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We estimate the location f iR ~ (g 2N)  - I of the recently discussed roughening transition for 
SU(N) lattice gauge theories in p 1= 3 and 4 dJmeusions. The obtained values always lie in the 
crossover region where the string tension starts to deviate significantly from the leading strong 
coupling behaviour, fiR(N) increases as N increases, tending to a finite limit (~,0.38 for p - 4) as 
N--~ oo. Results for the solid on solid model (SOS) approximation are also presented and shown 
to give a good qualitative description; however, group theoretical effects seem to be important 
for quantitative estimates. 

1. In t roduct ion 

I t  has  recent ly  been  rea l ized [1 -3 ]  that  a surface  roughening  t ransi t ion,  well  

k n o w n  previously  in the Ising mode l  in p - - 3  d imens ions  [4] which is dua l  to the  

p = 3 Z 2 lat t ice gauge  theory,  should  occur  in all  gauge theories  in p > 3 d imen-  

sions. A mani fes ta t ion  of the p h e n o m e n o n  is a d ivergence  in  the wid th  of  the f lux 

tube  connec t ing  an  inf ini te ly  s epa ra t ed  stat ic  qua rk -an t i qua rk  pa i r  for  coupl ings  

f l  ~ f iR = - -  ( g 2  N ) - l while the s tr ing tens ion  remains  finite. 

If the quark  and  an t iqua rk  lie on a line para l le l  to one of the  la t t ice  axes then the 

string width  is zero for  fl = 0. F o r  high t empera tu res  ju s t  above  the roughen ing  

point ,  i.e., f l ~  f i r  a phys ica l  p ic ture  of a wildly f luc tua t ing  str ing which  keeps  its 

ident i ty  is p r o b a b l y  reasonable .  The  s i tua t ion  in the con t inuum l imit  fl--~ oo may,  

however,  be  much  more  compl ica ted .  Never the less  a rgumen t s  can  be  m a d e  tha t  a 

s tr ing roughening  takes  p lace  i n d e p e n d e n t  of the de ta i led  fo rm of  the under ly ing  

dynamics  due to the special  geometr ica l  s i tua t ion  and  the q u a n t u m  mechan ica l  

na ture  of the p rob lem.  I n d e e d  fo l lowing ideas  of  Gi in ther ,  Nico le  a n d  W a l l a c e  [5], 
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Liischer [6] has shown that the assumption that an infinitely long quantum 
mechanical flux tube of finite width exists in the continuum theory is self- 
contradictory. In lattice gauge theories it can then be argued that an alternative 
characterization of the roughening transition is the effective restoration of transla- 
tional symmetry in the sense that non-translation invariant states do not exist for 
fl > fiR" In refs. [1-3, 7] the roughening points in abelian and SU(2) lattice gauge 
theories have been estimated. Itzykson, Peskin and Zuber [1] consider an indicator 
for the transition which effectively measures the degree of translational symmetry 
restoration. In ref. [3] a string width is defined and is used as an indicator for the 
transition. It is satisfying that for the groups analysed so far, the roughening points 
estimated by the two methods are in good quantitative agreement. 

In ref. [7] we extended the studies of ref. [1] to abelian groups Z~, U(1). The 
present work further extends the study to the non-abelian groups SU(N).  The 
models are defined in sect. 2. We have calculated the string tension and string 
width in the high-temperature expansion to 12th order. Results for the string 
tension have been presented previously for SU(2) [8-10] and SU(3) [8, 11, 12]. Only 
the results for the limit N = oo are new*. The roughening point for SU(2) in v = 4 
was considered in [1, 3]. As in this case the roughening points always occur in the 
crossover r e#on  where the string tension starts to deviate sigmificantly from the 
leading high-temperature behaviour. 

Our results are discussed in some detail in sect. 3. We have also calculated the 
string width in the solid on solid (SOS) model approximation [15, 1, 2]. It is indeed 
true that this approximation qualitatively describes the roughening phenomenon 
but it seems that group theoretical details are important for a precise determination 
of the roughening point. For  v = 4 we find that the roughening points increase with 
N and tend to a finite limit f R ~ 0 . 3 8 ,  well below the single plaquette integral 

singularity [16] at fl -- 0.5. 

2. The models 

We study euclidean gauge theories with gauge group SU(N)  on a hypercubical 
lattice in v = 3 and 4 dimensions. The gauge field variables U(b)E  SU(N)  are 
attached to the links b of the lattice. The ordered product of the variables U(b) for 
the four links b on the boundary of an elementary plaquette p is denoted by U(p). 
We use the standard Wilson action [17], 

L = ~ . L [ U ( p ) ] ,  with L[U] = l ( T r  U + T r  U +)  g2 , (1) 
P 

where the sum extends over all unoriented plaquettes. 

* The string tension for N - 00 has also been studied by Brower [13]. The analogous calculation for 
hamiltonian lattice theories has been made in ref. [14]. 



332 G. Mi~nster, P.  Weisz / Roughening transition 

For strong coupling g2N the pure lattice gauge theories are known to confine 
static quarks by a potential which increases linearly for large separations. The slope 
of the potential is the string tension a. In t e l  [3] a width of the flux tube connecting 
a static quark-antiquark pair was defined through the distribution of the chro- 
moelectric field energy density between them. Its high-temperature expansion can 
be calculated using the same graphs which appear in the expansion of the string 
tension a [10]. 

The natural expansion parameters in high-temperature series are the coefficients 
0 < ar(g 2) < 1 in the Fourier expansion 

expL[U]=O'~L(g2)(1 + • drar(gU)x,(U)). (2) 
r~O 

The sum extends over all inequivalent non-trivial irreducible representations of the 
group SU(N), labelled by r. at, and Xr denote the corresponding dimensions and 
characters respectively and 9L(g 2) is a normalization factor. Using orthogonality 
relations, we have 

f dUXr(U ) exp L[ U] 
d r a r = d r a~ = f dUexp L[ U] ' (3) 

where dU is the Haar measure on SU(N). 
In table 1 we list the representations that occur in our analysis, their dimensions, 

and notations for the corresponding Fourier coefficients a,. The Fourier coefficient 
for the fundamental representation is denoted by u. It is possible to expand all 
other coefficients as power series in u and convenient to  express the string tension 
and string width as power series in u alone. One obtains* 

- a = l n u +  ~, a,,u", (4) 
n ~ 4  

0 2 =  E On un" (5 )  
n>4 

The coefficients a . ,  o. have a finite limit as N ~  oo [18]. To discuss the case N--, oo 
it is convenient to introduce the variable 13: 

1 
t - -  . (6) 

g 2 N  

The one-plaquette integral u has been evaluated explicitly as a function of fl in the 

* For v - 2 : as - o. - O for all n. 
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TABLE 1 
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Representation r Dimension d r 

Notation for corresponding 
Fourier coefficient a ,  

[] N 

d~ -, ~N(N + l) t) I 

f 
m 

N-1 i i  
[] 

d l 'ffi N 2 -  1 I) 2 

B d 3 ffi ~ N ( N -  1) I)  3 

D~ -- ~NUV + I X N +  2) W I 

lq -1  i 

[] 
D 2 - ½ ( N -  I )N(N + 2) w2 

D 3 ~ ] N ( N  2 - 1) w3 

D 4 ~ N ( N -  1 X N -  2) -'4 

N - 1  D 5 - - ~ ( N - -  2 ) N ( N +  1) w5 

Special cases: Nffi 4: w 3 ffi w5, w 4 ffi u, 

N ffi 5: w4 ffi v 3. 
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limit N.--,, co, ~ fixed by Gross and Witten [16]. It has a point of non-analyticity at 
fl = 0.5 and is given by 

[ t5, for/3 < 0.5, 

u N--,oo= ~ 1 1 P fixcdl -- ~--~, for/~ • 0.5. 
(7) 

In the limit N ~  co the other Fourier coefficients (see table 1) also take on a simple 
form [19] (u < 0.5) 

a ,v , (  N , . )  = V,u 2 + off2=)"), 

D,w,(N, u) = W,. + 0 ( ( 2 . ) " ) ,  (8) 

where the coefficients V~, W~ are given by 

dl D, 
Vi-  N--,oolim N 2 ,  W/ N--,oolim N 3 .  (9) 

A remark about the strong coupling expansion for N = co is here in order. One 
often sees in the literature the statement that 'planar' graphs dominate the strong 
coupling expansion in the limit N---> oo. Which strong coupling graphs are included 
as planar is, however, hardly, if ever, defined. This has led some confusion in the 
literature. See, for example, refs. [20, 21]. 

If one considers only sel f -avoiding surfaces with the topology of a disc as being 
planar, as seems to be the case in Weingarten's paper [20], the above statement is 
not true. Already in 10th order in the strong coupling expansion for the string 
tension one finds graphs which correspond to non-self-avoiding surfaces but 
contribute in the limit N-->co. (For example consider graph no. 11 of ref. [10], 
which is essentially equivalent to Weingarten's counterexample.) Graphs of this 
type produce the main difference between the coefficients for SU(co) and SOS 
approximation, which is not negligible (see table 3). 

On the other hand these graphs correspond to surfaces which are planar in the 
sense that it is possible to deform them into flat surfaces with trivial topology. For 
this purpose one has to consider carefully how the different plaquettes are sewn 
together through group contractions [22] in the integration procedure. A corre- 
sponding remark in the case of Weingarten's graph has been made by F6rster [21]. 

Finally we discuss the solid on solid model (SOS) approximation [15, 1, 2]. For 
v = 3 it associates with each surface without overhangs or islands bounded by a 
planar loop G an energy 

H s°s = 2 J E  (Ihi , j  - h i+, , j l  + I h i , j  - h,j+,l), 
i,j  

(m) 
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where i , j  denote points of the 2d lattice in the plane of C, and the surface is 
specified by the heights hi, j = 0 , _  1 , _2  . . . . .  The free energy of the SOS model is 
the string tension in Z 2 gauge theory in the approximation of omitting surfaces 
with overhangs and islands (and leaving out the leading term ln u). For  other 
groups and also I,---4 we define the solid on solid approximation by a similar 
procedure omitting also all group theoretical structure and identifying the variable 
exp( - 2 J )  = u. 

3.  R e s u l t s  a n d  d i scuss ion  

First we consider the high-temperature series for the string tension a. For  gauge 
groups SU(2), SU(3) in J,---3 dimensions they have been given by Drouffe [8] to 
16th order (see also ref. [9]). The  results for SU(2), SU(3) in p = 4 dimensions have 
been given in refs. [10-12]. The results to 12th order for N ) 4 , p = 3 , 4  are 
summarized in table 2. In table 3 we exhibit the coefficients a n, n < 12, defined in 
eq. (4) for N = 2, 3, oo and the corresponding curves are plotted in figs. [ 1, 2]. We 
have not bothered to explicitly derive the coefficients for all N. However, as found 
by Kogut and Shigemitsu [14] the behaviour in N (at least to low orders in u 
considered here) is smooth and the N = oo limit approached rather rapidly. In table 
3 we also include the results of the SOS approximation and see that only qualitative 
features of the series are reproduced. 

The coefficients on appearing in the expansion for the string width [eq. (5)] are 
given in table 4 for N = 2, 3, oo and for the SOS approximation. We seek a signal 
for the divergence at a roughening point u R by (i) looking for a pole in the Pad6 
approximants to o 2, (ii) seeking a zero in the series for (o2a) -~. The results of this 
analysis are summarized in table 5. 

To draw any conclusions one has to assume that the low-order Pad6s give the 
roughening point quite accurately, as seems to be the case for Z 2 [4]. For  the case 
of SU(2) 0'  = 3,4) and SU(oo) 0 '  = 4) the values appearing in table 5 are stable and 
reasonable estimates for the roughening points can be made. For the case of N = 3, 
however, it is difficult to make a reliable estimate for u R since our Pad6 table is not 
at all stable. The instability is due mainly to the large negative coefficient o11. The 
case N -  3, however, is not expected to be an exception in that we anticipate the 
roughening phenomenon to occur, but more work is required to establish the 
roughening points with more certainty. 

From our analysis we find that the roughening transition occurs in all cases at 
'the crossover region' where the string tension starts to deviate significantly from 
the leading high temperature behaviour. This is also indicated in figs. 1, 2. The 
roughening points fiR(N) increase as N increases approaching a value flR(oO) well 
below (at least for 1, = 4) the point of non-analyticity 0.5 in u(oo, fl). The fact that 
this non-analyticity produces a sharp turnover in the string tension in i, = 2 
dimensions when plotted as a function of fl has led to the speculation that the 



TABLe 2 
String tension to 12th order  for S U ( N ) ,  N ~ 4 

~ - 3  

• ot =ffi l n u  + 2u  4 + 2u4(dlOl  + d2v 2 4- d3t~3) - 4 ( N  2 - l ) u  6 + 10u s 

+ 2(dlV 5 + d2 v5 + dav~) + 12u6(dlv  2 + d2v g + day 2 )  

- 8uS(dlv l  + d2v 2 + d3v 3) - 12(N 2 - 2 )u  Io 

+ 2~v - 'u  -'(d,,~;[ o~-,, + 02.'2 + 03w31 + d ~ [ o ~  + o~.,, ] 

4- d3vS[(l  -- 8N4)(D3w 3 + D4w4) + DSwS] ) 

- 4d2v61 -- 2d~v62 2(2 2 6 4 4 4 4 -- -- 8N4) d3 v3 -I- 8u (dl t~l ' t 'd2v2"t 'd3o3)  

1 2 ( N + 2 )  2 6 2 24 4 ( N 2 - 2 )  
- -  d I d2u  1 0 1 U 2 " 4 " ~  dld2d3u601v2v3"l" - - - - - -  d 3 u 6 ~  

+ N ( N +  1) 2 ( N  - 1) ( N  2 - 1) 2 

1 2 ~ # -  2) d~ d 2 u % ~  + 2 4 ~ ( d , ~  + d ~  + d , ~ )  
+ ~ ( N -  l) ~ 

- -  4uS(d i r t  + d2t~ 2 -~ d3v3) 2 -4- Nu9(DIw! + 3D2w 2 + 2D3w 3 + D4w 4 -I- 3D,~ws) 

- (18N 2 + 32)u'O(dlVl + d2v 2 + d3v 3) + ( 3 2 N  4 + ~ ) u  TM 

p f f i f f i 4  

a ffi= In u + 4 u  4 + 4 u 4 ( d l v l  + d2v 2 + d3v3) - 8 ( N  2 - 1 ) u  6 + 56u s 

+ 4(d1 v5 + d2v2 ~ + d3v35) + 24u6(dlVl  2 "4" d2022 + d3v32) 

+ 56ua(dlVl + d2v 2 + d3v3) - 24(7N 2 - 10)u 10 

+ 4~v - ~  -~ (d ,~ iD,*~  + Z ~ :  + D3*~] + d ~ [  D2*~ + Z ~ s I  

+ d3v35[(l - 8..)(03w3 + D.*4) + 05~5I) 

2 6 2 6 2 6 16u4(dlv~ d2v~ + - 8d I t~ 1 - 4 d 2 v  2 - 4(2 - ~N4) d3 v3 + 4- d3034) 

8(N 2 - 2) 
2 4 ( N +  2 )  d ~ d 2 u % 2 v  2 + 4 8  dl d2d3u6vlv2v3 -t - - - -  . t 3 .6 .  3 

-I. N ( N +  1) 2 ( N  2 -  1) ( N  2 - ~)2 ~2~ ~2 

2 4 ( N - 2 )  2 6 2 4 8 u a ( d l o 2 + d 2 v 2 + d 3 v 2 )  -4- N - - ~  --- 1-~ d2 d3 U f9203 "~ 

+ 28uS(dir t  + d2t~ 2 "4- d3t~3) 2 + 6Nu9(OlWl + 3D2w 2 .4- 2D3w 3 + D4W 4 "4" 3Dsws) 

- 4(51N 2 - 28)u l° (d tv l  + d2v 2 + d3v3) + (240N 4 - 352N 2 + ~ - ) u  12 
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TABLE 3 
String tension coefficients a .  [defined in eq. (4)] 

M o d e l " ' ~  4 5 6 7 8 9 10 11 12 

SU(2) 2 0 0 0 ~34 0 _ ~-1012 0 ,~S21215 

SU(3) 2 6 -- 5 - 18 ~-319 - ~-"49 I~r,9~lo~ u2eg.~ J3:, .,'m9n2~ 

S U ( ~ )  2 0 4 0 1O 0 76 0 s~ 

SOS 2 0 4 0 10 0 24 0 ~94 

p = = 4  a .  

M o d e l X ~  4 5 6 7 8 9 10 11 12 

SU(2) 4 0 0 0 I ] 6  O 10936 O 1532044 
405 1215 

SU(3) 4 12 - 10 - 36 39~ .31 2~sm7 ~2m8, 285551579 
5120 ~4S 61440 

SU(oo) 4 0 8 0 56 0 344 0 458s 

SOS 4 0 8 0 56 0 208 0 31~, 

SU(N) . 9 : 3 

I I I I I 

1.0 

N = o 3  

N : 3  

0.1 N : 2  

I I J J I I / I~ s ~ 6 0 I 2 R2 
R 3 Go 

12 

g2N 

Fig. 1. The string tension a as a function of f l = f ( g 2 N ) - I  for SU(N)  lattice gauge theory in pffi3 
dimensions, N ffi 2, 3, oo. The solid lines show the results of 12th-order strong coupling expansions, the 
dashed lines represent the lowest-order strong coupling curves. The estimated roughening points R jr are 

also indicated on the ~-axis. 
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$U{N) , ~= L, 

I I I I I 

C~ 

1.0 

0.1 N:3 
N:2 

I I I I 
2 

~2 3 R 

17 
g2 N 

Fig. 2. Same as fig. 1, but  for v .- 4. 

N=co 

TABLE 4 
String width coefficients o n [defined in eq. (5)] 

v=3 o~ 

M o d e l ~  n 4 5 6 7 8 9 10 11 12 
1 

SU(2) 2 0 4 0 ~ 0 43o48 0 i ~  
405 1215 

SU(3) 2 6 - 1 - 18 T5'3 _ -~-12o9 2374581512o 2~712ss " ~ ' ~  

SU(oo) 2 0 8 0 40 0 272 0 1166 
SOS 2 0 8 0 40 0 168 0 766 

v - 4  

M o d e l ~ x n  4 5 6 
1 

su(2) 4 o 8 

SU(3) 4 12 - 2 

SU(oo) 4 0 16 
SOS 4 0 16 

an 

7 8 9 10 11 12 

0 ~ 0 IS~S,~ 0 sssm4 
3 44~ 1215 

- 3 6  ~ 3  iol 32~S7Ol 47-,11 i ~ ,  
T ~ 2560 17at 10240 

0 120 0 896 0 5588 
0 120 0 656 0 3988 
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TABLE 5 
Roughening points [values of UR, f i r  = l /g  2N ] 

339 

v- -3  

M o d ¢ l ~ '  M] 

SO(2) 

su(3) 

SU(o0) 

SOS 

ld R 
(f ig)  from Pad~ for 02 

[4, 4] [3,4] [2,4] [3, 5] [2, 61 [1, 7] [0, 81 

UR ( ~ x )  from (o2a ) - I  

0.459 0.459 0.459 0.457 0.461 
(0.27) (0.27) (0.27) (o.27) (o.27) 
0.555 0.382 0,473 0.422 0.425 (0.359_i0,1) 0.277 0.277 

(0.47) (0.30) (0.38) (0.33) (0.34) (0.28) (0.22) (0.22) 
0.420 0,543 0.429 0.460 0.475 

(0.42) (0.54) (0.43) (0.46) (0.48) 
0.475 0.470 0.475 0.473 0.484 

u R u R 
= 4 (fiR) from Pad6 for 02 (BR) from (o28)-1 

Model'~ L,M] [4,4] [3,4] [2,41 [3,51 [2,61 [1,71 [0,81 
x .,... 

SU(2) 0.397 0.410 0.404 0.395 0.401 
(0.22) (0.23) (0.23) (0.22) (0.23) 

SU(3) 0.461 0.340 0.411 0.372 0.375 (0.371+i0,1) 0.272 0.273 
(0.37) (0.27) (0.32) (0.29) (0.29) (0.29) (0.22) (0.22) 

SU(oo) 0.365 0.366 0.383 0.385 0.393 
(0.37) (0.37) (0.38) (0.38) (0.39) 

SOS 0.411 0.407 0.416 0.412 0.426 

origin of the sharp turnover observed in v --- 4 might be associated with analogous 
singularities. From a physical point of view, however, it would be surprising if the 
analytic behaviour of the one plaquette integral had anything to do with the 
roughening phenomenon and our value of UR(O0) indeed supports the intuition that 
it does not. 

With regard to the solid on solid approximation the results indicate that the 
approximation is indeed good qualitatively but quantitatively the group theory 
does introduce important additional effects. 

In conclusion the existence of a roughening phenomenon in lattice gauge 
theories with arbitrary gauge group seems well established. The implications of this 
phenomenon for deductions about the continuum limit are not so well understood 
although they are thought to be drastic. Indeed, it has been speculated [1, 2] that 
the string-tension has a non-analytic behaviour at f i r  

a ~ analytic + const, e-c°nst'/lfl-BRl~/2 (lO 

If this is the case then f ir  is a natural boundary for the extrapolation of strong 
coupling expansions unless the strength of the non-analytic piece can be shown to 
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be negligibly small. In particular some doubt is shed on any estimates of con- 
t inuum quantities such as the scale parameter  A using strong coupling expansions 
[10-12, 14]. On the other hand if the crossover from strong to weak coupling 
behaviour occurs rapidly for the quantities under consideration, as it seems to be 

the case [23], a mild non-analyticity might perhaps not affect much these estimates. 

We thank F. Green and M. Liischer for discussions. 

Note added in proof 

After completion of this work we became aware of the work of Drouffe and 
Zuber  [24]. We thank these authors for pointing out an error in our results for the 
string tension for the groups Z 3 and SU(3) in v = 4 dimensions in ref. [12]. The 
corrected result appears in table 3. 
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