 1s more dramatic and extends over the
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TABLE |
Two-photon cross sections d*0/d MdQ#4dY in nb/GeV* for
(=) (-)
pp—- vy X, pp-— vy X
Laptp Lyete
versus M [GeV]), Q1 [GeV] and X at vs = 63 GeV

(@ xp=0
M
0 2 4 6 8
005 46x10"" 20x10°2 28%1073 62x 104
(10x10%) (35%1072) (45x1073%) (94%x107%)
045 38x10°? 44x1073 94x10~4 27x1074
(51x1072%) (5.9%107%) (1.3x1073) 37x107%)
085 68x10° 10x10°3 24x10°4 77X1073
(77x107%) (12x1073) (28x107%) (90x107%)
15 14x107° 30x10°4 80X 1077 26X107°
(15x107%) (32x107%) (8.6 X107%) (28x107%)
65 40x10 "% 11x107* 32x1073 11x10°3
(39x107% (11x107% (33x107%) (11X107%)
) =01
M
To 4 6 8
005 121072 21%1073 55x107¢4
1x107%) (34x107%) (83x107%
045 37x1073 83x10°* 25x10°4
(52x107%) (11x107% (34Xx107%)
085 81x104 21x10°4 68x107°
(94x107% (24x107% (80X107%)
125 24%10"* 68%107° 23%x10°°
(25%x107%) (73x107%) (25%107%)
165 84x107° 27x107° 98X 10~°
(86x107%) (28x107%) (1.0x107%)

The numbers in parentheses refer to e pars, the others to g pairs
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TABLE 1 (continued)
(©)xp=02
M
Qx 4 6 8
005 71x1073 14%x107°3 42%x10™*
(12x1072) (22x107%) (6.2x1074)
045 27%x1073 61%x10"* 19x10™4
(39x107%) (84x10°%) (26x107%)
085 54x1074 15%10°4 52x1073
(64x107%) (18x107%) (61x107%)
125 14x107* 46%107° 17x107°
(15x107%) (50x107%) (18x107%)
65 50x1073 18x107° 70x107¢
(50%x107%) (19%x107%) (72%x107°)
TABLE 1 (continued)
(d) %5 =03
M
QT N 4 6 8
005 45%1073 92x 104 29%x 1074
(76x107%) (14x107%) (42x107%)
045 17x1073 39%x1074 13x1074
(25x107%) (53x107%) (17x107%)
085 31x1074 92X 1073 33Xx107°
(37x107%) (11x107%) (39x107%)
125 76%1073 27X1073 10x10°°
(82x107%) (28x107%) (11x107%)
L65 25%1073 10x1073 42X107°
(25x107%) (10%x107%) (43x107%)
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TABLE | (continued)

(€ k=05
M
01 4 6 8
005 12x1073 26%x10°4 801073
045 37x1074 96x 1073 33%10°3
085 59x1073 20%10°° 79X 10°°
125 13X107° 52x10°6 23x10°°
165 39x107¢ 19x 106 89x 107
O x=08
M
Or 4 6 8
005 g81x10°° 25%x10°% 94x10"7
045 26x10°° 93x1077 39%10 77
085 35%x1077 17x1077 82x 10 ¢

125 64x10 % 37x10°8 21x10°%

165 17x10°¢% 11x10°8 68x10°

interval 0 < Q1 <1 GeV for masses = 10 GeV. Fig. 9 shows the yy cross section in
comparison with an estimate of the QCD contribution to pp — f £~ X. We used the
O(a,) QCD calculation, corrected for soft gluon radiation to all orders in leading
bilogarithmic approximation of ref. [8}, normalized as described 1n subsect. 2.4; it 1s
represented by the dashed curve. The encircled dots represent the O(«,) QCD
calculation of ref. [12]; obviously both QCD expressions overlap well down to
intermediate values of Q1 (as necessary for internal consistency). We used the two
mass values M? = 120 and 7500 GeV?2, for which the QCD calculations of ref. [8]
are available (M? =7500 GeV?, i.e. M ~ 87 GeV, 1s in the expected Z-boson mass
range). At this mass of 87 GeV the yy dominance 1s dramatic (fig. 9): at Q1 =0.3
GeV the ratio yy/QCD for the e*e™ (u™ p7) final state is as much as ~ 10 (6.4),
averaged over a Q2 bin 0 < Q2 <1 GeV?it is still 3.8 (2.4), whereas the ratio of the
Q3 integrated cross sections amounts to 0.25 (0.19) only. At the lower mass of
M? =120 GeV? (M =~ 11 GeV) the effect is less dramatic, but still significant (fig.
9): for Qr =~ 0.3 GeV and an e*e™ (p* p ™) pair one finds yy/QCD ~ 1 (0.7), if
averaged from Q% =0 to 1 GeV? (yy) /(QCD) =~ 0.77 (0.46) and integrated over
all Q% the ratio reduces to 0.24 (0.17). The Q%2 integrated yy cross sections are in
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TABLE 2

Same as table 1 for vs = 800 GeV and xg =0

4 10 95 52 86 64 100

005 14x1072 86x107* 75%107° 1.2X107° 69%x1077
(23x107%)  (14x107%)  (12x107%) (20x107%)  (11x107%)

045 15%102 89X 104 56x107° 72%x1077 38x1077
(23%107%)  (14x107%)  (91%x107%)  (12X107%)  (61x1077)

085 41x1073 25%x1074 13X10°¢ 17x1077 86x 108
(54x107%) (35x107%) (20%x107%) (24x1077) (13x1077)

165 76%x1074 68X107° 35%1077 39x10°8 20x10°*
(861074 (83x107%) (45%x1077) (51x1078) 26x107%

X 10"¢ % 108 X 109 -9

. 275105 69X%10 ¢ 56%10 * 64 %10 ’ 33%10 °
(76%x107%) (65x107%) (74%x107%) (38x10°%)

20 ~63%X107° 77%x10°° g1x10" 1 14x10°1° g3x10 "
36 ~12%x107'0 23%10710 65x10" " 17x107" 11x10" 1
52 ~76X10712 17x107" 10x10 " 32x10712 21x107"

good agreement with the results of refs. [5, 6]. Our analysis of the Q1 dependence
has unravelled, however, that belund a sizeable, but not exciting ratio of the Q%
integrated vy and QCD cross sections, [dQ%(yy)/[dQA(QCD) == 0.2, there is hidden
a ratio as large as 0.5 to 4 in the Q% bin 0 < Q7 < 1 GeV?, depending on M and the
¢~ final state.

It has been emphasized that an experimental signature for the resummed QCD
contribution in leading bilogarithmic approximation 1s the flat shape [7, 8, 11] or
even a turnover near Q1 =~ 0 as well as the characteristic dependence [8, 11] of the
width of the forward peak on the mass M. Our results show that this effect 1s partly
or fully swamped by the two-photon contribution.

Fig. 10 shows the mass dependence for fixed Q1 = 1.83 and 3.55 GeV and*
4 < M <25 GeV. This figure, together with figs. 12 and 14, which will be discussed
in detail later, illustrates the situation for intermediate and large Q1, Q1 = 1.5 GeV,
say: at ISR energies and larger Q the yy contribution 1s neghgible everywhere

* At ys=800 GeV the QCD calculation for M <10 GeV 1s not trustworthy since for values
Jr=M/ys <002 the involved constituent distributions (or, related to this, d%s/dMdY|y—y) are
unknown
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Fig 9 @ distnbutions for pp — ¢ "¢~ X at /s =800 GeV and xy =0 for the two mass values used m
ref 8], M2 =120 GeV? (M =~ 11 GeV) and M? = 7500 GeV? (M =~ 87 GeV) The solid hines (®) and
(O) denote the yy contnibutions to pp— ¢ e ™ X and pp — p* p~ X respectively and the dashed line
denotes the resummed QCD contnbution to pp — ¢ * ~ X including soft gluon emission to all orders 1n
leading bilogarithmic approximation It was given 1n ref [8] in unnormalized form for Q-1 =03 GeV and
normalized by us 1n subsect 2 4 to the O(a,) expression of ref [12] (encircled dots) at larger Q1

(being of the order of a few percent), whereas at ISABELLE energies it amounts at
least to 10% almost everywhere and rises up to 20%, e.g. for Q1 = 1.83 GeV and
10 S M <100 GeV (see figs. 9 and 10). It 1s sull 14% for Q =3.55 GeV over a
similar mass range.

34 RESULTS AT FIXED x| AND

In this subsection we present our two-photon results in comparison with the O(e,)
QCD contribution [12] to pp — £ "¢~ X as functions of the variables Xt (x1) and
T=M?/s [remember %1 =x1/(1 —7)= Q1 /Qr ) We do this more for com-
pleteness reasons, since smallness of the corresponding cross sections will make
measurements unlikely or impossible in most cases. Figs. 11 and 12 show the £1(x1)
distributions for fixed values of 7 and s at xg = 0. For reasons of presentation all
cross sections have been normalized to the two-photon cross section at s =27.3
GeV, which 1s displayed separately in fig. 11 (at this energy p* u~ data exist for
710.25 and £ < 0.34).
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contribution, the dash-dotted one the O(a,) QCD contribution of ref [12] (b) The ratio (yy)t,/QCD of
the quantities in (a)

The following global trend becomes evident from fig. 12. If one keeps any two of
the three variables 7, £1 and ys fixed and increases the third one, the ratio yy/QCD
increases. The yy mechanism becomes important or even dominant if any two of the
three variables become large; most dramatic is the effect for large values of r
(modulo uncertainties in the gluon distribution):

vY/QCD ~ 100%, e.g.

(M =~55GeV, Q= 2GeV)

at ys = 63 GeV for{ M=~40GeV, Q;=10GeV,

(M =700 GeV, Qr=~ 10GeV)

67
M ~400 GeV, (.~ 240 GeV. (67)

at ys = 800 GeV for{
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]05 1 T T I T T T T I
L -
- V5= 27 3 GeV

(~)
Fig 11 The %1 (=x1 /(1 ~ 7)) distribution of the (transverse) yy contnbution top p —»p*pu~ X for
four fixed values of r (0 09 <7< 0 81) and the lowest energy considered, vs =27 3 GeV

35 THE x DEPENDENCE

With the exception of table 1 we have restricted our discussion so far to xg =0.
Fig. 13 displays the X distribution of the yy subprocess for a set of smallish values
of r and x and the two extreme energies ys = 27 and 800 GeV. The weak energy
dependence of the dimensionless quantity sd’s/dvr dx2dY becomes evident from
fig. 13. Fig. 14 shows the yy as well as the QCD contribution versus X for a set of
large values of T and x; and all four energies. Table 1 contains, in addition, the Xp
distribution of the yy mechanism for various smallish values of Q1 and M at /s = 63
GeV. From all these results we extract a simple, approximately factorizing behaviour
(within a factor of two),

d%

dM2dQ2dY =05
QT*O

f(3p)F(M,Qr.45), (68)

over the X range relevant for integrations over xp. This may be useful for an
estimate of the £y integrated cross section in kinematical regions not discussed
explicitly here.
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Fig 12 The %1 (x1) distnbution of the (transverse) yy contribution (full curve) to pp —p* p~ X 1

comparnson to the O(a,) QCD contnbution of ref [12] (dash-dotted curve) for four fixed values of =

(009 <7=<081) and four energies (27 3 < y5 <800 GeV) All &1 (x1) distributions are normahzed by

the vy distribution for /5 =27 3 GeV (fig 11) The lower absissa refers to the variable £t = Q1 /Q max
> xt/(1—71)(with 0<%y < 1) and the upperone to xy =20 /s

4. Summary and conclusions

We present the differential cross section for the two-photon mechanism

)
pp—>yrX
Ligre~

in interesting kinematical regions of the four variables M, Q, xx and /s in the form
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Fig. 13 The distribution of the (transverse) yy contribution to p p — p* p~ X 1n the Feynman type

variable £ = Q1 / Q1 max for small values of r=0.063 and xt =004 and for the lowest and highest
energies considered’ vs = 27 3 and 800 GeV

of tables and instructive figures. A comparison with pp — { "¢~ X (including

pp—>YrX )
Lgte-

data at ISR energies and with estimates of the QCD contribution to pp = ("¢~ X
elsewhere, in particular at very high energies, 1s performed.

We find important manifestations of the two-photon mechanism. Already at ISR
energies and very small Q1 the yy mechanism represents an important fraction
(30-70%, depending on M) of the pp — e " e ~ X cross section; but it is negligible at
larger Q. However, at ISABELLE energies, vs = 800 GeV, its influence becomes
dramatic: even if one averages over the fairly large Q2 bin 0<< Q2 <1 GeV? one
obtains for the ratio of yy to QCD: (yy) /(QCD) = 0.5-4, depending on M and
the £ 7€~ final state. Almost everywhere else the ratio still amounts to yy/QCD =
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Fig 14 The distribution of the (transverse) yy contnbution to pp —»p* p~ X (full curve) in the

Feynman type vanable £ = Q /Oy max 1D companson to the O(a;) QCD contnibution of ref [12]

(dash-dotted curve) for largish values of 7 = 0 25 and x; =0 52 and four different energies (27 3 << vs < 800
GeV)

0.1-0.2. (For M ~ s, the yy mechanism becomes dominant again; however, the
rates are tiny there.)

Altogether, at ISABELLE, the yy contribution becomes a serious background to
the QCD contribution in particular for Q1 <2 GeV. It totally swamps the experi-
mental signature for the resummed QCD contribution in leading bilogarithmic
approximation, which predicts a flat shape if not a turnover near Q1 = 0, as well as
a characteristic dependence of the flattening peak on M.

Let us, furthermore, point out that (at s =800 GeV) the yy contribution also
constitutes a sizeable fraction of the background in the search of the Z-boson in
pp— I X

The two-photon mechanism is also an interesting process 1n its own right. This
paper contains detailed information on the signature and on rates of two photon
events in large parts of the kinematical range of the four variables M, Q, xg and s.
There are two tables, for s =63 and 800 GeV which even allow integration over M

or Qr (or xg).
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The yy mechanism is most easily accessible at small Q 1, where its rates are largest
and where in addition it tends to dominate the pp — £ " £~ X cross section (absolute
rates can be improved, of course, by integrating over M and /or xp).

A further clue for a future experimental isolation of the yy mechanism comes
from a decomposition into contributions from the two pyX vertices being both
elastic, of mixed (elastic-inelastic) configuration or both inelastic. We find that for
Q1 =<1 GeV the elastic-elastic contribution dominates, while for Q1 =1 GeV the
elastic-inelastic one takes over. Thus, triggering on one elastically scattered proton
does not significantly reduce the yy rate, whereas 1t may considerably reduce the
background.

This may be particularly interesting for a possible 1solation of the related
subprocesses Yy — g-jet + g-jet and y + gluon — g-jet + g-jet, for which the present
work is kind of a ‘warming up’ exercise. Insisting on an elastically scattered proton
should, for colour and triality reasons, suppress the huge background from sub-
processes like qq — jets or gluon+ q — jets. Left-over, ‘higher-twist’ subprocesses
will decrease much faster with transverse momentum than the subprocesses of
interest.

Finally, let us recall some uncertainties inherent in this investigation. As to our
two-photon results, the only approximations made were the ‘transverse photon’
approximation (subsect. 2.2) and the parametnization used for the proton structure
functions (subsect. 2.3), neglecting resonance fluctuations and scaling violations. As
discussed, these approximations should not significantly affect our conclusions. As
to the QCD reference cross section, scaling violations in the constituent distribution
functions have been ignored as well. Moreover, we recall the uncertainties for very
small values of 7 <« 0.02 and also for large * — 1. These limiting regimes of r involve
constituent distributions, where they are badly known.

We are very much indebted to P. Landshoff for inspiring discussions and active
collaboration in the early stages of this work. We thank F. Vannucci and J. Field for
valuable information about experimental aspects of two-photon physics.
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Mathematics and Theoretical Physics of Cambridge University and of the Physics
Department of Durham University, where much of this work has been done.

One of us (F.S.) thanks the Science Research Council of Great Britain for a Senior
Visiting Fellowship during his stay at Cambridge and Durham Universities.

Appendix

In this appendix we give the exact expresstons for the integration limits 1n eq. (28).
Again, as in subsect. 3.1, numerical checks have been performed with the expressions
below under x; <> —xg. Using

2 2 22
lg.r1? =2Lu, —eig” +%fwgcosh YJr———Q;Q2 . (1=1,2), (A1)
x X, 4m=x,x,

13
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with
Q12 = —q127 (Az)
24 (g} 03
_. el 9 A3
" XpcoshY §;+s(xl xz), (A.3)
)
glz%fT(costh 7 s4'" sinhY), (A4)
2
ul=xl—%fT(costh ? sinhY), (A.5)
2 2 s—4m?
__4m® = _ 2
=TT ST Va4t +x3, (A.6)

one may express the “triangle” function v— A in the jacobian (20), after a straight-
forward but tedious calculation, as

2 2
\/_A(Q'zl"lqlle’IqZle) = \/{(z_z) +8(_2)ff;) }(Q% - Q%,mm)(Qg,max - Q%) ’
(A7)

with limits of the Q7 integration determined as
Q% max =22 (~b+b? — dac ), (A.8)

where

a=u3 +jexi, (A9)

2 2
b= 2[— %ulu2 +%x%((2+ e)x—l—su2 + es&z) +tes(¢2 —§12)u2], (A.10)
1 i

Xy X1

212 212 2
c:(s(ile)z_u_l_]) +%8S[XTQ] §1+S(%x1-)2(£12+€§)_LQ1(£%—£|2)]

+ (4es(83 —g%))2+e("—;f—‘2) : (A-11)
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The equation b> — 4ac =0, being quadratic in Q7, leads to the following limits of
the Q7 integration:

Qimax = xA(—31M), (A.12)
with
A=4(3x1) —ugu,) +e(xd — (u, +u,)Y), (A.13)
B =s[duy(uy = (3x7)") = 2ekyuyuy +3ex3(uy — uy +265)
—2eu +e(€3 — 8)(u; +he(uy +uy)) +iexH(E, —8)]. (A19)
€= es? — ((her )+ &yt ) +4e(63 — 1) (a) + 3z — 4o(83 — 1))
(A.15)

Let u{™ be the roots of the equation B> —44C =0, quadratic in u,.

uf® =5(—B+ B — 4ay), (A.16)
and
a=u} +eud(($xr) — £, ) + 2(ud(2 - 87)
— (3xr) gu) T4 (dx0) (8 — £2), (A.17)
B=u[~ 1x3 + e~y — (37)" —3(82 +83))] + e (330 6203 = 2(dx1) s )
+eX[—du(¢, — )
+iudby(83 — &) +ixh(E;, —38)u3
— (4xr)3(8 + )y — (3x1) (4, —£2))]
+e[udH(8 — 8)(&, — &) — uolbxr )56 — & + (b)) 46~ £)

+ (%XT)zgz%(gg _512)] +£4(%XT)2%(£2 _'51)2(51 +§2)’ (A-18)
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v=(uy(bxr ) + (b 6003 + (bxe )03 + 3 3(82 + 8) + (3xr)']
+52[—“g%($% _‘512)(“2 +é)+uii(é, —4)
2 2 Y
X{_“z(%xr) +3(& +£)(6 - &) +(5xr) (& _51)}
+ (3x0) (s + 18 +83) + (4x2))]
+e[4(8 ) {4(6, — £)ud +u33(8 - 8) — (3x1) 811,
+ (3. ) 8B —8)) 4t —8)
X{glu%(%xT)2+u2(%xT)4— (%XT)4(52 _51)}]
a41(¢2 2\(1 2 1 1 2£2 £ +1 2
te 3(§z_§1)(7"T) “27(52_51)‘*'(5)‘ ) § : 2(52 51) )
2 T8

(A.19)

then the limits of the x, integration, depending on x,, are given by [using eq. (A.5)]

xl,mn:-max(u§+),u§—))+% (coshY+ 5 sinhY),

s—4m
X1, max = 1. (A.20)
In the limit ¢ — 0, the complicated expressions (A.16)-(A.20) reduce simply to
Xy mn —3X7e" =u{D =u{? =(%x'r)2/“2
=(4x1)*/(x, —1%re7Y). (A21)
Finally, the limits of the x, integration are obtained by the substitution
X2, mn = X1, mal§2 < &1,4y = uy(x; =1)), (A22a)
in egs. (A.20), (A.21) and

X3 max = 1. (A.22b)
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