TWO-PHOTON EXCHANGE IN $p \stackrel{(-)}{p} \rightarrow \ell^{+} \mathfrak{\ell}^{-} X$
 AND A COMPARISON WITH QCD

B. SCHREMPP ${ }^{1}$ and F SCHREMPP ${ }^{1}$
II. Institut für Theoretische Physik der Universitat Hamburg, Germany

Recelved 22 October 1980

Abstract

A thorough study of lepton-parr production from two-photon annihilation in $\mathrm{p}{ }_{\mathrm{p}}^{(-)}$collisions is presented. The differential cross section is calculated over a large range of energies ($27 \leqslant \sqrt{ } \leqslant \leqslant 800$ GeV) as a function of the dilepton mass M as well as the dilepton transverse momentum Q_{T} and the Feynman variable x_{F} No kinematical approximations (such as the equivalent photon approximation) are made For $Q_{\mathrm{T}} \approx 0$ the two-photon mechanism represents an important fraction of the $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ cross section already at ISR energies, whereas at ISABELLE energies it dramatically dominates in the interval $0 \leqslant Q_{\tau} \leqq 1 \mathrm{GeV}$. At ISR energies these conclusions follow from a direct companson of the two-photon contribution with $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ data For the ISABELLE energy range the expected $O\left(\alpha_{s}\right)$ QCD contribution to $p p \rightarrow \ell^{+} \ell^{-} X$, corrected for soft gluon radiation to all orders (in leading biloganthmic approximation), was taken as a reference At larger Q_{T} and ISR energies the $\gamma \gamma$ contribution is negligible, whereas at $\gamma s=800$ $\mathrm{GeV}_{\gamma \gamma} / \mathrm{QCD} \simeq 10-20 \%$ almost everywhere Furthermore, two-photon candidate events from the ISR are shown to be in reasonable agreement with theory A decomposition of the $\gamma \gamma$ cross section into contributions from both proton vertices being elastic, inelastic and of mixed configuration is given The results provide important clues for a future isolation of the two-photon mechansm

1. Introduction

There is increasing theoretical and experimental actıvity in studying partıcle production from photon-photon annihilation. Both, the purely electromagnetic subprocess $\gamma \gamma \rightarrow \ell^{+} \ell^{-}$and the subprocess $\gamma \gamma \rightarrow$ hadrons, including $\gamma \gamma \rightarrow \mathrm{q}$-jet and $\overline{\mathrm{q}}-\mathrm{e}$ et at large transverse momentum, have recently been identified in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions for the first time [1]. Moreover, first qualitative evidence for two-photon events of the type

$$
\mathrm{pp} \rightarrow \underset{\longleftrightarrow \mu^{+} \mu^{-}}{\gamma \gamma X}
$$

has recently been reported [2] from the ISR.

[^0]In this paper we shall study in detail the two-photon contribution, $\gamma \gamma \rightarrow \ell^{+} \ell^{-}$, in
$\stackrel{(-)}{\mathrm{p}}$ collisions. More specifically, we calculate the two-photon contribution to
$\stackrel{(-)}{\mathrm{p}} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ over a large range of energies as a function of the dilepton mass M as well as the dilepton transverse momentum Q_{T} and the Feynman variable $x_{F}=$ $2 Q_{\mathrm{L}} / \sqrt{ }$.

Up to now, only calculations of the two-photon contribution integrated over transverse and longitudinal lepton pair momenta, i.e. $\mathrm{d} \sigma^{\gamma \gamma} / \mathrm{d} M$ (or at best estimates of $\mathrm{d}^{2} \sigma /\left.\mathrm{d} M \mathrm{~d} x_{\mathrm{F}}\right|_{x_{\mathrm{F}}=0}$) have been available [3-6]. Recently the $\mathrm{O}\left(\alpha^{4}\right)$ two-photon contribution to $\mathrm{d} \sigma / \mathrm{d} M\left(\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}\right)$ has been compared to the $\mathrm{O}\left(\alpha^{2}\right)$ Drell-Yan mechanism [5, 6]. The $\gamma \gamma$ contribution was found to increase strongly with c.m. energy and to represent a serious competition process to the Drell-Yan mechanism for sufficiently high energies, both for $\tau \equiv M^{2} / s \ll 1$ and for $\tau \gtrsim 0.25$, say.

Of course, the relative importance of the two-photon mechanism may also vary dramatically with Q_{T} (and x_{F}). Let us briefly discuss the rough expectations.

For small values of Q_{T} the two-photon subprocess is expected to show a very steep Q_{T} distribution, much steeper than the total $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ distribution. Thus it seems well possible that the $\gamma \gamma$ mechanism becomes important, if not dominant, at small Q_{T} (even for values of τ and s where its Q_{T} integrated contribution is not large).

Recently, arguments have been put forward that perturbative QCD predictions for the lepton parr Q_{T} distribution remain reliable down to small $Q_{\mathrm{T}}, \Lambda \lesssim Q_{\mathrm{T}} \ll M$, if suitable resummation techniques are used, accounting for the emission of soft gluons to all orders [7-11]. In such a framework, the peak near $Q_{\mathrm{T}} \approx 0$ is predicted to flatten dramatically (or even show a turnover) with a width proportional to $\left(M^{2} / \Lambda^{2}\right)^{031}$. Therefore, it is clearly important to investigate, whether this characteristic QCD effect is swamped by the two-photon contribution at high energies.

At large Q_{T}, one expects from dimensional analysis the same power behaviour,

$$
\begin{equation*}
s \frac{\mathrm{~d}^{3} \boldsymbol{\sigma}^{\gamma \gamma}}{\mathrm{d} \sqrt{\tau} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y} \underset{\substack{Q_{\mathrm{T}} \sqrt{\text { large }} \\ \tau, Q_{\mathrm{T}} / \sqrt{s}, Y \mathrm{fixed}}}{\sim} Q_{\mathrm{T}}^{-2} f\left(\tau, \frac{Q_{\mathrm{T}}^{2}}{s}, Y, \log s\right), \tag{1}
\end{equation*}
$$

for the two-photon contribution as for the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ QCD corrections to the Drell-Yan mechanism (involving the subprocess $q \bar{q} \rightarrow \gamma$ gluon and gluon $+q \rightarrow \gamma q$). However, whereas the $O\left(\alpha_{s}\right)$ QCD contribution [12,13] decreases for increasing energies due to logarithmic scaling violations, the two-photon cross section shows a quite dramatic increase like a power of $\log s$.

One might, therefore, well suspect that at very high energies and largısh Q_{T} the two-photon mechanism contributes again at least a sizeable fraction to the lepton-pair cross section.

At the forthcoming very high energy machınes (ISABELLE, $\overline{\mathrm{p}} \mathrm{p}$ collider,...) there will certainly be measurements of the lepton pair Q_{T} distribution, tailored to test the
predictions of perturbative QCD. Correspondingly, an important issue in this paper is an extensive comparison between the two-photon contribution and predictions of perturbative QCD for $\mathrm{pp} \rightarrow \mathfrak{l}^{+} \mathfrak{l}^{-} \mathrm{X}$ both at small and large Q_{T} and high energies $\checkmark s \leqslant 800 \mathrm{GeV}$.

In summary, the purpose of this paper is to determine the kinematical regions (in all variables $M, Q_{\mathrm{T}}, x_{\mathrm{F}}$ and $\downarrow s$, where the two-photon mechanism makes up a sizeable fraction of the differential $\mathrm{p} \stackrel{(-)}{\mathrm{p}} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ cross section. We particularly concentrate on Q_{T} distributions and energies available to the next generation of experiments.

This investigation is useful
(i) for estimating a significant two-photon background to perturbative QCD predictions;
(ii) for a future experimental isolation of the two-photon mechanısm as a process of interest in itself.

Moreover, let us mention another possibly interesting aspect of this investigation: once the calculational machinery is set up for $\gamma \gamma \rightarrow \ell^{+} \ell^{-}$, one may obtain-with minor modifications-information on signature and rates of events from the subprocesses $\gamma \gamma \rightarrow \mathrm{q}-\mathrm{jet}+\overline{\mathrm{q}}$-jet and $\gamma+$ gluon $\rightarrow \mathrm{q}-\mathrm{jet}+\overline{\mathrm{q}}$-jet in $\mathrm{p} \stackrel{(-)}{\mathrm{p}} \rightarrow 2$ jets +X .

The paper is organized as follows. Sect. 2 is devoted to the details of calculation: subsect. 2.1 contains a short summary of the general formalism for

$$
\stackrel{(-)}{\mathrm{p}} \rightarrow \underset{\mathrm{~L}_{\rightarrow}^{+} \ell^{-}}{\gamma \gamma \mathrm{X}}
$$

in subsect. 2.2 we introduce the so-called 'transverse photon' approximation; subsect. 2.3 contains the parametrizations used for the elastic and inelastic proton form factors; in subsect. 2.4 we specify the QCD prototype calculation used for compar1son, and subsect. 2.5 contains some kinematical restrictions, which our external variables have to satisfy. In sect. 3 we present and discuss our results: subsect. 3.1 contains information on the numerical calculations and various checks of the results; in subsect. 3.2 we decompose the $\gamma \gamma$ cross section into contributions from elastic and inelastic proton vertices and point out the domınant configurations in various kinematical regions. Our results for fixed values of Q_{T} and M and energies $27 \leqslant \sqrt{ } \leqslant \leqslant 800 \mathrm{GeV}$ are presented in subsect. 3.3. The $\gamma \gamma$ mechanism is compared (i) with ISR data for

$$
\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X} \text { and } \mathrm{pp} \rightarrow \underset{\longrightarrow \mu^{+} \mu^{-}}{\gamma \gamma \mathrm{X}}
$$

(ii) with our QCD reference cross section for $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ with particular emphasis on very high (ISABELLE) energies. Subsect. 3.4 contains our results for fixed $x_{\mathrm{T}}=2 Q_{\mathrm{T}} / s$ and $\tau=M^{2} / s \gtrsim 0.1$ and again a comparıson with the contribution
expected from QCD. In subsect. 3.5 we briefly discuss the characteristics of the x_{F} dependence of the $\gamma \gamma$ mechanism. We close with a summary and conclusions in sect. 4. In the appendix we list the exact expressions for the kinematical boundaries of our four integration variables.

2. Details of calculation

21 GENERAL FORMALISM

A detarled presentation of the general formalism for the two-photon mechanism in proton-proton (antiproton) collisions

$$
\begin{equation*}
\stackrel{(-)}{\mathrm{p}} \underset{\mathrm{~L}^{\gamma} \rightarrow \ell^{+} \ell^{-}}{\gamma \gamma \mathrm{X}} \tag{2}
\end{equation*}
$$

may be found in refs. [3, 4]. Here, we shall only summarize the essential steps. Our notation is displayed in fig. 1 , with proton four-momenta $p_{t}(t=1,2)$, virtual (space-like) photon four-momenta $q_{t}\left(q_{t}{ }^{2}=-Q_{t}{ }^{2}<0\right)$, lepton four-momenta k_{t}, proton mass m and lepton mass μ. Moreover, let

$$
\begin{equation*}
Q \equiv k_{1}+k_{2}=q_{1}+q_{2}=\left(Q^{0}, \boldsymbol{Q}_{\mathrm{T}}, Q_{\mathrm{L}}\right) \tag{3}
\end{equation*}
$$

be the dilepton four-momentum with

$$
\begin{equation*}
Q^{2}=M^{2} \tag{4}
\end{equation*}
$$

All kinematical variables (if not invariant) refer to the overall pp c.m. frame.

Fig 1 Kınematics of the process $\mathrm{pp} \rightarrow \gamma \gamma \mathrm{X}$

The cross section for reaction (2) may be expressed [3, 4], according to the optical theorem, in terms of the absorptive parts of the virtual forward Compton amplitude and of the $\gamma \gamma \rightarrow \ell^{+} \ell^{-} \rightarrow \gamma \gamma$ amplitude with $\ell^{+} \ell^{-}$intermedrate state (fig 2):

$$
\begin{align*}
\mathrm{d} \sigma= & \frac{2 m^{2}}{\sqrt{\lambda\left(s, m^{2}, m^{2}\right)}}\left(\frac{\alpha}{\pi}\right)^{2} \frac{1}{(2 \pi)^{2}} \frac{1}{q_{1}^{4} q_{2}^{4}} W_{\mu \nu}^{(1)}\left(-q_{1}, p_{1}\right) \\
& \times a^{\nu \nu^{\prime}, \mu \mu^{\prime}}\left(q_{1}, q_{2}\right) W_{\mu^{2} \nu^{\prime}}^{(2)}\left(-q_{2}, p_{2}\right) \mathrm{d}^{4} q_{1} \mathrm{~d}^{4} q_{2}, \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z . \tag{6}
\end{equation*}
$$

$a^{\nu \nu^{\prime}, \mu \mu^{\prime}}\left(q_{1}, q_{2}\right)$ is the absorptive part of the $\gamma \gamma \rightarrow \ell^{+} \ell^{-} \rightarrow \gamma \gamma$ amplitude, computable $[3,4]$ in QED:

$$
\begin{align*}
a^{\nu \nu^{\prime}, \mu \mu^{\prime}}\left(q_{1}, q_{2}\right)= & \sum_{\text {lepton spins }} \int \frac{\mathrm{d}^{3} k_{1}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} k_{2}}{(2 \pi)^{3}} \frac{\mu^{2}}{k_{1}^{0} k_{2}^{0}}(2 \pi)^{4} \\
& \times \delta^{4}\left(k_{1}+k_{2}-q_{1}-q_{2}\right) T^{\mu \mu^{\prime}}\left(\gamma \gamma \rightarrow \ell^{+} \ell^{-}\right) T^{\nu \nu^{\prime \prime}}\left(\gamma \gamma \rightarrow \ell^{+} \ell^{-}\right), \tag{7}
\end{align*}
$$

and $W_{\mu \nu}^{(t)}$ is the absorptive part of the forward (proton) Compton amplitude with standard decomposition into invariant structure functions W_{1} and W_{2},

$$
\begin{align*}
W_{\mu \nu}^{(i)}\left(-q_{i}, p_{t}\right)= & -W_{1}^{(t)}\left(x_{l}, Q_{t}^{2}\right)\left(g_{\mu \nu}-\frac{q_{t \mu} q_{t \nu}}{q_{l}^{2}}\right) \\
& +\frac{W_{2}^{(l)}\left(x_{i}, Q_{i}^{2}\right)}{m^{2}}\left(p_{i \mu}-\frac{q_{t \mu} q_{i} \cdot p_{t}}{q_{l}^{2}}\right)\left(p_{i v}-\frac{q_{i \nu} q_{t} \cdot p_{i}}{q_{i}^{2}}\right) \tag{8}
\end{align*}
$$

Fig 2. The optical theorem for $\mathrm{pp} \rightarrow \gamma \gamma \mathrm{X}$
involving the Bjorken scaling varıables

$$
\begin{equation*}
x_{t}=-\frac{q_{t}^{2}}{2 q_{i} \cdot p_{i}}=\frac{Q_{i}^{2}}{2 q_{i} \cdot p_{i}}, \quad i=1,2 . \tag{9}
\end{equation*}
$$

It is convenient $[3,4]$ to evaluate eq. (5) in terms of helicity amplitudes defined in the $\gamma \gamma$ c.m.s. The helicity projections of the amplitudes take the standard form in terms of photon polarization vectors $\varepsilon_{\lambda}^{\mu}(q)$:

$$
\begin{equation*}
\alpha_{\lambda_{1} \lambda_{4}, \lambda_{1} \lambda_{2}}\left(q_{1}^{2}, q_{2}^{2}, M^{2}\right)=\varepsilon_{\lambda_{3}}^{\nu^{*}}\left(q_{1}\right) \varepsilon_{\lambda_{4}}^{\prime^{\prime *}}\left(q_{2}\right) \varepsilon_{\lambda_{1}}^{\mu}\left(q_{1}\right) \varepsilon_{\lambda_{2}}^{\mu^{\prime}}\left(q_{2}\right) a_{\nu \nu^{\prime}, \mu \mu^{\prime}} \cdot\left(q_{1}, q_{2}\right) \tag{10}
\end{equation*}
$$

The helicity projections of the tensor $W_{\mu \nu}^{(t)}$ are defined analogously.
The polarization vectors fulfill the standard orthogonality and completeness relations

$$
\begin{align*}
\varepsilon_{m}^{\mu}(q) \varepsilon_{m^{\prime}}^{\nu}(q) g_{\mu \nu} & =(-1)^{m} \delta_{m m^{\prime}} \\
\sum_{m}(-1)^{m} \varepsilon_{m}^{\mu}(q) \varepsilon_{m}^{\nu}(q) & =g^{\mu \nu}-q^{\mu} q^{\nu} / q^{2} \\
q^{\nu} \varepsilon_{m}^{\mu}(q) g_{\mu \nu} & =0 \tag{11}
\end{align*}
$$

By P and T invariance there remain eight independent $\gamma \gamma$ helicity amplitudes or equivalently $\gamma \gamma$ cross sections $\sigma_{a b}$ for transverse ($\mathrm{a}, \mathrm{b}=\mathrm{T} \triangleq \lambda= \pm 1$) and scalar ($\mathrm{a}, \mathrm{b}=\mathrm{S} \triangleq \lambda=0$) photon polarization and interferences (τ_{ab}) thereof. They are given, e.g. in ref. [4]. For our case of unpolarized protons only six $\gamma \gamma$ cross sections occur. In particular, for $\left|q_{t}{ }^{2}\right| \ll Q^{2} \equiv M^{2}$ the dominant $\gamma \gamma$ cross section is [4]

$$
\begin{align*}
\sigma_{\mathrm{TT}}\left(M^{2}, q_{1}^{2}, q_{2}^{2}\right)= & \left(a_{11,11}+a_{1-1,1-1}\right) /\left(4 \sqrt{\lambda\left(M^{2}, q_{1}^{2}, q_{2}^{2}\right)}\right) \\
=\frac{4 \pi \alpha^{2}}{\lambda\left(M^{2}, q_{1}^{2}, q_{2}^{2}\right)} & {\left[\frac{1}{2}\left(M^{2}-q_{1}^{2}-q_{2}^{2}\right)\right.} \\
& \times L\left\{2+\frac{2 \mu^{2}}{x}-\left(\frac{2 \mu^{2}}{q_{1} \cdot q_{2}}\right)^{2}\right. \\
& \left.+\frac{q_{1}^{2}+q_{2}^{2}}{x}+\frac{q_{1}^{2} q_{2}^{2} M^{2}}{2 x\left(q_{1} q_{2}\right)^{2}}+\frac{3}{4}\left(\frac{q_{1}^{2} q_{2}^{2}}{x\left(q_{1} q_{2}\right)}\right)^{2}\right\} \\
& \left.-\Delta t\left\{1+\frac{\mu^{2}}{x}+\frac{q_{1}^{2}+q_{2}^{2}}{x}+\frac{q_{1}^{2} q_{2}^{2}}{4 x \mu^{2}+q_{1}^{2} q_{2}^{2}}+\frac{3}{4} \frac{q_{1}^{2} q_{2}^{2}}{x^{2}}\right\}\right] \\
= & \frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}(L), \tag{12}
\end{align*}
$$

with

$$
\begin{align*}
M^{2} x & =\left(q_{1} \cdot q_{2}\right)^{2}-q_{1}^{2} q_{2}^{2}=\frac{1}{4} \lambda\left(M^{2}, q_{1}^{2}, q_{2}^{2}\right) \tag{13}\\
\Delta t & =t_{\max }-t_{\min }=\sqrt{4 x\left(M^{2}-4 \mu^{2}\right)} \tag{14}\\
L & =\ln \frac{\mu^{2}-t_{\min }}{\mu^{2}-t_{\max }}=\ln \frac{\left(M^{2}-q_{1}^{2}-q_{2}^{2}+\Delta t\right)^{2}}{4\left(q_{1}^{2} q_{2}^{2}+4 x \mu^{2}\right)} . \tag{15}
\end{align*}
$$

The other $\gamma \gamma$ cross sections behave as [4]

$$
\begin{align*}
& \tau_{\mathrm{TT}}=\frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}\left(L \frac{q_{1}^{2} q_{2}^{2}}{M^{4}}\right), \\
& \sigma_{\mathrm{TS}}=\frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}\left(-\frac{q_{2}^{2}}{M^{2}}\right), \quad \sigma_{\mathrm{ST}}=\frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}\left(-\frac{q_{1}^{2}}{M^{2}}\right), \\
& \tau_{\mathrm{TS}}=\frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}\left(\frac{\sqrt{q_{1}^{2} q_{2}^{2}}}{M^{2}}\right), \quad \sigma_{\mathrm{SS}}=\frac{4 \pi \alpha^{2}}{M^{2}} \mathrm{O}\left(L \frac{q_{1}^{2} q_{2}^{2}}{M^{4}}\right) . \tag{16}
\end{align*}
$$

For $\left|q_{1}^{2}\right|<M^{2}$ the quantuties (16) are neghgibly small [4] in comparison with σ_{TT}, but in σ_{TT} the q_{1}^{2} dependence is essential in the large domain $M^{2} \mu^{2}<q_{1}^{2} q_{2}^{2}<M^{4}$.

As outlined in sect. 1 we are interested in the differential cross section $\mathrm{d}^{3} \sigma / \mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}{ }^{2} \mathrm{~d} Y, Y$ being the lepton-pair rapidity in the pp c.m.s., defined as

$$
\begin{equation*}
Y=\frac{1}{2} \ln \frac{Q^{0}+Q_{\mathrm{L}}}{Q^{0}-Q_{\mathrm{L}}}, \tag{17}
\end{equation*}
$$

and related to Feynman x_{F} by

$$
\begin{equation*}
x_{\mathrm{F}}=\frac{2 Q_{\mathrm{L}}}{\sqrt{ } s}=\frac{2 \sqrt{M^{2}+Q_{\mathrm{T}}^{2}}}{\sqrt{s}} \sinh Y \tag{18}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
Q^{0}=q_{1}^{0}+q_{2}^{0}=\sqrt{M^{2}+Q_{\mathrm{T}}^{2}} \cosh Y \tag{19}
\end{equation*}
$$

A straightforward calculation leads to the jacobian relation:

$$
\begin{align*}
\frac{\mathrm{d}^{4} q_{1} \mathrm{~d}^{4} q_{2}}{\left(q_{1}^{2}\right)^{2}\left(q_{2}^{2}\right)^{2}}= & \frac{s}{4 \lambda\left(s, m^{2}, m^{2}\right)} \frac{2 \pi}{4 \sqrt{-\lambda\left(Q_{\mathrm{T}}^{2},\left|\boldsymbol{q}_{1 \mathrm{~T}}\right|^{2},\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|^{2}\right)}} \\
& \times \mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y \frac{\mathrm{~d} x_{1}}{x_{1}^{2}} \frac{\mathrm{~d} x_{2}}{x_{2}^{2}} \frac{\mathrm{~d} Q_{1}^{2}}{Q_{1}^{2}} \frac{\mathrm{~d} Q_{2}^{2}}{Q_{2}^{2}}, \tag{20}
\end{align*}
$$

where one trivial azimuthal integration has already been performed. The Bjorken variables are defined in (9) and $-q_{t}^{2}=Q_{t}^{2}$ Obviously, four integratıons have to be performed in eq. (5) in order to calculate $\mathrm{d}^{3} \sigma / \mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y$. Let us remark that the $O(2,1)$ variables used in ref. [3] for a calculation of $\mathrm{d} \sigma / \mathrm{d} M^{2}$ are not so advantageous here.

The kınematical boundaries for the four integration variables x_{i} and $Q_{i}^{2}, l=1,2$, are obtained as follows.

First, the range of the integration variable Q_{2}^{2} as a function of Q_{1}^{2}, x_{1} and x_{2} is restricted from

$$
\begin{align*}
-\lambda\left(Q_{\mathrm{T}}^{2},\left|\boldsymbol{q}_{\mathrm{IT}}\right|^{2},\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|^{2}\right) \equiv & \left(Q_{\mathrm{T}}^{2}-\left(\left|\boldsymbol{q}_{\mathrm{IT}}\right|-\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|\right)^{2}\right) \\
& \times\left(-Q_{\mathrm{T}}^{2}+\left(\left|\boldsymbol{q}_{\mathrm{IT}}\right|+\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|\right)^{2}\right) \geqslant 0 \tag{21}
\end{align*}
$$

in order to keep $\sqrt{-\lambda}$ real in eq. (20). The r.h.s. of eq. (21) depends on Q_{2}^{2} quadratically (see appendıx). Thus, $Q_{2}^{2} \max _{\max }\left(Q_{1}^{2}, x_{1}, x_{2}\right)$ is obtamed as solution of the equation $\lambda=0$ in the form

$$
\begin{equation*}
Q_{2}^{2} \max _{\min }=\frac{x_{2}}{2 a}\left(-b \pm \sqrt{b^{2}-4 a c}\right) \tag{22}
\end{equation*}
$$

with a, b and c given in the appendix.
The range of the integration variable Q_{1}^{2} as a function of x_{1} and x_{2} is then restricted by the condition

$$
\begin{equation*}
b^{2}-4 a c \geqslant 0 \tag{23}
\end{equation*}
$$

Thus $Q_{1}^{2} \max _{\min }\left(x_{1}, x_{2}\right)$ is obtained as solution of the equation $b^{2}-4 a c=0$ in the form

$$
\begin{equation*}
Q_{1}^{2} \max _{\min }=\frac{x_{1}}{2 A}\left(-B \mp \sqrt{B^{2}-4 A C}\right) \tag{24}
\end{equation*}
$$

with A, B and C given in the appendix.
Similarly $x_{1, \text { man }}\left(x_{2}\right)$ is determined from the roots of the limiting equation $B^{2}-$ $4 A C=0$ (see appendix) and

$$
x_{1, \max }=1
$$

Finally

$$
\begin{equation*}
x_{2, \min }=x_{1, \min }\left(Y \rightarrow-Y, x_{2}=1\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2, \max }=1 \tag{26}
\end{equation*}
$$

22 THE TRANSVERSE APPROXIMATION

Usually, in two-photon physics, the so-called equivalent photon approximation (EPA) is applied [4, 5], effecting great simplification. The essence of the EPA consists of
(i) treating the two photons on-shell $\left(q_{i}^{2} \simeq 0\right)$;
(ii) retaining only transverse photon polarization.

As a result of (i) and (ii) the cross section factorizes into a product of a $\gamma \gamma$ cross section and "flux factors" from the equivalent photon spectra produced by the colliding particles.

Unfortunately, approxımation (1) is not suitable for our purposes. Since we are interested in a kinematical region where both

$$
\left(q_{1}+q_{2}\right)^{2}=Q^{2}=M^{2}
$$

and

$$
\begin{equation*}
\left(\boldsymbol{q}_{\mathrm{IT}}+\boldsymbol{q}_{2 \mathrm{~T}}\right)^{2}=Q_{\mathrm{T}}^{2} \tag{27}
\end{equation*}
$$

are large, we must certainly go beyond (i) of the EPA [cf. also appendix, eqs. (A.8, A.12)].

In view of eqs. (16) condition (ii) of the EPA also becomes doubtful for large Q_{T}. In principle one ought to take into account all $\gamma \gamma$ cross sections, to treat the q_{i}^{2} dependences in eqs. (12), (16) exactly and to perform the q_{t}^{2} integrations. However, in order to keep computing efforts within reasonable limits, in this investigation we have taken into account the transverse $\gamma \gamma$ cross section $\sigma_{\text {TT }}$ only. Because of the numerical smallness [4] of the neglected cross sections relative to σ_{TT} for $\left|q_{1}^{2}\right| / M^{2} \lesssim$ 1 , our results should be quite accurate for not too large $Q_{\mathrm{T}}^{2} / M^{2}$. At very large values of Q_{T} they should at least represent an order of magnitude estimate in the sense of a lower bound for the $\gamma \gamma$ contribution.

The important point is, that we calculate $\sigma_{T T}$ exactly [eq. (12)], i.e. we retan the full q_{1}^{2} dependences and perform the q_{1}^{2} integrations explicitly.

Moreover, let us point out an important technical detall: one has to be very careful when making approximations in the expressions for the integration limits (see appendix). For large Q_{T} significant contributions come from close to the kinematical boundaries of the integration variables. Even neglecting nucleon mass effects in the integration limits may lead to negative cross sections. The present calculation has been performed with the exact expressions for the integration limuts, given in the appendix.

With the transverse approximation specified above and the jacobian relation (20), the cross section (5) takes the following form:
with

$$
\begin{aligned}
W_{++}^{(1)}= & 2 m W_{1}\left(x_{1}, Q_{1}^{2}\right)+\frac{\nu W_{2}\left(x_{1}, Q_{1}^{2}\right)}{x_{1}} \\
& \times\left[\frac{2}{\lambda\left(M^{2},-Q_{1}^{2},-Q_{2}^{2}\right)}\left\{\left(s x_{1} \xi_{1}+Q_{1}^{2}\right)\left(s x_{1} \xi_{1}-M^{2}\right)-s x_{1} \xi_{1} Q_{2}^{2}\right\}-\frac{2 m^{2} x_{1}^{2}}{Q_{1}^{2}}\right]
\end{aligned}
$$

$$
\begin{equation*}
W_{++}^{(2)}=W_{++}^{(1)}\left(x_{1} \leftrightarrow x_{2}, Q_{1}^{2} \leftrightarrow Q_{2}^{2}, \xi_{1} \leftrightarrow \xi_{2}\right) \tag{29}
\end{equation*}
$$

where σ_{TT} is given in eq. (12), the integration limits in the appendix, and

$$
\begin{align*}
& x_{\mathrm{T}}=\frac{2 Q_{\mathrm{T}}}{\sqrt{s}}, \quad \tau=\frac{M^{2}}{s}, \quad \bar{x}_{\mathrm{T}}=\sqrt{4 \tau+x_{\mathrm{T}}^{2}}, \tag{30}\\
& \xi_{2}=\frac{1}{2} \bar{x}_{\mathrm{T}}\left(\cosh Y \mp \sqrt{\frac{s-4 m^{2}}{s}} \sinh Y\right), \tag{31}\\
& u_{2}=x_{2}^{1-\frac{1}{2}} \bar{x}_{\mathrm{T}}\left(\cosh Y \pm \sqrt{\frac{s}{s-4 m^{2}}} \sinh Y\right) . \tag{32}
\end{align*}
$$

Moreover, in eq. (28)

$$
\begin{align*}
& \sqrt{-\frac{\left(u_{2}^{2}+\left[m^{2} /\left(s-4 m^{2}\right)\right] x_{\mathrm{T}}^{2}\right)}{x_{2}^{2}}\left(Q_{2}^{2}-Q_{2, \min }^{2}\right)\left(Q_{2}^{2}-Q_{2, \max }^{2}\right)} \\
& \quad=\sqrt{-\lambda\left(Q_{\mathrm{T}}^{2},\left|\boldsymbol{q}_{1 \mathrm{~T}}\right|^{2},\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|^{2}\right)} . \tag{33}
\end{align*}
$$

$$
\begin{align*}
& \frac{\mathrm{d}^{3} \sigma^{\text {transv }}}{\mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y}\left(\mathrm{p} \stackrel{(-)}{\mathrm{p}} \underset{\rightarrow \ell^{+}}{\boldsymbol{\gamma} \gamma \mathrm{X}} \ell^{-}\right) \\
& =\left(\frac{\alpha^{2}}{\pi}\right)^{2} \frac{1}{s^{2}} \int_{x_{2, \min }}^{1} \frac{\mathrm{~d} x_{2}}{x_{2}^{2}} \int_{x_{1, \min }}^{1} \frac{\mathrm{~d} x_{1}}{x_{1}^{2}} \int_{Q_{1, \min }^{2}}^{Q_{1, \text { max }}^{2}} \frac{\mathrm{~d} Q_{1}^{2}}{Q_{1}^{2}} \int_{Q_{2, \text { min }}^{2}}^{Q_{2, \max }^{2}} \frac{\mathrm{~d} Q_{2}^{2}}{Q_{2}^{2}} \\
& \times \frac{x_{2}}{\sqrt{\left(u_{2}^{2}+\left[m^{2} /\left(s-4 m^{2}\right)\right] x_{\mathrm{T}}^{2}\right)\left(Q_{2}^{2}-Q_{2, \min }^{2}\right)\left(Q_{2, \max }^{2}-Q_{2}^{2}\right)}} \\
& \times W_{++}^{(1)} \frac{\sigma_{\mathrm{TT}} \sqrt{\lambda\left(M^{2},-Q_{1}^{2},-Q_{2}^{2}\right)}}{4 \pi \alpha^{2}} W_{++}^{(2)}, \tag{28}
\end{align*}
$$

We recall that eq. (28) does not contain any approximations so far apart from the "transverse" one.

23 STRUCTURE FUNCTIONS

The proton structure functions $2 m W_{1}$ and νW_{2} represent the second building block besides the $\gamma \gamma$ helicity amplitudes, entering the

$$
\underset{L}{\mathrm{pp}} \rightarrow \ell^{\gamma} \ell^{-}
$$

cross section.
The elastic contribution reads [3, 4]

$$
\begin{align*}
2 m W_{1}\left(x, Q^{2}\right) & \Rightarrow \delta(x-1) G_{\mathrm{M}}^{2}\left(Q^{2}\right) \\
\nu W_{2}\left(x, Q^{2}\right) & \Rightarrow \delta(x-1)\left(G_{\mathbf{E}}^{2}\left(Q^{2}\right)+\frac{Q^{2}}{4 m^{2}} G_{\mathrm{M}}^{2}\left(Q^{2}\right)\right) /\left(1+\frac{Q^{2}}{4 m^{2}}\right) \tag{34}
\end{align*}
$$

where G_{E} and G_{M} are the usual electric and magnetic proton form factors and have the normalization $G_{\mathrm{E}}(0)=1$ and $G_{\mathrm{M}}(0)=\mu_{\mathrm{p}}$, with proton magnetic moment $\mu_{\mathrm{p}}=$ 2.79. In our calculations we use the standard dipole fit

$$
\begin{equation*}
G_{\mathrm{E}}\left(Q^{2}\right)=\frac{G_{\mathrm{M}}\left(Q^{2}\right)}{\mu_{\mathrm{p}}}=\left(1+\frac{Q^{2}}{m_{0}^{2}}\right)^{-2}, \quad m_{0}^{2}=0.71 \mathrm{GeV}^{2} \tag{35}
\end{equation*}
$$

For the inelastic structure functions $2 m W_{1}$ and νW_{2}, one may use, in principle, the experimental data directly as functions of x_{t} and Q_{i}^{2}. For simplicity, however, we adopt for νW_{2} the parametrization of Bloom and Gilman [14] in terms of the variable

$$
\begin{align*}
\omega_{t}^{\prime} & =\frac{1}{x_{t}}+\frac{m^{2}}{Q_{t}^{2}}, \\
\nu W_{2} & =0.557\left(1-\frac{1}{\omega^{\prime}}\right)^{3}+2.1978\left(1-\frac{1}{\omega^{\prime}}\right)^{4}-2.5954\left(1-\frac{1}{\omega^{\prime}}\right)^{5}, \tag{36}
\end{align*}
$$

together with a more recent fit by Fox [15] for

$$
\begin{equation*}
R=\frac{\nu W_{2}}{2 m x W_{1}}\left(1+\frac{4 m^{2} x^{2}}{Q^{2}}\right)-1=\frac{0.861 Q^{2}}{\left(Q^{2}+0.988\right)^{2}} \quad\left[Q^{2} \text { in } \mathrm{GeV}^{2}\right] \tag{37}
\end{equation*}
$$

This parametrization obviously ignores the resonance fluctuations present in the
data. However, since only integrals over the structure functions of the form

$$
\int \frac{\mathrm{d} Q^{2}}{Q^{2}} \int \frac{\mathrm{~d} x}{x^{2}}\left\{\begin{array}{c}
2 m W_{1}\left(x, Q^{2}\right) \tag{38}\\
\nu W_{2}\left(x, Q^{2}\right)
\end{array}\right\}
$$

appear in eq. (28), one may qualitatively invoke duality arguments [16] to argue that these fluctuations probably will wash out in the integrals and that parametrization (36), (37) may thus be used right down to the melastic threshold to good approximation.

The inelastic threshold condition,

$$
\begin{equation*}
\left(p_{1}-q_{1}\right)^{2} \geqslant\left(m+m_{\pi^{0}}\right)^{2} \tag{39}
\end{equation*}
$$

gives the constraint (for $x_{1} \neq 1$)

$$
\begin{equation*}
Q_{t}^{2} \geqslant \frac{x_{i}}{1-x_{t}}\left[\left(m+m_{\pi^{0}}\right)^{2}-m^{2}\right] \simeq 0.27 \mathrm{GeV}^{2} \frac{x_{t}}{1-x_{t}} \tag{40}
\end{equation*}
$$

which was built into our calculation.
In fact, one easily finds that the minimal Q_{t}^{2} for inelastic scattering in eq. (40) increases ${ }^{\star}$ with Q_{T}^{2} and hence, for large enough Q_{T}^{2}, the resonance fluctuations should not matter anyway

For small Q_{T} and M we follow ref. [3] and multiply νW_{2} in eq. (36) with a correction factor

$$
\begin{equation*}
\nu W_{2}^{(t)} \rightarrow \nu W_{2}^{(t)} Q_{t}^{2} /\left(Q_{t}^{2}+0.15 \mathrm{GeV}^{2}\right) \tag{41}
\end{equation*}
$$

in order to restore the gauge-invariance condition

$$
\begin{equation*}
\left.W_{2}^{(i)}\right|_{Q_{i}^{2}=0}=0, \tag{42}
\end{equation*}
$$

and to match on to the observed real photoabsorption cross section $\sigma_{\gamma \mathrm{p}}$ at $Q_{t}^{2}=0$.

24 QCD PROTOTYPE FOR $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$

In order to assess the relative importance of the two-photon contribution in varıous regions of phase space, a sutable reference cross section is needed. Experımental data on $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ from FNAL are, at present, limited [17-19] to $s \leqq 27.3 \mathrm{GeV}, Q_{\mathrm{T}} \lesssim 3.5 \mathrm{GeV}$ and $M \leqq 12 \mathrm{GeV}$ and those from the ISR to $\downarrow s 63$ $\mathrm{GeV}, Q_{\mathrm{T}} \lesssim 6 \mathrm{GeV}$ and $M \lesssim 20 \mathrm{GeV}$. At small Q_{T} and ISR energies a direct

[^1]comparison of our differential two-photon distributions with representative ISR data is performed in subsect. 3.3.

For the discussion of our two-photon results in other kinematical regions-in particular at ISABELLE energies - we take simple, perturbative QCD estimates for $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ as a reference.

For $Q_{\mathrm{T}}=\mathrm{O}(M) \gg \Lambda$, the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ corrections to the Drell-Yan mechanısm, i.e. the subprocesses

$$
\begin{equation*}
\mathrm{q} \overline{\mathrm{q}} \rightarrow \underset{\longrightarrow \ell^{+} \mathfrak{\ell}^{-}}{\gamma^{*}} \quad \text { gluon, and gluon }+\mathrm{q} \rightarrow \underset{\rightarrow \ell^{+} \ell^{-}}{\gamma^{*}}+\mathrm{q}, \tag{43}
\end{equation*}
$$

may be expected to represent the domınant QCD contributions to the dilepton Q_{T} distribution. The corresponding cross sections $\mathrm{d} \sigma^{\mathrm{QCD}} / \mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y$ have been calculated by various authors [12,13] and qualitatively agree with existing exper1mental data for a reasonable value of the running coupling constant [12]

$$
\begin{equation*}
\left\langle\alpha_{s}\right\rangle \simeq 0.3 \tag{44}
\end{equation*}
$$

over the mass range $5 \leqslant M \leqslant 10 \mathrm{GeV}$.
The calculation by Kajantie and Raitio [12] represents a simple prototype and we have chosen to take it as a QCD reference for our $\gamma \gamma$ results in the region $Q_{\mathrm{T}}=\mathrm{O}(M) \gg \Lambda$. The $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ QCD expressions to be used read as follows [12]:

$$
\begin{align*}
s \frac{\mathrm{~d}^{3} \sigma\left(\mathrm{q} \overline{\mathrm{q}} \rightarrow \gamma^{*} \mathrm{~g}\right)}{\mathrm{d} \sqrt{\tau} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y}= & \frac{8}{3} \frac{\pi \alpha^{2}}{(\sqrt{\tau})^{3}} \frac{\alpha_{s}(s \tau)}{2 \pi} \frac{4}{9} \frac{\tau}{Q_{\mathrm{T}}^{2}} \\
& \times \int_{x_{1, \mathrm{~min}}}^{1} \frac{\mathrm{~d} x_{1}}{x_{1} x_{2}} \sum_{i=1}^{f} e_{l}^{2}\left[F_{l}\left(x_{1}\right) \bar{F}_{l}\left(x_{2}\right)+(1 \leftrightarrow 2)\right] \\
& \times \frac{1+\tau^{2} /\left(x_{1} x_{2}\right)^{2}-x_{\mathrm{T}}^{2} /\left(2 x_{1} x_{2}\right)}{x_{1}-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{Y}} \tag{45}
\end{align*}
$$

and

$$
\begin{align*}
s \frac{\mathrm{~d}^{3} \sigma\left(\mathrm{qg} \rightarrow \mathrm{q} \gamma^{*}\right)}{\mathrm{d} \sqrt{\tau} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y}= & \frac{8}{3} \frac{\pi \alpha^{2}}{(\sqrt{\tau})^{3}} \frac{\alpha_{\mathrm{s}}(s \tau)}{2 \pi} \frac{1}{3} \frac{\tau}{Q_{\mathrm{T}}^{2}} \\
& \times \int_{x_{1, \min }}^{1} \frac{\mathrm{~d} x_{1}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}}{\left(x_{1}-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{Y}\right)\left(x_{1} x_{2}\right)^{3}} \\
& \times \sum_{t=1}^{f} e_{t}^{2}\left[F_{t}^{(1)}\left(x_{1}\right) G^{(2)}\left(x_{2}\right) \times \frac{\left(x_{1} x_{2}-\tau\right)^{2}+\frac{1}{4}\left(x_{1} x_{2}+\tau+V\right)^{2}}{x_{1} x_{2}-\tau+V}\right. \\
& +(1 \leftrightarrow 2, V \leftrightarrow-V)], \tag{46}
\end{align*}
$$

where

$$
\begin{align*}
& x_{2}=\frac{\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{-Y_{x_{1}}-\tau}}{x_{1}-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{Y}}, \quad x_{1, \min }=\frac{\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{\gamma}-\tau}{1-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{-Y}}, \\
& V=\left\{\left(x_{1} x_{2}-\frac{1}{4}\left(x_{\mathrm{T}}+\bar{x}_{\mathrm{T}}\right)^{2}\right)\left(x_{1} x_{2}-\frac{1}{4}\left(x_{\mathrm{T}}-\bar{x}_{\mathrm{T}}\right)^{2}\right)\right\}^{1 / 2} \tag{47}
\end{align*}
$$

Moreover, simple quark $\left(F_{1}\right)$ and gluon (G) distributions have been used in ref. [12]:

$$
\begin{array}{ll}
\text { valence: } & V(x)=\frac{35}{32} \sqrt{x}(1-x)^{3}, \\
\text { sea: } & S(x)=0.15(1-x)^{7}, \\
\text { glue: } & G(x)=\left\langle x_{g}\right\rangle(g+1)(1-x)^{g}, \quad g=7, \tag{48}\\
& \quad\left\langle x_{g}\right\rangle=0.56 .
\end{array}
$$

The exponents 3 and 7 in eq. (48) follow from counting rules, $V(x)$ is normalized to 1 when integrated over $\mathrm{d} x / x$, the factor 0.15 in $S(x)$ was determined from neutrino data and $\left\langle x_{g}\right\rangle=0.56$ from energy-momentum sum rules. It should be kept in mind, however, that the gluon distribution $G(x)$, in particular, is not very well known and hence introduces considerable uncertainties for large τ.

Instead of working with a fixed value of $\left\langle\alpha_{s}\right\rangle=0.3$, as is done in ref. [12], we have taken instead

$$
\begin{equation*}
\alpha_{\mathrm{s}}=\alpha_{\mathrm{s}}(s \tau) \equiv \alpha_{s}\left(M^{2}\right) \simeq \frac{4 \pi}{\beta_{0} \ln \left(M^{2} / \Lambda^{2}\right)} \tag{49}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha_{\mathrm{s}}\left(M^{2}=1 \mathrm{GeV}^{2}\right)=1, \quad \text { i.e. } \Lambda \simeq 0.5 \mathrm{GeV} \tag{50}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\alpha_{\mathrm{s}}\left(5.5 \mathrm{GeV}^{2}\right)=0.3 \tag{51}
\end{equation*}
$$

As already pointed out in ref. 12 , the argument of α_{s} is, of course, ambiguous.
We recall that the above $O\left(\alpha_{\mathrm{s}}\right)$ QCD expression is formally valid only for $Q_{\mathrm{T}} \sim M \gg \Lambda$. It would clearly be desirable also to have a reliable reference cross section in the region $Q_{\mathrm{T}} \ll M, \downarrow$ large, since there the most sizeable manifestation of the two-photon mechanism is expected.

Starting with the work of DDT [7], arguments have been put forward that this region of Q_{T} may still remain accessible to (suitably resummed) perturbative QCD , provided that

$$
\begin{equation*}
\Lambda \leqq Q_{\mathrm{T}} \ll M \quad \text { and } \sqrt{ } s \text { large } \tag{52}
\end{equation*}
$$

In this region (52) the leading single logarithmic approximation [$\left.\sim \alpha_{\mathrm{s}}^{n} \ln ^{n} M^{2}\right]$ breaks down, since in addition large logarithms $\sim \ln \left(M^{2} / Q_{\mathrm{T}}^{2}\right)$ appear.

However, several analyses [8-11] have recently suggested that, analogously to QED, the sum to all orders of both real and virtual gluon emission simply exponentrates to leading double-logarithmic approximation. Qualitatively, in Q_{T} space, this results [8-11] in a "quark form factor"

$$
\begin{align*}
F_{\mathrm{q}}\left(M^{2}, Q_{\mathrm{T}}^{2}\right) & \simeq \exp \left\{-\int_{Q \frac{\mathrm{~T}}{2}}^{M^{2}} \mathrm{~d} k_{\mathrm{T}}^{2}\left[\frac{\mathrm{~d}^{3} \sigma}{\left.\mathrm{~d} k_{\mathrm{T}}^{2} \mathrm{~d} M \mathrm{~d} Y\right|_{Y=0}} / \frac{\mathrm{d}^{2} \sigma}{\left.\mathrm{~d} M \mathrm{~d} Y\right|_{Y=0}}\right]^{\left(\text {order } \alpha_{,}\right)}\right\} \tag{53}\\
& \simeq \exp \left\{-\frac{16}{25} \ln \frac{M^{2}}{\Lambda^{2}} \ln \left(\frac{\ln \left(M^{2} / \Lambda^{2}\right)}{\ln \left(Q_{\mathrm{T}}^{2} / \Lambda^{2}\right)}\right)+\frac{16}{25} \ln \frac{M^{2}}{Q_{\mathrm{T}}^{2}}\right\} \tag{54}
\end{align*}
$$

producing a strong damping [if not a turnover, as implied in approxımation (54)] of the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right) Q_{\mathrm{T}}$ distribution [8],

$$
\begin{equation*}
M^{3} \frac{\mathrm{~d}^{3} \sigma}{\left.\mathrm{~d} M \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y\right|_{Y=0}} \simeq M^{3} \frac{\mathrm{~d}^{2} \sigma(\tau)}{\left.\mathrm{d} M \mathrm{~d} Y\right|_{Y=0}} \frac{\mathrm{~d}}{\mathrm{~d} Q_{\mathrm{T}}^{2}} F_{\mathrm{q}}\left(M^{2}, Q_{\mathrm{T}}^{2}\right) \tag{55}
\end{equation*}
$$

at small $Q_{T} \gtrsim \Lambda$.
The exponentiation of the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ result presents the advantage of being automatically in agreement with the lowest-order calculation when $Q_{\mathrm{T}} \sim M$. Moreover, a characteristic prediction is that the peak near $Q_{T} \simeq 0$ flattens [8] with a width proportional to $\left(M^{2} / \Lambda^{2}\right)^{031}$.

As a reference for our two-photon results in the region $\Lambda \leqq Q_{\mathrm{T}} \ll M,{ }_{\downarrow}$ large, we take the shape of the Q_{T} distribution as given by Parisi and Petronzio [8] for ISABELLE energies and $M^{2}=120,7500 \mathrm{GeV}^{2}$. It is a somewhat refined version of eq. (55), with exponentiation applied in impact parameter space and an intrinsic parton transverse momentum $\left\langle Q_{\mathrm{T}}^{2}\right\rangle_{\text {ntr }} \simeq 0.4 \mathrm{GeV}^{2}$ accounted for (the effect of which turns out, however, to be unimportant [8] at ISABELLE energies and $Q_{\mathrm{T}} \gtrsim 0.3 \mathrm{GeV}$).

We fix in addition the absolute normalization of the unnormalized Q_{T} distributions $\mathrm{d} N /\left.\mathrm{d} M \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y\right|_{Y=0}$ given in ref. [8] as follows:

We normalize them for larger $Q_{\mathrm{T}} \gtrsim 2-4 \mathrm{GeV}$ to the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ calculation of Kajantie and Raitio [12], eqs. (45), (46), (48), since there the two shapes turn out to
agree nicely (see fig. 9). This way, the two QCD expressions used are consistent with each other. As a check for our normalization we extract the corresponding integrated cross section $M^{3} \mathrm{~d}^{2} \sigma /\left.\mathrm{d} M \mathrm{~d} Y\right|_{Y=0}$
(i) by integrating the normalized Q_{T} distribution of ref. [8] directly over Q_{T}^{2};
(i1) by fitting it to the approximate equations (54), (55) at larger Q_{T}.
Both methods agree within $<10 \%$ and give

$$
\begin{align*}
& M^{3} \frac{\mathrm{~d}^{2} \sigma \mathrm{QCD}}{\left.\mathrm{~d} M \mathrm{~d} Y\right|_{Y=0}}=\left\{\begin{array}{l}
8.4 \mathrm{nb} \cdot \mathrm{GeV}^{2} \text { for } M^{2}=120 \mathrm{GeV}^{2} \\
3.4 \mathrm{nb} \cdot \mathrm{GeV}^{2} \text { for } M^{2}=7500 \mathrm{GeV}^{2},
\end{array}\right. \\
& \text { and } \sqrt{s}=800 \mathrm{GeV}, \tag{56}
\end{align*}
$$

in qualitatıve agreement with experımental data [17-21] from FNAL and ISR for ${ }^{\tau} \tau \simeq 0.014$ and 0.11 .

25 KINEMATICAL RESTRICTIONS

In this subsection we list some kinematical restrictions, which our external variables

$$
\begin{equation*}
\tau=\frac{M^{2}}{s}, \quad x_{\mathrm{F}}=\frac{2 Q_{\mathrm{L}}}{{ }^{s}}, \quad x_{\mathrm{T}}=\frac{2 Q_{\mathrm{T}}}{\gamma^{s}} \tag{57}
\end{equation*}
$$

have to satisfy.
The fractional dilepton energy in the pp c.m.s. reads

$$
\begin{equation*}
\frac{2 Q^{0}}{\checkmark^{s}}=\left\{4 \tau+x_{\mathrm{F}}^{2}+x_{\mathrm{T}}^{2}\right\}^{1 / 2}=1+\tau-\frac{m^{\prime 2}}{s}, \tag{58}
\end{equation*}
$$

where m^{\prime} is the total mass recoiling against the lepton pair. From the threshold restriction $m^{\prime 2} \gtrsim 4 m^{2}$ we obtain from eq. (58)

$$
\begin{align*}
\left|x_{\mathrm{F}}\right| & \lesssim \sqrt{\left(1+\tau-4 m^{2} / s\right)^{2}-4 \tau-x_{\mathrm{T}}^{2}} \\
& \simeq \sqrt{(1-\tau)^{2}-x_{\mathbf{T}}^{2}} \tag{59}\\
x_{\mathrm{T}} & \lesssim 1-\tau . \tag{60}
\end{align*}
$$

Therefore, in order to minımize effects due to the kinematical boundaries when displaying our results, we shall sometimes use the reduced variables

$$
\begin{align*}
& 0 \leqslant \hat{x}_{\mathrm{F}} \equiv \frac{Q_{\mathrm{L}}}{Q_{\mathrm{L}, \max }} \simeq \frac{x_{\mathrm{F}}}{\sqrt{(1-\tau)^{2}-x_{\mathrm{T}}^{2}}} \leqslant 1 \tag{61}\\
& 0 \leqslant \hat{x}_{\mathrm{T}} \equiv \frac{Q_{\mathrm{T}}}{Q_{\mathrm{T}, \max }} \simeq \frac{x_{\mathrm{T}}}{1-\tau} \leqslant 1 \tag{62}
\end{align*}
$$

besides

$$
\begin{equation*}
0 \leqslant \tau=\frac{M^{2}}{s} \leqslant 1 \tag{63}
\end{equation*}
$$

3. Results

31 NUMERICAL EVALUATION AND CHECKS

The four integrations in eq. (28) have been performed numerically with a Gauss-type integration method. A relative accuracy of 10% was required in every integration. A Monte Carlo method has also been tried, but, surprisingly, turned out to be more time consuming than the Gauss method*. Considerable effort was spent to obtain an estimate of the results in analytical form as well. This attempt remained, however, unsuccessful, since the dominant portion of the integration region turned out to depend on the external variables in a complicated way.

We have performed, among others, the following quantitative checks with our numerical results:
(i) The differential cross section $\mathrm{d}^{3} \sigma / \mathrm{d} M \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y$ corresponding to the elastucelastic configuration at the two proton vertices

$$
\begin{equation*}
\underset{\breve{L} \ell^{+} \ell^{-}}{\mathrm{pp} \rightarrow} \rightarrow \tag{64}
\end{equation*}
$$

as well as the total two-photon contribution were integrated over Q_{T}^{2} and Y. The resulting cross sections $\mathrm{d} \sigma / \mathrm{d} M^{(\mathrm{el-el}, t o t)}$ were then compared to the accurate, existing calculations in ref. [3] for various values of s and M. The agreement turned out to be withın $\sim 5 \%$.
(ii) After integration over Q_{T}^{2} only, we have checked our two-photon cross section $\mathrm{d} \sigma /\left.\mathrm{d} M \mathrm{~d} Y\right|_{Y=0}$ against ref. [5] for $s=800 \mathrm{GeV}^{2}$ and $M^{2} / s=0.2,0.02$, and $\gamma=800$ $\mathrm{GeV}, M^{2}=120 \mathrm{GeV}^{2}$ and $M^{2}=7500 \mathrm{GeV}^{2}$ with good agreement.
(iii) The total $\gamma \gamma$ contribution must clearly be symmetric under the substitution $x_{\mathrm{F}} \leftrightarrow-x_{\mathrm{F}}$. Hence, the comparison of our numerical results at x_{F} and $-x_{\mathrm{F}}$ provides a powerful test of the accuracy of the numerical method used. This test is particularly non-trivial, since with the integration variables used the integrand is not manifestly symmetric in x_{F}.
On the one hand, we faced the computation of a cross section depending on as many as four variables, M, Q_{T}, x_{F} and $\downarrow s$. On the other hand, we had to keep computer time within reasonable limits. Therefore, we had to use rather large step sizes for our variables. In all our figures the points indicate the actually calculated values, whereas the curves are eyeball interpolations only.

[^2]
32 THE DOMINANT CONFIGURATION

The total $\gamma \gamma$ contribution is composed of a sum of terms corresponding to each of the two $\mathrm{p} \gamma \mathrm{X}$ vertices in fig. 1 being either elastic or inelastic:

$$
\begin{equation*}
\mathrm{d} \sigma\left(\mathrm{pp} \rightarrow \underset{L^{\ell^{+}} \ell^{-}}{\gamma \gamma \mathrm{X}}\right)=\mathrm{d} \sigma_{\mathrm{el}-\mathrm{el}}+\mathrm{d} \sigma_{\mathrm{el}-\text {-nel }}+\mathrm{d} \sigma_{\text {inel-el }}+\mathrm{d} \sigma_{\text {inel-nnel }} . \tag{65}
\end{equation*}
$$

In figs. 3, 4 we have displayed* the various contributions in eq. (65) separately as functions of ψ. Fig. 3 illustrates the situation for fixed (smallish) Q_{T} and fixed M, fig. 4 refers to fixed $x_{\mathrm{T}}=2 Q_{\mathrm{T}} / s$ and fixed $\tau=M^{2} / s$. At very small $Q_{\mathrm{T}} \simeq 0.1 \mathrm{GeV}$ and fixed M the double elastic configuration clearly dominates up to very high $/ s$, where the elastic-inelastic configuration takes over (figs. 3a, b). At somewhat larger Q_{T}, the situation is quite different, however (see figs. 3c, d). There it is the elastic-inelastic configuration which is generally dominant, in particular over the presently accessible energy range. For fixed x_{T} and fixed τ the elastic-elastic contribution vanishes extremely fast with increasing $\downarrow s$. Ultimately, at very high energies, the double (deep) inelastic configuration takes over (fig. 4).

The dominance of the el-el configuration for small Q_{T} and the el-inel configuration for larger Q_{T} is an interesting result of our analysis. Its qualitative interpretation is: as long as Q_{1}^{2} at a given vertex is kınematically allowed to reman small, this vertex prefers the elastic over the inelastic configuration with an almost on-shell photon. However, as soon as a Q_{\imath}^{2} is forced by kınematics (large Q_{T} !) to become large at one vertex ($Q_{t}^{2} \gtrsim m_{\rho}^{2}$), the suppression due to the elastic form factor is very much stronger than the one due to the (deep) inelastic structure function. Hence, in this case, the vertex becomes (deep) inelastic.

Our result has interestıng experımental consequences: triggering on one elastic proton vertex does not significantly reduce the rate for $\gamma \gamma \rightarrow \ell^{+} \ell^{-}$and $\gamma \gamma \rightarrow \mathrm{q}-$ jet $+\overline{\mathrm{q}}-$ jet events and thus helps to 1 dentify these subprocesses.

Furthermore, working at large $Q_{T}($ and $\tau \not \approx 0)$ automatically selects scattering of a highly virtual photon on an almost real photon target at the subprocess level:
(1) the photon at the elastic vertex (Q_{2}, say) remains almost on-shell ($Q_{2}^{2} \lesssim m_{\rho}^{2}$) since the elastic proton (dipole) form factor strongly cuts off higher Q_{2}^{2} in addition to the propagator effect $\propto 1 / Q_{2}^{4}$,
(11) the second photon $\left(Q_{1}\right)$ in turn, is pulled far off-shell,

$$
\begin{equation*}
Q_{1}^{2} \gtrsim \mathrm{O}\left(Q_{\mathrm{T}}^{2}\right) \tag{66}
\end{equation*}
$$

simply from kinematics (see appendix for $Q_{1, \text { min }}^{2}$).

[^3]

Fig 3. The (transverse) $\gamma \gamma$ contribution to $\mathrm{p} \mathrm{p} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ for different smallish values of Q_{T} and M as a function of $\sqrt{ }$ The total contribution () as well as its decomposition into the three different components corresponding to both proton vertices being elastic ($\mathbf{\Delta}$), inelastic (O) and to the sum of the mixed configurations (\times) are dısplayed

33 RESULTS AT FIXED Q_{T} AND M

This subsection contains our "realistıc" results which are (or will be in due tıme) accessible to experiment.

Let us first point out the typical features of the two-photon Q_{T} distributions for fixed M. In fig. 5 we display $\mathrm{d}^{3} \sigma /\left.\mathrm{d} M^{2} \mathrm{dQ}_{\mathrm{T}}^{2} \mathrm{~d} Y\right|_{Y=0}$ for $0.1 \leqslant Q_{\mathrm{T}} \leqslant 7 \mathrm{GeV}$ at fixed $M=3 \mathrm{GeV}$ and for four values of the energy from $\downarrow=27$ to 800 GeV . A

Fig 4 The (transverse) $\gamma \gamma$ contribution to $\mathrm{p} \mathrm{p}^{(-)} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ at fixed small $\hat{x}_{\mathrm{T}}=x_{\mathrm{T}} /(1-\tau)=004$ and two values of τ as a function of $\sqrt[s]{ }$ The decomposition is as in fig 3 .

Fig 5 The Q_{T} distribution of the (transverse) $\gamma \gamma$ contribution to $\mathrm{p}{ }^{(-)} \mathrm{p} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ for $M=3 \mathrm{GeV}$ and four energies ($273 \leqslant \sqrt{ } \leqslant \leqslant 800 \mathrm{GeV}$) at small and intermediate values of Q_{T}
conspicuous feature is the very steep forward peak, coming mainly from the elastic-elastic proton vertex configuration (cf. figs. $3 \mathrm{a}, \mathrm{b}$). At values of $Q_{\mathrm{T}} \gtrsim 2 \mathrm{GeV}$ the Q_{T} distribution flattens out considerably and becomes strongly energy dependent. Whereas at $Q_{T}=0.1 \mathrm{GeV}$ the cross section increases only by a factor ~ 40 over the energy range considered, at $Q_{\mathrm{T}}=7 \mathrm{GeV}$ the increase amounts to four orders of magnitude. This effect becomes even more dramatic at higher masses M. Fig. 6 shows an increase by almost six orders of magnitude for $M=8.5 \mathrm{GeV}$ and $Q_{\mathrm{T}}=7 \mathrm{GeV}$.

Since we have four variables, $Q_{\mathrm{T}}, M, x_{\mathrm{F}}$ and γs, at our disposal, we cannot possibly present results covering the whole kinematical range.

First generation experiments are obviously most likely to give results at smallish Q_{T} and M. Therefore, we present first of all in tables la-f the $\gamma \gamma$ contribution ${ }^{\star}$ to $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ and $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ at the ISR energy $\downarrow s=63 \mathrm{GeV}$, for five values of $Q_{\mathrm{T}}\left(0.05 \leqslant Q_{\mathrm{T}} \leqslant 1.65 \mathrm{GeV}\right)$, three values of $M(M=4,6,8 \mathrm{GeV})$ and six values of $\hat{x}_{\mathrm{F}}\left(0 \leqslant \hat{x}_{\mathrm{F}} \leqslant 0.8\right)$. These values have been chosen such that integrations over any of the three variables, Q_{T}, M, and \hat{x}_{F}, can be performed with reasonable accuracy. In view of experiments at ISABELLE in the near future, we present a simular table, table 2, at $\downarrow s=800 \mathrm{GeV}$, with values of Q_{T} between 0.05 and 52 GeV , values of M ranging from 4 to 100 GeV and $x_{\mathrm{F}}=0$; the mass range has been chosen sufficiently large in view of experiments designed to measure in the mass region of the weak gauge boson. Notice also, that the two-photon contribution is equal for pp and $\overline{\mathrm{p}} \mathrm{p}$ collisions.

Let us now confront these $\gamma \gamma$ results with existing ISR data at $\psi s=63 \mathrm{GeV}$ and with QCD estimates of the cross section at higher energies, in particular at $\downarrow s=800$ GeV .

First of all, we compare the calculated $\gamma \gamma$ contribution to recent two-photon candidate events [2] in $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$. To this end we integrate the theoretical $\gamma \gamma$ contribution at $\downarrow=62 \mathrm{GeV}$ and $x_{\mathrm{F}}=0.2$ over M from 2.6 to 6.85 GeV and compare the resultıng $\mathrm{d} \sigma^{\gamma \gamma} /\left.\mathrm{d} Q_{\mathrm{T}} \mathrm{d} Y\right|_{x_{\mathrm{F}}=02}$ to the preliminary data ${ }^{\star \star}$ of ref. [2] in fig. 7. The qualitatıve agreement is quite encouraging, even though the data seem to be shifted by $200-300 \mathrm{MeV}$ towards larger Q_{T} in comparison with the theoretical curve. One should, however, keep in mind that the experımental distribution may still have to be corrected [22] for effects of Q_{T} resolution, which may well result in an horizontal shift of the histogram. The separate theoretical contributions from the elastic-elastic and elastıc-inelastic configurations of the $\mathrm{p} \gamma \mathrm{X}$ vertices are also displayed in fıg. 7. Notice that the elastic-inelastic configuration already dominates at $Q_{\mathrm{T}} \simeq 1 \mathrm{GeV}$.

[^4]

Fig. 6 The quantity $Q_{T}^{4} \mathrm{~d}^{3} \sigma /\left.\mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y\right|_{Y=0}\left(\mathrm{p}^{(-)} \mathrm{p}^{\rightarrow}(\gamma \gamma)_{\mathrm{T}} \mathrm{X}\right) \quad$ versus Q_{T} for $M=3$ and 85 GeV $\longrightarrow \mu^{+} \mu$
and four energes ($273 \leqslant \sqrt[s]{ } \leqslant 800 \mathrm{GeV}$) This figure illustrates the dramatic energy dependence at larger Q_{T}

Next we come back to our qualitative argument of sect. 1, which leads us to expect a considerable two-photon contribution at very small values of Q_{T}. Figs. 8 and 9 show that this is indeed the case and that the effect becomes increasingly important for increasing energy. In fig. 8 ISR data [19] for $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$-integrated over x_{F} and two mass intervals-are shown. With the help of table 1 the corresponding theoretical $\gamma \gamma$ contributions are obtained. For $Q_{\mathrm{T}} \simeq 0$ and smallish masses $4 \leqslant M \leqslant$ 4.5 GeV the $\gamma \gamma$ contribution makes up as much as 70% of the $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ cross section. However, the $\gamma \gamma Q_{\mathrm{T}}$ distribution is so steep that its contribution, averaged over the first Q_{T} bin, $0 \leqslant Q_{\mathrm{T}} \leqslant 0.5 \mathrm{GeV}$, is down to 30% and integrated over all Q_{T} down to a few percent. For somewhat higher masses, $\langle M\rangle \simeq 7 \mathrm{GeV}$, the effect is less important ($\sim 25 \%$ at $Q_{\mathrm{T}} \simeq 0$).

Whereas at ISR energies the two-photon dominance is restricted to very small values of Q_{T}, at ISABELLE energies it is more dramatic and extends over the

Table 1
Two-photon cross sections $\mathrm{d}^{3} \sigma / \mathrm{d} M \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y$ in $\mathrm{nb} / \mathrm{GeV}^{3}$ for

$$
\underset{\mathrm{p}}{\mathrm{p}} \rightarrow \underset{\mathrm{~L}^{\prime-\mu^{+} \mu}}{\gamma \gamma}, \quad \mathrm{p} \mathrm{p} \rightarrow \underset{L \rightarrow \mathrm{e}^{+} \mathrm{c}}{\gamma \gamma}
$$

versus $M[\mathrm{GeV}], Q_{\mathrm{T}}[\mathrm{GeV}]$ and \hat{x}_{F} at $\downarrow s=63 \mathrm{GeV}$

(a) $\hat{X}_{F}=0$				
Q_{T}	2	4	6	8
005	$\begin{aligned} & 46 \times 10^{-1} \\ & \left(10 \times 10^{0}\right) \end{aligned}$	$\begin{aligned} & 20 \times 10^{-2} \\ & \left(35 \times 10^{-2}\right) \end{aligned}$	$\begin{aligned} & 28 \times 10^{-3} \\ & \left(45 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 62 \times 10^{-4} \\ & \left(94 \times 10^{-4}\right) \end{aligned}$
045	$\begin{aligned} & 38 \times 10^{-2} \\ & \left(51 \times 10^{-2}\right) \end{aligned}$	$\begin{aligned} & 44 \times 10^{-3} \\ & \left(5.9 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 94 \times 10^{-4} \\ & \left(1.3 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 27 \times 10^{-4} \\ & \left(37 \times 10^{-4}\right) \end{aligned}$
085	$\begin{aligned} & 68 \times 10^{-3} \\ & \left(77 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 10 \times 10^{-3} \\ & \left(12 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 24 \times 10^{-4} \\ & \left(28 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 77 \times 10^{-5} \\ & \left(90 \times 10^{-5}\right) \end{aligned}$
125	$\begin{aligned} & 14 \times 10^{-3} \\ & \left(15 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 30 \times 10^{-4} \\ & \left(32 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 80 \times 10^{-5} \\ & \left(8.6 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 26 \times 10^{-5} \\ & \left(2.8 \times 10^{-5}\right) \end{aligned}$
165	$\begin{aligned} & 40 \times 10^{-4} \\ & \left(39 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 11 \times 10^{-4} \\ & \left(11 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 32 \times 10^{-5} \\ & \left(33 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 11 \times 10^{-5} \\ & \left(11 \times 10^{-5}\right) \end{aligned}$

(b) $\hat{x}_{\mathrm{F}}=0$ I

Q_{T} 005	12×10^{-2} $\left(2.1 \times 10^{-2}\right)$	21×10^{-3} $\left(34 \times 10^{-3}\right)$	55×10^{-4} $\left(83 \times 10^{-4}\right)$
045	37×10^{-3} $\left(52 \times 10^{-3}\right)$	83×10^{-4} $\left(11 \times 10^{-3}\right)$	25×10^{-4} $\left(34 \times 10^{-4}\right)$
085	81×10^{-4} $\left(94 \times 10^{-4}\right)$	21×10^{-4} $\left(2.4 \times 10^{-4}\right)$	68×10^{-5} $\left(80 \times 10^{-5}\right)$
125	2.4×10^{-4} $\left(25 \times 10^{-4}\right)$	68×10^{-5} $\left(73 \times 10^{-5}\right)$	23×10^{-5} $\left(25 \times 10^{-5}\right)$
165	84×10^{-5} $\left(86 \times 10^{-5}\right)$	27×10^{-5} $\left(28 \times 10^{-5}\right)$	98×10^{-6} $\left(1.0 \times 10^{-5}\right)$

The numbers in parentheses refer to e pairs, the others to μ pairs

Table 1 (contınued)
(c) $\hat{x}_{F}=02$

Q_{T}^{M}	4	6	
005	71×10^{-3} $\left(12 \times 10^{-2}\right)$	14×10^{-3} $\left(22 \times 10^{-3}\right)$	42×10^{-4} $\left(6.2 \times 10^{-4}\right)$
045	27×10^{-3} $\left(39 \times 10^{-3}\right)$	61×10^{-4} $\left(84 \times 10^{-4}\right)$	19×10^{-4} $\left(26 \times 10^{-4}\right)$
125	$\left(64 \times 10^{-4}\right)$	15×10^{-4} $\left(18 \times 10^{-4}\right)$	52×10^{-5} $\left(61 \times 10^{-5}\right)$
165	546×10^{-4} $\left(15 \times 10^{-4}\right)$ $\left(50 \times 10^{-5}\right)$	17×10^{-5} $\left(18 \times 10^{-5}\right)$	

Table 1 (continued)
(d) $\hat{x}_{F}=03$

005	$\begin{aligned} & 4.5 \times 10^{-3} \\ & \left(76 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 92 \times 10^{-4} \\ & \left(14 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 29 \times 10^{-4} \\ & \left(4.2 \times 10^{-4}\right) \end{aligned}$
045	$\begin{aligned} & 17 \times 10^{-3} \\ & \left(25 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 39 \times 10^{-4} \\ & \left(53 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 13 \times 10^{-4} \\ & \left(1.7 \times 10^{-4}\right) \end{aligned}$
085	$\begin{aligned} & 31 \times 10^{-4} \\ & \left(37 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 92 \times 10^{-5} \\ & \left(11 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 33 \times 10^{-5} \\ & \left(39 \times 10^{-5}\right) \end{aligned}$
125	$\begin{aligned} & 76 \times 10^{-5} \\ & \left(82 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 27 \times 10^{-5} \\ & \left(28 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 10 \times 10^{-5} \\ & \left(11 \times 10^{-5}\right) \end{aligned}$
165	$\begin{aligned} & 25 \times 10^{-5} \\ & \left(25 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 10 \times 10^{-5} \\ & \left(10 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 4.2 \times 10^{-6} \\ & \left(43 \times 10^{-6}\right) \end{aligned}$

Table 1 (continued)
(e) $\hat{x}_{F}=05$

M	4	6	8
005	12×10^{-3}	26×10^{-4}	80×10^{-5}
045	37×10^{-4}	96×10^{-5}	33×10^{-5}
085	59×10^{-5}	20×10^{-5}	79×10^{-6}
125	13×10^{-5}	52×10^{-6}	23×10^{-6}
165	39×10^{-6}	19×10^{-6}	89×10^{-7}

(f) $\hat{x}_{F}=08$

M	4	6	8
005	81×10^{-6}	25×10^{-6}	94×10^{-7}
045	26×10^{-6}	93×10^{-7}	39×10^{-7}
085	35×10^{-7}	17×10^{-7}	82×10^{-8}
125	64×10^{-8}	37×10^{-8}	21×10^{-8}
165	17×10^{-8}	11×10^{-8}	68×10^{-9}

interval $0 \leqslant Q_{\mathrm{T}} \lesssim 1 \mathrm{GeV}$ for masses $\gtrsim 10 \mathrm{GeV}$. Fig. 9 shows the $\gamma \gamma$ cross section in comparison with an estimate of the QCD contribution to $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} X$. We used the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ QCD calculation, corrected for soft gluon radiation to all orders in leading bilogarithmic approximation of ref. [8], normalized as described in subsect. 2.4; it is represented by the dashed curve. The encircled dots represent the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right) \mathrm{QCD}$ calculation of ref. [12]; obviously both QCD expressions overlap well down to intermediate values of Q_{T} (as necessary for internal consistency). We used the two mass values $M^{2}=120$ and $7500 \mathrm{GeV}^{2}$, for which the QCD calculations of ref. [8] are avalable ($M^{2}=7500 \mathrm{GeV}^{2}$, i.e. $M \simeq 87 \mathrm{GeV}$, is in the expected Z -boson mass range). At this mass of 87 GeV the $\gamma \gamma$ dominance is dramatic (fig. 9): at $Q_{\mathrm{T}}=0.3$ GeV the ratio $\gamma \gamma / \mathrm{QCD}$ for the $\mathrm{e}^{+} \mathrm{e}^{-}\left(\mu^{+} \mu^{-}\right)$final state is as much as ~ 10 (6.4), averaged over a Q_{T}^{2} bin $0 \leqslant Q_{\mathrm{T}}^{2} \leqslant 1 \mathrm{GeV}^{2}$ it is still 3.8 (2.4), whereas the ratıo of the Q_{T}^{2} integrated cross sections amounts to $0.25(0.19)$ only. At the lower mass of $M^{2}=120 \mathrm{GeV}^{2}(M \simeq 11 \mathrm{GeV})$ the effect is less dramatic, but still significant (fig. 9): for $Q_{\mathrm{T}} \simeq 0.3 \mathrm{GeV}$ and an $\mathrm{e}^{+} \mathrm{e}^{-}\left(\mu^{+} \mu^{-}\right)$pair one finds $\gamma \gamma / \mathrm{QCD} \simeq 1$ (0.7), if averaged from $Q_{\mathrm{T}}^{2}=0$ to $1 \mathrm{GeV}^{2}\langle\gamma \gamma\rangle /\langle\mathrm{QCD}\rangle \simeq 0.77(0.46)$ and integrated over all Q_{T}^{2} the ratio reduces to $0.24(0.17)$. The Q_{T}^{2} integrated $\gamma \gamma$ cross sections are in

Table 2
Same as table 1 for $v=800 \mathrm{GeV}$ and $x_{\mathrm{F}}=0$

Q_{T}^{M}	4	1095	52	8664	100
005	$\begin{aligned} & 14 \times 10^{-2} \\ & \left(23 \times 10^{-2}\right) \end{aligned}$	$\begin{aligned} & 86 \times 10^{-4} \\ & \left(14 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 75 \times 10^{-6} \\ & \left(12 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 1.2 \times 10^{-6} \\ & \left(20 \times 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 69 \times 10^{-7} \\ & \left(11 \times 10^{-6}\right) \end{aligned}$
045	$\begin{aligned} & 15 \times 10^{-2} \\ & \left(23 \times 10^{-2}\right) \end{aligned}$	$\begin{aligned} & 89 \times 10^{-4} \\ & \left(14 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 56 \times 10^{-6} \\ & \left(91 \times 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 72 \times 10^{-7} \\ & \left(12 \times 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 38 \times 10^{-7} \\ & \left(61 \times 10^{-7}\right) \end{aligned}$
085	$\begin{aligned} & 41 \times 10^{-3} \\ & \left(54 \times 10^{-3}\right) \end{aligned}$	$\begin{aligned} & 25 \times 10^{-4} \\ & \left(35 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 13 \times 10^{-6} \\ & \left(20 \times 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 17 \times 10^{-7} \\ & \left(24 \times 10^{-7}\right) \end{aligned}$	$\begin{aligned} & 86 \times 10^{-8} \\ & \left(1.3 \times 10^{-7}\right) \end{aligned}$
165	$\begin{aligned} & 76 \times 10^{-4} \\ & \left(86 \times 10^{-4}\right) \end{aligned}$	$\begin{aligned} & 68 \times 10^{-5} \\ & \left(83 \times 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 35 \times 10^{-7} \\ & \left(45 \times 10^{-7}\right) \end{aligned}$	$\begin{aligned} & 39 \times 10^{-8} \\ & \left(51 \times 10^{-8}\right) \end{aligned}$	$\begin{aligned} & 20 \times 10^{-8} \\ & \left(26 \times 10^{-8}\right) \end{aligned}$
4	27×10^{-5}	$\begin{aligned} & 69 \times 10^{-6} \\ & \left(76 \times 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 56 \times 10^{-8} \\ & \left(65 \times 10^{-8}\right) \end{aligned}$	$\begin{aligned} & 64 \times 10^{-9} \\ & \left(74 \times 10^{-9}\right) \end{aligned}$	$\begin{aligned} & 33 \times 10^{-9} \\ & \left(38 \times 10^{-9}\right) \end{aligned}$
20	$\approx 63 \times 10^{-9}$	77×10^{-9}	81×10^{-10}	14×10^{-10}	83×10^{-11}
36	$\approx 12 \times 10^{-10}$	23×10^{-10}	65×10^{-11}	17×10^{-11}	11×10^{-11}
52	$\approx 76 \times 10^{-12}$	17×10^{-11}	10×10^{-11}	32×10^{-12}	21×10^{-12}

good agreement with the results of refs. [5, 6]. Our analysis of the Q_{T} dependence has unravelled, however, that behind a sizeable, but not exciting ratıo of the Q_{T}^{2} integrated $\gamma \gamma$ and QCD cross sections, $\int \mathrm{d} Q_{\mathrm{T}}^{2}(\gamma \gamma) / \int \mathrm{d} Q_{\mathrm{T}}^{2}(\mathrm{QCD}) \simeq 0.2$, there is hidden a ratto as large as 0.5 to 4 in the Q_{T}^{2} bin $0 \leqslant Q_{\mathrm{T}}^{2} \leqslant 1 \mathrm{GeV}^{2}$, depending on M and the $p^{+} \ell^{-}$final state.

It has been emphasized that an experimental signature for the resummed QCD contribution in leading bılogarithmic approxımation is the flat shape [7, 8, 11] or even a turnover near $Q_{\mathrm{T}} \simeq 0$ as well as the characteristic dependence [8, 11] of the width of the forward peak on the mass M. Our results show that this effect is partly or fully swamped by the two-photon contributıon.

Fig. 10 shows the mass dependence for fixed $Q_{\mathrm{T}}=1.83$ and 3.55 GeV and ${ }^{\star}$ $4 \leqslant M \leqslant 25 \mathrm{GeV}$. This figure, together with figs. 12 and 14 , which will be discussed in detall later, illustrates the situation for intermediate and large $Q_{\mathrm{T}}, Q_{\mathrm{T}} \gtrsim 1.5 \mathrm{GeV}$, say: at ISR energies and larger Q_{T} the $\gamma \gamma$ contribution is negligible everywhere

[^5]

Fig 7 The histogram shows the Q_{T} distribution of $\gamma \gamma$ candidate events [2] in $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ as measured at the ISR for $\sqrt{ }=62 \mathrm{GeV}$ and $x_{\mathbf{F}}=02$ The distribution is integrated over the mass interval $26 \leqslant M \leqslant 685 \mathrm{GeV}$ The tentative absolute normalization was obtaned by us in subsect 33 For companson the theoretical prediction for the (transverse) $\gamma \gamma$ contribution is displayed (full curve) as well as its decomposition into contributions from both proton vertices being elastic (dash-dotted curve) and from one being elastic and the other one inelastic (dashed curve)

Fig 8 ISR data [19] for the cross section $\mathrm{d} \sigma / \mathrm{d} Q_{\mathrm{T}}^{2}\left(\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}\right)$, integrated over x_{F} and two different mass intervals The solid lines denote our calculated two-photon contributions to this process

Fig $9 Q_{T}$ distributions for $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ at $\downarrow s=800 \mathrm{GeV}$ and $x_{\mathrm{F}}=0$ for the two mass values used in ref [8], $M^{2}=120 \mathrm{GeV}^{2}(M \simeq 11 \mathrm{GeV})$ and $M^{2}=7500 \mathrm{GeV}^{2}(M \simeq 87 \mathrm{GeV})$ The solid lines (\odot) and (O) denote the $\gamma \gamma$ contributions to $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ and $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ respectively and the dashed line denotes the resummed QCD contribution to $\mathrm{pp} \rightarrow \mathfrak{l}^{+} \ell^{-} \mathrm{X}$ including soft gluon emission to all orders in leading biloganthmic approxımation It was given in ref [8] in unnormalized form for $Q_{\tau} \gtrsim 03 \mathrm{GeV}$ and normalized by us in subsect 24 to the $\mathrm{O}\left(\alpha_{\varsigma}\right)$ expression of ref [12] (encircled dots) at larger Q_{T}
(being of the order of a few percent), whereas at ISABELLE energies it amounts at least to 10% almost everywhere and rises up to 20%, e.g. for $Q_{\mathrm{T}}=1.83 \mathrm{GeV}$ and $10 \leqq M \lesssim 100 \mathrm{GeV}$ (see figs. 9 and 10). It is stıll 14% for $Q_{\mathrm{T}}=3.55 \mathrm{GeV}$ over a simılar mass range.

34 RESULTS AT FIXED x_{T} AND r

In this subsection we present our two-photon results in comparison with the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right)$ QCD contribution [12] to $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ as functions of the variables $\hat{x}_{\mathrm{T}}\left(x_{\mathrm{T}}\right)$ and $\tau=M^{2} / s$ [remember $\hat{x}_{\mathrm{T}}=x_{\mathrm{T}} /(1-\tau)=Q_{\mathrm{T}} / Q_{\mathrm{T} \max }$]. We do this more for completeness reasons, since smallness of the corresponding cross sections will make measurements unlikely or impossible in most cases. Figs. 11 and 12 show the $\hat{x}_{\mathrm{T}}\left(x_{\mathrm{T}}\right)$ distributions for fixed values of τ and $\sqrt{ }$ at $x_{\mathrm{F}}=0$. For reasons of presentation all cross sections have been normalized to the two-photon cross section at $\downarrow s=27.3$ GeV , which is displayed separately in fig. 11 (at this energy $\mu^{+} \mu^{-}$data exist for $\tau \leqq 0.25$ and $\hat{x}_{\mathrm{T}} \leqq 0.34$).

Fig 10 (a) The quantity $M^{4} \mathrm{~d}^{3} \sigma /\left.\mathrm{d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y\right|_{Y=0}\left(\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}\right)$ versus M for two intermediate values of Q_{T} and four energies ($273 \leqslant \sqrt{ } \leqslant 800 \mathrm{GeV}$). The sold line denotes the (transverse) $\gamma \gamma$ contribution, the dash-dotted one the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right) \mathrm{QCD}$ contribution of ref [12] (b) The ratio $(\gamma \gamma)_{\mathrm{T}} / \mathrm{QCD}$ of the quantities in (a)

The following global trend becomes evident from fig. 12. If one keeps any two of the three variables $\tau, \hat{x}_{\mathrm{T}}$ and γs fixed and increases the third one, the ratio $\gamma \gamma / \mathrm{QCD}$ increases. The $\gamma \gamma$ mechanism becomes important or even dominant if any two of the three variables become large; most dramatic is the effect for large values of τ (modulo uncertainties in the gluon distribution):

$$
\begin{align*}
& \gamma \gamma / \mathrm{QCD} \approx 100 \%, \text { e.g. } \\
& \text { at } \downarrow s=63 \mathrm{GeV} \text { for }\left\{\begin{array}{cl}
(M \simeq 55 \mathrm{GeV}, & \left.Q_{\mathrm{T}} \simeq 2 \mathrm{GeV}\right) \\
M \simeq 40 \mathrm{GeV}, & Q_{\mathrm{T}} \simeq 10 \mathrm{GeV},
\end{array}\right. \\
& \text { at } v s=800 \mathrm{GeV} \text { for }\left\{\begin{array}{cc}
(M \simeq 700 \mathrm{GeV}, & \left.Q_{\mathrm{T}} \simeq 10 \mathrm{GeV}\right) \\
M \simeq 400 \mathrm{GeV}, & Q_{\mathrm{T}} \simeq 240 \mathrm{GeV} .
\end{array}\right. \tag{67}
\end{align*}
$$

Fig 11 The $\hat{x}_{T}\left(=x_{T} /(1-\tau)\right)$ distribution of the (transverse) $\gamma \gamma$ contribution to $\mathrm{p}^{(-1)} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ for four fixed values of $\tau(009 \leqslant \tau \leqslant 081)$ and the lowest energy considered, $\sqrt{ } s=273 \mathrm{GeV}$

35 THE x_{F} DEPENDENCE

With the exception of table 1 we have restricted our discussion so far to $x_{F}=0$. Fig. 13 displays the \hat{x}_{F} distribution of the $\gamma \gamma$ subprocess for a set of smallish values of τ and x_{T} and the two extreme energres $\downarrow s=27$ and 800 GeV . The weak energy dependence of the dimensionless quantity $s \mathrm{~d}^{3} \sigma / \mathrm{d} \sqrt{\tau} \mathrm{d} x_{\mathrm{T}}^{2} \mathrm{~d} Y$ becomes evident from fig. 13. Fig. 14 shows the $\gamma \gamma$ as well as the QCD contribution versus \hat{x}_{F} for a set of large values of τ and x_{T} and all four energies. Table 1 contains, in addition, the \hat{x}_{F} distribution of the $\gamma \gamma$ mechanism for various smallish values of Q_{T} and M at $\downarrow s=63$ GeV . From all these results we extract a simple, approximately factorizing behaviour (within a factor of two),

$$
\begin{equation*}
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} M^{2} \mathrm{~d} Q_{\mathrm{T}}^{2} \mathrm{~d} Y} \underset{\substack{\hat{x}_{\mathrm{F}} \leqslant 05 \\ Q_{\mathrm{T}} \neq 0}}{\approx} f\left(\hat{x}_{\mathrm{F}}\right) F\left(M, Q_{\mathrm{T}}, \nu s\right), \tag{68}
\end{equation*}
$$

over the \hat{x}_{F} range relevant for integrations over x_{F}. This may be useful for an estimate of the \hat{x}_{F} integrated cross section in kinematical regions not discussed explicitly here.

$\mathrm{F}_{1} \mathrm{~g} 12$ The $\hat{x}_{\mathrm{T}}\left(x_{\mathrm{T}}\right)$ distribution of the (transverse) $\gamma \gamma$ contribution (full curve) to $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ in companson to the $O\left(\alpha_{s}\right)$ QCD contribution of ref [12] (dash-dotted curve) for four fixed values of τ $(009 \leqslant \tau \leqslant 081)$ and four energies $\left(273 \leqslant \sqrt{ } \leqslant 800 \mathrm{GeV}\right.$) All $\hat{x}_{\top}\left(x_{\mathrm{T}}\right)$ distributions are normalized by the $\gamma \gamma$ distribution for $\sqrt{ } s=273 \mathrm{GeV}$ (fig ll) The lower absissa refers to the vanable $\hat{x}_{\mathrm{T}}=Q_{\mathrm{T}} / Q_{\mathrm{T}, \max }$ $\approx x_{\mathrm{T}} /(1-\tau)\left(\right.$ with $\left.0 \leqslant \hat{x}_{\mathrm{T}} \leqslant 1\right)$ and the upper one to $x_{\mathrm{T}}=2 Q_{\mathrm{T}} / \sqrt{ }$

4. Summary and conclusions

We present the differential cross section for the two-photon mechanism

$$
\begin{aligned}
& \mathrm{p} \stackrel{(-)}{\mathrm{p}} \rightarrow \gamma \gamma \mathrm{X} \\
& \rightarrow l^{+} p^{-}
\end{aligned}
$$

in interesting kinematical regions of the four variables M, Q_{T}, x_{F} and ψs in the form

Fig. 13 The distribution of the (transverse) $\gamma \gamma$ contribution to $\mathrm{p} \mathrm{p}^{(-)} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ in the Feynman type variable $\hat{x}_{\mathrm{F}}=Q_{\mathrm{L}} / Q_{\mathrm{L}, \text { max }}$ for small values of $\tau=0.063$ and $x_{\mathrm{T}}=004$ and for the lowest and highest energies considered $\sqrt{ } s=273$ and 800 GeV
of tables and instructive figures. A comparison with $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ (including

$$
\underset{\breve{L \ell^{+} \ell^{-}}}{\mathrm{pp} \rightarrow}
$$

data at ISR energies and with estimates of the QCD contribution to $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ elsewhere, in particular at very high energies, is performed.

We find important manifestations of the two-photon mechanism. Already at ISR energies and very small Q_{T} the $\gamma \gamma$ mechanism represents an important fraction ($30-70 \%$, depending on M) of the $\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}$ cross section; but it is negligible at larger Q_{T}. However, at ISABELLE energies, $\downarrow s \simeq 800 \mathrm{GeV}$, its influence becomes dramatic: even if one averages over the fairly large Q_{T}^{2} bin $0 \leqslant Q_{\mathrm{T}}^{2} \leqslant 1 \mathrm{GeV}^{2}$ one obtains for the ratio of $\gamma \gamma$ to $\mathrm{QCD}:\langle\gamma \gamma\rangle /\langle\mathrm{QCD}\rangle=0.5-4$, depending on M and the $\ell^{+} \ell^{-}$final state. Almost everywhere else the ratio still amounts to $\gamma \gamma / \mathrm{QCD} \simeq$

Fig 14 The distribution of the (transverse) $\gamma \gamma$ contribution to $\mathrm{pp} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ (full curve) in the Feynman type vanable $\hat{x}_{\mathrm{F}}=Q_{\mathrm{L}} / Q_{\mathrm{L}, \max }$ in companson to the $\mathrm{O}\left(\alpha_{\mathrm{s}}\right) \mathrm{QCD}$ contribution of ref [12] (dash-dotted curve) for largish values of $\tau=025$ and $x_{T}=052$ and four different energies ($273 \leqslant \sqrt{s} \leqslant 800$ GeV)
$0.1-0.2$. (For $M \approx \psi s$, the $\gamma \gamma$ mechanism becomes dominant again; however, the rates are tiny there.)

Altogether, at ISABELLE, the $\gamma \gamma$ contribution becomes a serious background to the QCD contribution in particular for $Q_{\mathrm{T}} \lesssim 2 \mathrm{GeV}$. It totally swamps the experimental signature for the resummed QCD contribution in leading bilogarithmic approximation, which predicts a flat shape if not a turnover near $Q_{\mathrm{T}} \approx 0$, as well as a characteristic dependence of the flattening peak on M.

Let us, furthermore, point out that (at ${ }_{\gamma} s=800 \mathrm{GeV}$) the $\gamma \gamma$ contribution also constitutes a sizeable fraction of the background in the search of the Z-boson in $\mathrm{pp} \rightarrow \mathfrak{\ell}^{+} \ell^{-} \mathrm{X}$.

The two-photon mechanism is also an interesting process in its own right. This paper contains detailed information on the signature and on rates of two photon events in large parts of the kinematical range of the four variables $M, Q_{\mathrm{T}}, x_{\mathrm{F}}$ and $/ s$. There are two tables, for $s=63$ and 800 GeV which even allow integration over M or Q_{T} (or x_{F}).

The $\gamma \gamma$ mechanism is most easily accessible at small Q_{T}, where its rates are largest and where in addition it tends to dominate the $\mathrm{pp} \rightarrow \ell^{+} \ell^{-} \mathrm{X}$ cross section (absolute rates can be improved, of course, by integrating over M and/or x_{F}).

A further clue for a future experimental solation of the $\gamma \gamma$ mechanism comes from a decomposition into contributions from the two $\mathrm{p} \gamma \mathrm{X}$ vertices being both elastic, of mixed (elastic-inelastic) configuration or both inelastic. We find that for $Q_{\mathrm{T}} \lesssim 1 \mathrm{GeV}$ the elastic-elastic contribution dominates, while for $Q_{\mathrm{T}} \gtrsim 1 \mathrm{GeV}$ the elastic-inelastic one takes over. Thus, triggering on one elastically scattered proton does not significantly reduce the $\gamma \gamma$ rate, whereas it may considerably reduce the background.

This may be particularly interesting for a possible isolation of the related subprocesses $\gamma \gamma \rightarrow q-\jmath$ et $+\bar{q}-j e t$ and $\gamma+$ gluon $\rightarrow q-\jmath e t+\bar{q}-j e t$, for which the present work is kind of a 'warming up' exercise. Insisting on an elastically scattered proton should, for colour and triality reasons, suppress the huge background from subprocesses like $q \bar{q} \rightarrow$ jets or gluon $+\mathrm{q} \rightarrow$ jets. Left-over, 'higher-twist' subprocesses will decrease much faster with transverse momentum than the subprocesses of interest.

Finally, let us recall some uncertainties inherent in this investigation. As to our two-photon results, the only approximations made were the 'transverse photon' approximation (subsect. 2.2) and the parametrization used for the proton structure functions (subsect. 2.3), neglecting resonance fluctuations and scaling violations. As discussed, these approximations should not significantly affect our conclusions. As to the QCD reference cross section, scaling violations in the constituent distribution functions have been ignored as well. Moreover, we recall the uncertainties for very small values of $\tau \ll 0.02$ and also for large $\tau \rightarrow 1$. These lımiting regimes of τ involve constituent distributions, where they are badly known.

We are very much indebted to P . Landshoff for inspirıng discussions and active collaboration in the early stages of this work. We thank F. Vannucci and J. Field for valuable information about experimental aspects of two-photon physics.

We gratefully acknowledge the warm hospitality of the Department of Applıed Mathematics and Theoretıcal Physics of Cambridge University and of the Physics Department of Durham University, where much of this work has been done.

One of us (F.S.) thanks the Science Research Council of Great Britain for a Senior Visiting Fellowshıp durıng his stay at Cambridge and Durham Universities.

Appendix

In this appendix we give the exact expressions for the integration limits in eq. (28). Again, as in subsect. 3.1, numerical checks have been performed with the expressions below under $x_{\mathrm{F}} \leftrightarrow-x_{\mathrm{F}}$. Using

$$
\begin{equation*}
\left|\boldsymbol{q}_{t \mathrm{~T}}\right|^{2}=\frac{Q_{i}^{2}}{x_{i}} u_{t}-\varepsilon\left\{q_{t}^{02}+\frac{1}{2} \bar{x}_{\mathbf{T}} \frac{Q_{t}^{2}}{x_{t}} \cosh Y+\frac{Q_{1}^{2} Q_{2}^{2}}{4 m^{2} x_{1} x_{2}}\right\}, \quad(t=1,2) \tag{A.1}
\end{equation*}
$$

with

$$
\begin{align*}
Q_{1}^{2} & =-q_{i}^{2} \tag{A.2}\\
\frac{2 q_{2}^{0}}{v_{2}} & =\bar{x}_{\mathrm{T}} \cosh Y-\xi_{2} \mp \frac{1}{s}\left(\frac{Q_{1}^{2}}{x_{1}}-\frac{Q_{2}^{2}}{x_{2}}\right) \tag{A.3}\\
\xi_{2} & =\frac{1}{2} \bar{x}_{\mathrm{T}}\left(\cosh Y \mp \sqrt{\frac{s-4 m^{2}}{s}} \sinh Y\right), \tag{A.4}\\
u_{2} & =x_{2}^{1}-\frac{1}{2} \bar{x}_{\mathrm{T}}\left(\cosh Y \pm \sqrt{\frac{s}{s-4 m^{2}}} \sinh Y\right), \tag{A.5}\\
\varepsilon & =\frac{4 m^{2}}{s-4 m^{2}}, \quad \bar{x}_{\mathrm{T}}=\sqrt{4 \tau+x_{\mathrm{T}}^{2}} \tag{A.6}
\end{align*}
$$

one may express the "triangle" function $\sqrt{-\lambda}$ in the jacobian (20), after a straightforward but tedious calculation, as

$$
\begin{equation*}
\sqrt{-\lambda\left(Q_{\mathrm{T}}^{2},\left|\boldsymbol{q}_{1 \mathrm{~T}}\right|^{2},\left|\boldsymbol{q}_{2 \mathrm{~T}}\right|^{2}\right)}=\sqrt{\left\{\left(\frac{u_{2}}{x_{2}}\right)^{2}+\varepsilon\left(\frac{x_{\mathrm{T}}}{2 x_{2}}\right)^{2}\right\}\left(Q_{2}^{2}-Q_{2, \min }^{2}\right)\left(Q_{2, \max }^{2}-Q_{2}^{2}\right)}, \tag{A.7}
\end{equation*}
$$

with limits of the Q_{2}^{2} integration determined as

$$
\begin{equation*}
Q_{2}^{2} \max _{\min }=\frac{x_{2}}{2 a}\left(-b \pm \sqrt{b^{2}-4 a c}\right) \tag{A.8}
\end{equation*}
$$

where

$$
\begin{align*}
a= & u_{2}^{2}+\frac{1}{4} \varepsilon x_{\mathrm{T}}^{2} \tag{A.9}\\
b= & 2\left[-\frac{Q_{1}^{2}}{x_{1}} u_{1} u_{2}+\frac{1}{4} x_{\mathrm{T}}^{2}\left((2+\varepsilon) \frac{Q_{1}^{2}}{x_{1}}-s u_{2}+\varepsilon s \xi_{2}\right)+\frac{1}{4} \varepsilon s\left(\xi_{2}^{2}-\xi_{1}^{2}\right) u_{2}\right] \tag{A.10}\\
c= & \left(s\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}-\frac{u_{1} Q_{1}^{2}}{x_{1}}\right)^{2}+\frac{1}{2} \varepsilon s\left[\frac{x_{\mathrm{T}}^{2} Q_{1}^{2}}{x_{1}} \xi_{1}+s\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)-\frac{u_{1} Q_{1}^{2}}{x_{1}}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right] \\
& +\left(\frac{1}{4} \varepsilon s\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right)^{2}+\varepsilon\left(\frac{x_{\mathrm{T}} Q_{1}^{2}}{2 x_{1}}\right)^{2} \tag{A.11}
\end{align*}
$$

The equation $b^{2}-4 a c=0$, being quadratic in Q_{1}^{2}, leads to the following limits of the Q_{1}^{2} integration:

$$
\begin{equation*}
Q_{1}^{2} \max _{\max }=\frac{x_{1}}{2 A}\left(-B \mp \sqrt{B^{2}-4 A C}\right) \tag{A.12}
\end{equation*}
$$

with

$$
\begin{align*}
A= & 4\left(\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}-u_{1} u_{2}\right)+\varepsilon\left(x_{\mathrm{T}}^{2}-\left(u_{1}+u_{2}\right)^{2}\right) \tag{A.13}\\
B=s & {\left[4 u_{2}\left(u_{1} u_{2}-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\right)-2 \varepsilon \xi_{2} u_{1} u_{2}+\frac{1}{2} \varepsilon x_{\mathrm{T}}^{2}\left(u_{1}-u_{2}+2 \xi_{2}\right)\right.} \\
& \left.-2 \varepsilon \xi_{1} u_{2}^{2}+\varepsilon\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\left(u_{2}+\frac{1}{2} \varepsilon\left(u_{1}+u_{2}\right)\right)+\frac{1}{2} \varepsilon^{2} x_{\mathrm{T}}^{2}\left(\xi_{2}-\xi_{1}\right)\right] \tag{A.14}\\
C= & \varepsilon s^{2}\left[-\left(\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}+\xi_{2} u_{2}\right)^{2}+\frac{1}{2} \varepsilon\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\left(\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}+\xi_{2} u_{2}-\frac{1}{8} \varepsilon\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right)\right] . \tag{A.15}
\end{align*}
$$

Let $u_{1}^{(\pm)}$be the roots of the equation $B^{2}-4 A C=0$, quadratic in u_{1}.

$$
\begin{equation*}
u_{1}^{(\pm)}=\frac{1}{2 \alpha}\left(-\beta \pm \sqrt{\beta^{2}-4 \alpha \gamma}\right) \tag{A.16}
\end{equation*}
$$

and

$$
\begin{gather*}
\alpha=u_{2}^{4}+\varepsilon u_{2}^{2}\left(\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}-\xi_{2} u_{2}\right)+\varepsilon^{2}\left(\frac{1}{4} u_{2}^{2}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right. \\
\left.-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \xi_{2} u_{2}\right)+\frac{1}{4} \varepsilon^{3}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\left(\xi_{2}^{2}-\xi_{1}^{2}\right), \tag{A.17}\\
\beta=u_{2}^{3}\left[-\frac{1}{2} x_{\mathrm{T}}^{2}+\varepsilon\left(-\xi_{1} u_{2}-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}-\frac{1}{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\right)\right]+\varepsilon\left(\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \xi_{2} u_{2}^{2}-2\left(\frac{1}{2} x_{\mathrm{T}}\right)^{4} u_{2}\right) \\
+\varepsilon^{2}\left[-\frac{1}{4} u_{2}^{3}\left(\xi_{2}-\xi_{1}\right)^{2}\right. \\
+\frac{1}{4} u_{2}^{2} \xi_{2}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)+\frac{1}{8} x_{\mathrm{T}}^{2}\left(\xi_{2}-3 \xi_{1}\right) u_{2}^{2} \\
\left.-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \frac{1}{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right) u_{2}-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{4}\left(u_{2}-\xi_{2}\right)\right] \\
+\varepsilon^{3}\left[u_{2}^{2} \frac{1}{8}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\left(\xi_{2}-\xi_{1}\right)-u_{2}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \frac{1}{4}\left(\xi_{2}-\xi_{1}\right)^{2}+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{4} \frac{1}{2}\left(\xi_{2}-\xi_{1}\right)\right. \\
\left.+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \xi_{2} \frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right]+\varepsilon^{4}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \frac{1}{8}\left(\xi_{2}-\xi_{1}\right)^{2}\left(\xi_{1}+\xi_{2}\right), \tag{A.18}
\end{gather*}
$$

$$
\begin{gather*}
\gamma=\left(u_{2}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\right)^{2}+\varepsilon\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\left[\xi_{1} u_{2}^{3}+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} u_{2}^{2}+u_{2}^{2} \frac{1}{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{4}\right] \\
+\varepsilon^{2}\left[-u_{2}^{3} \frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\left(u_{2}+\xi_{1}\right)+u_{2}^{2} \frac{1}{2}\left(\xi_{2}-\xi_{1}\right)\right. \\
\\
\times\left\{-u_{2}\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}+\frac{1}{8}\left(\xi_{1}+\xi_{2}\right)^{2}\left(\xi_{2}-\xi_{1}\right)+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\left(\xi_{2}-\xi_{1}\right)\right\} \\
\\
\left.+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{4}\left(\xi_{1} u_{2}+\frac{1}{2}\left(\xi_{1}^{2}+\xi_{2}^{2}\right)+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\right)\right] \\
+\varepsilon^{3}\left[\frac { 1 } { 4 } (\xi _ { 2 } ^ { 2 } - \xi _ { 1 } ^ { 2 }) \left\{\frac{1}{2}\left(\xi_{2}-\xi_{1}\right) u_{2}^{3}+u_{2}^{2} \frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)-\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \xi_{1} u_{2}\right.\right. \\
 \tag{A.19}\\
\left.+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right\}-\frac{1}{2}\left(\xi_{2}-\xi_{1}\right) \\
+\varepsilon^{4} \frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2}\left[u_{2} \frac{1}{2}\left(\xi_{2}-\xi_{1}\right)+\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} \frac{\xi_{2}-\xi_{1}}{\xi_{2}+\xi_{1}}+\frac{1}{4}\left(\xi_{2}^{2}-\xi_{1}^{2}\right)\right]
\end{gather*}
$$

then the limits of the x_{1} integration, depending on x_{2}, are given by [using eq. (A.5)]

$$
\begin{align*}
& x_{1, \min }=\max \left(u_{1}^{(+)}, u_{1}^{(-)}\right)+\frac{1}{2} \bar{x}_{\mathrm{T}}\left(\cosh Y+\sqrt{\frac{s}{s-4 m^{2}}} \sinh Y\right), \\
& x_{1, \max }=1 \tag{A.20}
\end{align*}
$$

In the limit $\varepsilon \rightarrow 0$, the complicated expressions (A.16)-(A.20) reduce simply to

$$
\begin{align*}
x_{1, \mathrm{~min}}-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{Y}=u_{1}^{(+)}=u_{1}^{(-)} & =\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} / u_{2} \\
& =\left(\frac{1}{2} x_{\mathrm{T}}\right)^{2} /\left(x_{2}-\frac{1}{2} \bar{x}_{\mathrm{T}} \mathrm{e}^{-Y}\right) . \tag{A.21}
\end{align*}
$$

Finally, the limits of the x_{2} integration are obtained by the substitution

$$
\begin{equation*}
x_{2, \min }=x_{1, \min }\left(\xi_{2} \leftrightarrow \xi_{1}, u_{2} \rightarrow u_{1}\left(x_{1}=1\right)\right) \tag{A.22a}
\end{equation*}
$$

in eqs. (A.20), (A.21) and

$$
\begin{equation*}
x_{2, \max }=1 \tag{A.22b}
\end{equation*}
$$

References

[I] Ch Berger, Proc Int Workshop on $\gamma \gamma$ collisions, Amiens, Aprıl 8-12 (1980) p 82. W Wagner, Talk at 20th Int Conf on High-energy physics, Madison, Wisc, July 17-23, 1980
[2] CERN-Harvard-LAPP-MIT-Naples-Pisa Collaboration, F Vannucci, Proc Int Workshop on $\gamma \gamma$ collisions, Amiens, Apnl 8-12 (1980) p 238
[3] M -S Chen, I J Muzinch, H Terazawa and T P Cheng, Phys Rev D7 (1973) 3485
[4] V M Budnev, I F Ginzburg, G V Meledın and V G Serbo, Sov J Part Nucl 4 (1973) 100, Phys Reports 15 (1975) 181
[5] C Carımalo, P Kessler and J Parısı, Phys Rev D18 (1978) 2443
[6] R Moore, Z Phys C5 (1980) 351
[7] Yu L Dokshitzer, D I D'Yakonov and S I Troyan, Phys Lett 78B (1978) 290, 79B (1978) 269, Phys Reports 58 (1980) 269
[8] G Parisı and R Petronzıo, Nucl Phys Bi54 (1979) 427, G Curcı, M Greco and Y Srıvastava, Phys Rev Lett 43 (1979) 834, Nucl Phys B159 (1979) 451
[9] C L Basham, L S Brown, S D Ellıs and S T Love, Phys Lett 85B (1979) 297
[10] C Y Lo and J D Sullivan, Phys Lett 86B (1979) 327
[11] S D Ellis and W J Stırling, Unıv Washington, Seattle, preprint, RLO-1388-821 (1980)
[12] K Kajantie and R Raitı, Nucl Phys B139 (1978) 72
[13] G Altarellı, G Parısı and R Petronzı, Phys Lett 76B (1978) 356
[14] E D Bloom and F J Gilman, Phys Rev D4 (1971) 2901
[15] G Fox, Nucl Phys B131 (1977) 107
[16] B Schrempp and F Schrempp, Z Phys C6 (1980) 7
[17] J K Yoh et al, Phys Rev Lett 41 (1978) 684
[18] U Becker et al, CERN-Harvard-MIT-Naples-Pisa Collaboration, Proc Int Conf on High-energy physics, Geneva, 1979, vol 2, p 779
[19] C Kourkoumelis et al, Athens-BNL-CERN-Syracuse-Yale Collaboration, Phys Lett 91B (1980) 475
[20] A LS Angelis et al, CERN-Columbia-Oxford-Rockefeller Collaboration. Proc Int Conf on Hıgh-energy physics, Geneva, 1979, vol 2, p 770
[21] A J Clark et al, Nucl Phys B142 (1978) 29
[22] F Vannucci, private communication

[^0]: ${ }^{1}$ Hessenberg foundation fellow

[^1]: ${ }^{*} \mathrm{Eg}$ for $x_{\mathrm{F}}=0$ this follows from using (see appendix) $x_{i} /\left(1-x_{i}\right) \geqslant x_{2, \min } /\left(1-x_{2, \min }\right)=\left(\frac{1}{2} \bar{x}_{\mathrm{T}}-\right.$ $\tau) /\left(1-\bar{x}_{\mathrm{T}}+\tau-4 m^{2} / s\right)\left(\right.$ with $\left.\bar{x}_{\mathrm{T}}^{2}=4 \tau+x_{\mathrm{T}}^{2}\right)$ in eq (40)

[^2]: * Probably, because, for large Q_{T}, no variable transformation leading to an overall slowly varying integrand could be found

[^3]: * For histoncal reasons the correction factor (41) has not been included in figs 3-5 This may affect somewhat the absolute values of cross sections for $Q_{T} \leqq 1 \mathrm{GeV}$

[^4]: * Notice that for small values of Q_{T} the $\mathrm{e}^{+} \mathrm{e}^{-}$cross section is bigger than the $\mu^{+} \mu^{-}$cross section (due to the electron-muon mass difference); the cross sections merge together around $Q_{\mathrm{T}} \simeq 15 \mathrm{GeV}$
 **In ref [2] raw data for an unnormalized Q_{T} distribution-integrated over M from 26 to 685 GeV -at [22] $x_{\mathrm{F}}=02$ were presented The Q_{T} acceptance is flat [22] for $Q_{\mathrm{T}} \lesssim 18 \mathrm{GeV}$ Using the absolute normalization given for $\mathrm{d} \sigma^{\gamma \gamma} / \mathrm{d} M$ in ref [2], the theoretical ratio $\mathrm{d} \sigma^{\gamma \gamma} /\left.\mathrm{d} M \mathrm{~d} Y\right|_{\lambda_{\mathrm{F}}=02} /$ $\mathrm{d} \sigma^{\gamma \gamma} / \mathrm{d} M$ and the assumption that the selected events represent the full $\gamma \gamma$ contribution, we tentatively denved the absolute normalization of the Q_{T} histogram as shown in fig 7

[^5]: * At $\sqrt{ } s=800 \mathrm{GeV}$ the QCD calculation for $M \leqq 10 \mathrm{GeV}$ is not trustworthy since for values $\sqrt{ } \tau=M / \sqrt{ } \leqslant<002$ the involved constituent distnbutions (or, related to this, $\mathrm{d}^{2} \sigma /\left.\mathrm{d} M \mathrm{~d} Y\right|_{Y=0}$) are unknown

