Nuclear Physics B180[FS2] (1981) 330—340
© North-Holland Publishing Company

ON THE ROUGHENING TRANSITION IN NON-ABELIAN
LATTICE GAUGE THEORIES

Gernot MUNSTER!
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Peter WEISZ?
1. Institut fur Theoretische Physik der Universitat Hamburg, Germany

Received 15 October 1980

We estimate the location 8 = (g4 N) ™! of the recently discussed roughening transition for
SU(N) lattice gauge theories in » = 3 and 4 dimensions. The obtained values always lie in the
crossover region where the string tension starts to deviate significantly from the leading strong
coupling behaviour. Bx(N) increases as N increases, tending to a finite limit (=0.38 for » = 4) as
N - co. Results for the solid on solid model (SOS) approximation are also presented and shown
to give a good qualitative description; however, group theoretical effects seem to be important
for quantitative estimates.

1. Introduction

It has recently been realized [1-3] that a surface roughening transition, well
known previously in the Ising model in » = 3 dimensions {4] which is dual to the
» =3 Z, lattice gauge theory, should occur in all gauge theories in » > 3 dimen-
sions. A manifestation of the phenomenon is a divergence in the width of the flux
tube connecting an infinitely separated static quark-antiquark pair for couplings
B> Br=(giN) ! while the string tension remains finite.

If the quark and antiquark lie on a line parallel to one of the lattice axes then the
string width is zero for 8 =0. For high temperatures just above the roughening
point, i.e., 85 Bg a physical picture of a wildly fluctuating string which keeps its
identity is probably reasonable. The situation in the continuum limit §— co may,
however, be much more complicated. Nevertheless arguments can be made that a
string roughening takes place independent of the detailed form of the underlying
dynamics due to the special geometrical situation and the quantum mechanical
nature of the problem. Indeed following ideas of Giinther, Nicole and Wallace [5],
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Liischer [6] has shown that the assumption that an infinitely long quantum
mechanical flux tube of finite width exists in the continuum theory is self-
contradictory. In lattice gauge theories it can then be argued that an alternative
characterization of the roughening transition is the effective restoration of transla-
tional symmetry in the sense that non-translation invariant states do not exist for
B> Br. In refs. [1-3,7] the roughening points in abelian and SU(2) lattice gauge
theories have been estimated. Itzykson, Peskin and Zuber [1] consider an indicator
for the transition which effectively measures the degree of translational symmetry
restoration. In ref. [3] a string width is defined and is used as an indicator for the
transition. It is satisfying that for the groups analysed so far, the roughening points
estimated by the two methods are in good quantitative agreement.

In ref. [7] we extended the studies of ref. [1] to abelian groups Z,, U(1). The
present work further extends the study to the non-abelian groups SU(N). The
models are defined in sect. 2. We have calculated the string tension and string
width in the high-temperature expansion to 12th order. Results for the string
tension have been presented previously for SU(2) [8—10] and SU(3) [8, 11, 12]. Only
the results for the limit N = oo are new*. The roughening point for SU(2) in » =4
was considered in [1, 3]. As in this case the roughening points always occur in the
crossover region where the string tension starts to deviate significantly from the
leading high-temperature behaviour.

Our results are discussed in some detail in sect. 3. We have also calculated the
string width in the solid on solid (SOS) model approximation [15, 1, 2]. It is indeed
true that this approximation qualitatively describes the roughening phenomenon
but it seems that group theoretical details are important for a precise determination
of the roughening point. For » = 4 we find that the roughening points increase with
N and tend to a finite limit Bg ~0.38, well below the single plaquette integral
singularity [16] at 8= 0.5.

2. The models

We study euclidean gauge theories with gauge group SU(N) on a hypercubical
lattice in » =3 and 4 dimensions. The gauge field variables U(b) € SU(N) are
attached to the links b of the lattice. The ordered product of the variables U(b) for
the four links b on the boundary of an elementary plaquette p is denoted by U(p).
We use the standard Wilson action [17],

L=SL[U@)], with L[U]==(TtU+TrU*), )
P g

where the sum extends over all unoriented plaquettes.

* The string tension for N = oo has also been studied by Brower [13). The analogous calculation for
hamiltonian lattice theories has been made in ref. [14].
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For strong coupling g2N the pure lattice gauge theories are known to confine
static quarks by a potential which increases linearly for large separations. The slope
of the potential is the string tension «. In ref. [3] a width of the flux tube connecting
a static quark-antiquark pair was defined through the distribution of the chro-
moelectric field energy density between them. Its high-temperature expansion can
be calculated using the same graphs which appear in the expansion of the string
tension a [10].

The natural expansion parameters in high-temperature series are the coefficients
0< a,(g?) <1 in the Fourier expansion

exp L[U] = 9U(g?)(1+ 3 d,a(g?)x ). @
r#0

The sum extends over all inequivalent non-trivial irreducible representations of the
group SU(N), labelled by r. d, and x, denote the corresponding dimensions and
characters respectively and 91(g?) is a normalization factor. Using orthogonality
relations, we have .

_ JdUx(U)exp L[U]
" fdUexp L[ U]

d.a =d.a

ror

; 3

where dU is the Haar measure on SU(N).

In table 1 we list the representations that occur in our analysis, their dimensions,
and notations for the corresponding Fourier coefficients a,. The Fourier coefficient
for the fundamental representation is denoted by . It is possible to expand all
other coefficients as power series in  and convenient to express the string tension
and string width as power series in u alone. One obtains*

—a=lnu+ D a,u”, 4)
n>4
ol= > ou". )
n>4

The coefficients a,, 0, have a finite limit as N — co [18]. To discuss the case N— oo
it is convenient to introduce the variable 8:

B=——. (6)

The one-plaquette integral  has been evaluated explicitly as a function of 8 in the

*Forp=2:a,=o0,=0 for all n.
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TasLE 1
Notation for corresponding
Representation r Dimension d, Fourier coefficient a,

D N u

11 dy=iN(N + 1) o

N-14 04 dy=N2—1 v
— LI |
il

B dy=iN(N-1) 0y

[T Dy=!N(N+1XN+2) w,

N=-11. D,=Y{N=-1)NN+2) W,

] DS=%N(N2"1) Wy

Dy=IN(N-1XN-2) Wy

N-14 1 Ds=L{(N—2)N(N+1) ws

Special cases: N=4: wy=ws,wy=u,

N=5 wy=v0;.
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limit N — oo, B fixed by Gross and Witten [16]. It has a point of non-analyticity at
B =10.5 and is given by

B, for < 0.5,
u = _ 1 0]
llivf_x;:i 1 a8’ for>05.

In the limit N — oo the other Fourier coefficients (see table 1) also take on a simple
form [19] (4 < 0.5)

d,o,(N,u)=Vu*+ O((2u)~) ,
D,w,(N,u)=Wu>+ O((Zu)N) , (8)

where the coefficients V;, W, are given by

d
V= lim —, W= lim —. 9
! Nl—l;[:oNz ! NI_I)I:ON3 ©)

A remark about the strong coupling expansion for N = oo is here in order. One
often sees in the literature the statement that ‘planar’ graphs dominate the strong
coupling expansion in the limit N — co. Which strong coupling graphs are included
as planar is, however, hardly, if ever, defined. This has led some confusion in the
literature. See, for example, refs. [20, 21].

If one considers only self-avoiding surfaces with the topology of a disc as being
planar, as seems to be the case in Weingarten’s paper [20], the above statement is
not true. Already in 10th order in the strong coupling expansion for the string
tension one finds graphs which correspond to non-self-avoiding surfaces but
contribute in the limit N-» 0. (For example consider graph no. 11 of ref. [10],
which is essentially equivalent to Weingarten’s counterexample.) Graphs of this
type produce the main difference between the coefficients for SU(o0) and SOS
approximation, which is not negligible (see table 3).

On the other hand these graphs correspond to surfaces which are planar in the
sense that it is possible to deform them into flat surfaces with trivial topology. For
this purpose one has to consider carefully how the different plaquettes are sewn
together through group contractions [22] in the integration procedure. A corre-
sponding remark in the case of Weingarten’s graph has been made by Forster [21].

Finally we discuss the solid on solid model (SOS) approximation [15, 1,2]. For
» =3 it associates with each surface without overhangs or islands bounded by a
planar loop C an energy

HSOS=2_12 (Ihi,j-hi+1,j|+|hi’j—hi’j+1|)’ (10)
iJj
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where i,j denote points of the 2d lattice in the plane of ©, and the surface is
specified by the heights A, ;=0,+1,+2,... . The free energy of the SOS model is
the string tension in Z, gauge theory in the approximation of omitting surfaces
with overhangs and islands (and leaving out the leading term Inu). For other
groups and also » =4 we define the solid on solid approximation by a similar
procedure omitting also all group theoretical structure and identifying the variable
exp(—2J)=u.

3. Results and discussion

First we consider the high-temperature series for the string tension a. For gauge
groups SU(2), SU(3) in » =3 dimensions they have been given by Drouffe {8] to
16th order (see also ref. {9]). The results for SU(2), SU(3) in » = 4 dimensions have
been given in refs. [10—12]. The results to 12th order for N > 4,»=3,4 are
summarized in table 2. In table 3 we exhibit the coefficients a,,n < 12, defined in
eq. (4) for N=2,3, 0 and the corresponding curves are plotted in figs. [1,2]. We
have not bothered to explicitly derive the coefficients for all N. However, as found
by Kogut and Shigemitsu [14] the behaviour in N (at least to low orders in u
considered here) is smooth and the N = oo limit approached rather rapidly. In table
3 we also include the results of the SOS approximation and see that only qualitative
features of the series are reproduced.

The coefficients o, appearing in the expansion for the string width {eq. (5)] are
given in table 4 for N =2,3, oo and for the SOS approximation. We seek a signal
for the divergence at a roughening point ux by (i) looking for a pole in the Padé
approximants to 62, (ii) seeking a zero in the series for (62a) ™. The results of this
analysis are summarized in table 5.

To draw any conclusions one has to assume that the low-order Padés give the
roughening point quite accurately, as seems to be the case for Z, [4]. For the case
of SU(2) (v = 3,4) and SU(o0) (v = 4) the values appearing in table 5 are stable and
reasonable estimates for the roughening points can be made. For the case of N =3,
however, it is difficult to make a reliable estimate for u; since our Padé table is not
at all stable. The instability is due mainly to the large negative coefficient ¢,,. The
case N = 3, however, is not expected to be an exception in that we anticipate the
roughening phenomenon to occur, but more work is required to establish the
roughening points with more certainty.

From our analysis we find that the roughening transition occurs in all cases at
‘the crossover region’ where the string tension starts to deviate significantly from
the leading high temperature behaviour. This is also indicated in figs. 1,2. The
roughening points Sgx(/N) increase as N increases approaching a value Sg(cc) well
below (at least for » = 4) the point of non-analyticity 0.5 in u(oo, 8). The fact that
this non-analyticity produces a sharp turnover in the string tension in » =2
dimensions when plotted as a function of B8 has led to the speculation that the



TABLE 2
String tension to 12th order for SU(N), N > 4

y=3

ca=lnu+2u® + 2ut(do, + dyv, + dyoy) — 4(N? - 1)u’ + 10u®
+2(dyv} + d,03 + d303) + 12u8(dyo} + dyod + dyo?)
— 8ub(dyv, + dyv, + dyv;) — 12(N2 - 2)u'
+ 2N " Yu=1(d o[ Dw, + Dyw, + Dywy] + d 03[ Dow, + Dyw]
+d303[(1 ~ 854)(D3ws + Dgwy) + Dsws])

— 4d20§ — 2d30§ — 22 — 8p,) d205 + Bud(d,0f + dyof + dyot)

2_
. 12(N + 2)2 d‘2d2“60|202+__3L— d, d2d3u6010103+—!—£ d;uGo%
_N(N+ 1) (N?-)) (N2 -1)?
12(N-2) 2.6, 2 8(d.o? 2 2
+m dydiulop0d + 24u’(diof +dyo3 + dyo])

— 4u¥(dyv, + d,0, + d303)* + Nu®(Dyw, + 3D,w, + 2 Dyws + Dyw, + 3Dsws)

— (18N2 4 32)u'°(d,v, + dyv; + d3v;) + (32N4 + 28 )12

v=4

a=Inu+4u®+4u'(dyo, + dy0, + dyv;) — 8(N? = 1)u® + 56u°
+ 4(dyv} + dyv3 + dyv3) + 28uS(d 0} + dyo} + dwd)
+ 56u%(d; v, + dyv, + dyvy) — 24(IN? ~ 10)u'?
+ 4N "'y~ 1(d0] [ Dywy + Dywy + Dyws] + dy03[ Dywy + Daws]
+d303[(1 — 8 )(D3ws + Dywy) + Dsws])

— Bd7v$ — 4d3 0§ ~ 42— 8yg) dF0S + 16u(dyof + d ol + dyod)

24(N +2 2_
+—£——l2 dld,uplo, + 8 d,d,dyubv 00, + 8(N—2_) d3uo3
N(N+1) (N2-1) (N2 1)
24(N -2
+ HN=-2) d,d} ubv,0} + 48u(d 0} + dyoF + dyod)

N(N-1)
+2848(d,v, + dyvy + d30,)° + 6Nu5(Dwy + 3D,w, + 2D;wy + Dyw, + 3Dswy)

—4(5IN% — 28)u'%(dyv; + dyv, + dyv,) + (240N* — 352N + B34 )y 12
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TABLE 3
String tension coefficients a,, [defined in eq. (4)]

y=3 a,
Model\\” 4 5 6 7 8 9 10 1 12
SUQ) 2 0 0 0 EX 0 — oz 0 122882
SU@) 26 -5 —18 2 _ue  wew  _zemu umy
SU(o0) 2 0 4 0 10 0 76 0 52
SOS 2 0 4 0 10 0 24 0 154
r=4 a,
Model \" 4 5 6 7 8 9 10 11 12
SUE) a4 0 0 0 16 0 1% 153200
SUQ3) 4 12 -10 -3 = un Boey  _summ i
SU(o0) 4 0 ()} 56 0 344 0 458
SOS 4 0 0 56 0 208 0 a6
SUIN} , w=3

T T 711
R T

1

!
0 1 2 3

Fig. 1. The string tension a as a function of B=(g2N)~! for SU(N) lattice gauge theory in » =3

dimensions, N = 2, 3, co. The solid lines show the results of 12th-order strong coupling expansions, the

dashed lines represent the lowest-order strong coupling curves. The estimated roughening points R are
also indicated on the g-axis.
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SUIN)

Y=b

I

) I T

E
.
N
Fig. 2. Same as fig. 1, but for » = 4,
TABLE 4
String width coefficients g, [defined in eq. (5)]
yr=3 o,
Model\' 4 5 6 7 8 9 10 11 12
SUQ) 2 0 4 0 2 0 s0u 0 ios4as2
sU@3) 2 6 -1 -18 % -5 -5 =
SU(c0) 2 0 8 0 40 0 272 0 1166
SOs 2 0 8 0 40 0 168 0 766
y=4 a,
Model N\ " 4 5 6 7 8 9 10 11 12
SU@) 4 0 8 0 £ 0 150896 se30004
SU@3) 4 12 -2 -3 = Wi e LTI
SU(c0) 4 0 16 0 120 0 896 0 5588
Sos 4 0 16 0 120 0 656 0 3988
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TABLE 5

Roughening points [values of ug, Bz = 1/g3 N}

339

»=3 "R from Padé for o "R from (0?a)~!
(ﬁn) TO! g (BR) TOm (o“a
Modet\lL- M1 14 41 3,4 2.4 [3.5] [2.6] 1,7 [0,8]
SU@) 0.459 0.459 0.459 0.457 0.461
0.27) 027 027 027 027
SU@) 0.555 0382 0473 0422 0425 (0.359+i0,1) 0.277 0277
(0.47) (0.30) (038) (0.33) (0.34) 0.28) 022 022)
SU(o0) 0.420 0.543 0.429 0.460 0.475
(0.42) 0.54) (0.43) (0.46) 0.48)
SOS 0475 0.470 0.475 0.473 0.484
- Ur ; 2 Ur 2,431
v=4 (B) from Pade for o (Bp) from (o°a)
Mode\IL-M1 (4,41 13,4 12,4 [3.51 [2.6) 7 [0,8]
SUQ) 0.397 0410 0.404 0.395 0.401
022) 023) (0.23) 022) 0.23)
SUQE) 0461 0340 0411 0372 0375 (0.371+i0,1) 0272 0.273
(037) 027 (032) (029) (0.29) 0.29) 0.22) 022)
SU(o0) 0.365 0.366 0.383 0.385 0.393
©0.37) 0.37) (0.38) (0.38) (0.39)
SOS 0.411 0.407 0.416 0.412 0.426

origin of the sharp turnover observed in y = 4 might be associated with analogous
singularities. From a physical point of view, however, it would be surprising if the
analytic behaviour of the one plaquette integral had anything to do with the
roughening phenomenon and our value of up(o0) indeed supports the intuition that
it does not. '

With regard to the solid on solid approximation the results indicate that the
approximation is indeed good qualitatively but quantitatively the group theory
does introduce important additional effects.

In conclusion the existence of a roughening phenomenon in lattice gauge
theories with arbitrary gauge group seems well established. The implications of this
phenomenon for deductions about the continuum limit are not so well understood
although they are thought to be drastic. Indeed, it has been speculated [1, 2] that
the string-tension has a non-analytic behaviour at 8y

a ~ analytic + const- e ~const-/IA=Bx]'/? (11)
If this is the case then By is a natural boundary for the extrapolation of strong
coupling expansions unless the strength of the non-analytic piece can be shown to
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be negligibly small. In particular some doubt is shed on any estimates of con-
tinuum quantities such as the scale parameter A using strong coupling expansions
[10-12,14]. On the other hand if the crossover from strong to weak coupling
behaviour occurs rapidly for the quantities under consideration, as it seems to be
the case [23], a mild non-analyticity might perhaps not affect much these estimates.

We thank F. Green and M. Liischer for discussions.

Note added in proof

After completion of this work we became aware of the work of Drouffe and
Zuber [24]. We thank these authors for pointing out an error in our results for the
string tension for the groups Z; and SU(3) in » =4 dimensions in ref. [12]. The
corrected result appears in table 3.
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