
Nuclear Instruments and Methods 185 (1981) 235-251 235
North-Holland Publishing Company

PATTERN RECOGNITION IN LAYERED TRACK CHAMBERS USING A TREE ALGORITHM

D.G. CASSEL * and H. KOWALSKI
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Received 18 November 1980

We present a new approach to the pattern recognition problem in multi-layer track chambers. Tracks are constructed from
locally related hits using a tree algorithm. This approach has worked well in quite different track finding problems in the large
cylindrical drift chamber in the TASSO detector at PETRA. Its success in analyzing complicated e+e - jet events indicates that it
can be applied to other problems, including the complicated jet topologies expected at higher energy.

1. Introduction

High transverse momentum events with hadron
jets have become a major preoccuptation of high
energy physicists. These events are difficult to ana-
lyze because of their tightly collimated jets with high
multiplicities and secondary vertices. Multi-layer drift
chambers have demonstrated their effectiveness in
detecting the charged particles in these events. How-
ever, they aggravate the already difficult track finding
problem, since the lef t -r ight ambiguity arising from
the conversion of drift time to space points yields
background hits that are inherently near the real
tracks. Fig. 1 illustrates this problem with a high
energy e+e - annihilation jet event in the TASSO
detector [1] at PETRA, shown with and without the
tracks found. Utilization of drift chambers to detect
jet events obviously requires fast and efficient pro-
grams that accurately solve the pattern recognition
problem. At higher energies, where jets are expected
to be more collimated and have higher multiplicity,
the demands on program performance will undoubt-
edly increase.

In this paper we describe a new approach to track
finding in multi4ayer track chambers which we call a
link-and-tree method and which we have successfully
applied in the TASSO experiment [2]. We gather hits
into links (in the simplest case pairs of points in

* On leave from Cornell University, Ithaca, N.Y., U.S.A.

nearby layers) and construct lists of links that are
locally related to each other (e.g. two links with a hit
in common and nearly the same slope would be
related). We then construct complete tracks as
unbroken chains of links from these lists of related
links using a fast tree search algorithm. Other track
recognition methods have also used links and their
local relationship [3] but we have taken a different
approach which appears to be particularly appro-
priate for the problems arising with jets in drift cham-
bers. The versatility of our approach is indicated by
its application in two very different problems in the
TASSO analysis, the rapid rejection of background
in the first stage, and the exhaustive search for tracks
in the last stage. In both situations we find that this
approach leads to fast, efficient and highly struc-
tured programs that give us a measure of control that
we have found lacking in our previous experience.

In section 2 we introduce our approach by com-
paring it with a naive version of the more familiar
road procedure. In section 3 we define the data struc-
tures we used and show how the three algorithm com-
bines them into track candidates. In section 4 we
show how to use this strategy in an exhaustive search
for tracks. Section 5 describes the especially fast
search for high quality tracks using Minimal Spanning
Tree ideas. We conclude with a few suggestions for
extensions in section 6 and a summary in section 7.

To make this paper self-contained, we include a
few details of the construction of the relevant parts
of the TASSO inner detector in appendix A. In
appendix B, we collect a few geometric expressions
and give some details of the TASSO track finding that
are not directly related to the new strategy.

0029-554X/81 /0000-0000 /$02 .50 © North-Holland

2 3 6 D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers

TRSS6

,7
x

Z

x

x.

x

6.0 5.6 ~.~

~?.kX

x •
~ x

+ ; , . .

x

x . ~ x ~ x ~ x

. ~ ~ x x ~ x ' ~

d¢ x~4<~ x ~ ' < x x

x ~ k x x ~ x K x .X

x x .

~<xx

x x
x ~ : k x

x x

x x

t l x

X
x

x

' /

x x

1 N • . Ca

"/2 x x

~ x
x ~ x x x ~ x

[. 3

x ~

x

xx x , ~

x x xx~,y *

x~ x x

. /
x

x

(a)

2. General

To illustrate how our approach works, we compare
it with a road [4] procedure in a considerably simpli-
fied example. Fig. 2 illustrates a straight track in a
drift chamber, along with the extra hits resulting
from the left-right ambiguity. The road method
takes any two hits from the innermost and outermost
layers and gathers all the hits within a road around
the track determined by these two hits. From our
experience in working with this method the first diffi-
culty is that the road generally cannot be too narrow,
since the track parameters determined from two hits

may be imprecise. Therefore, there is often more than
one hit per layer inside the road as shown in fig. 3,
and the best track has to be found by fitting all per-
mutations of hits within the road. Fitting is slow, so
fitting the large number of possible permutations
requires substantial CPU time. The second difficulty
results from chamber inefficiencies, which forces the
program to cycle through a substantial fraction of all
layer pairs to choose the hits that define roads. This
means that many of the permutations will be encoun-
tered again and again as different layer-pairs are used.
These complications diminish the apparent simplicity
of the method and make it difficult to understand the

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 237

TASSO

ro

. : 3 :9

x4 - i 21

,11.09.80

%.

%
%•

l

i
tn

r 2

• . " . 44 . \ t .N. z:
• . /~,

• 0

Y

(b)

Fig. 1. A typical TASSO one photon annihilation hadronic event (a) withough track reconstruction; (b) with track reconstruction.

performance. For example, to be sure that all possible
track candidates with at most two missing chambers
have been found, it is necessary to carry the loops
over chamber pairs nearly to completion. The ques-
tion of how many road-defining pairs to use is a cut
that must be studied and optimized along with other
cuts. Since it is generally impossible to fit all permu-
tations of hits in all possible roads, programs that use
this approach usually include strategies for reducing
the number of roads and permutations. This further
obscures understanding the performance.

In our procedure, speed, clarity and control are
obtained at the price of working with objects which
are more complicated than single hits: in this exam-
ple, the elementary objects are pairs of hits called
"links" illustrated in fig. 4 and the "elementary

trees" composed of them. Since a link has two hits,
a link already determines the parameters of a straight
track or a circular track coming from the interaction
point. The elementary tree of any given link is com-
posed of this link, which is then called the trunk of
the elementary tree, and all links having the vertex in
common and with approximately the same values of
track parameters. (These links are then called
branches of the elementary tree.) Of course, a trunk
of one elementary tree can also be a branch of
another one. Examples of elementary trees are shown
in fig. 5. (In this case the track parameter is the slope
of the link.) The common vertex and the near equal-
ity of track parameters are the local relationship
between links mentioned above.

The elementary trees can be combined to form a

238 D.G. Cassel, H. Kowalski / Pattern recognition in layered track chambers

• @

Fig. 2. A straight track in a drift chamber along with the
extra hits from the left-right ambiguity (the horizontal scale
is considerably larger than the vertical one).

/;j 21 23
2 2 ~ 24

17----7/J~TL~-- 19

• f ls--~k ~115
1 4 - ~ ~ 1 6

Fig. 4. A set of one-gap links corresponding to a hit pattern
of the track from fig. 2., The numbers indicate the indices of
the links in the link list.

Fig. 3. The straight track of fig. 2 together with the road
determined by a pair of hits.

full tree as shown in fig. 6. * The correct track is
immediately recognized as the longest chain of links
in the full tree. (The length of a chain is the number
of links in it.) In the program a fast algorithm climbs
the full tree from the root link, locating all chains
from the root to any leaf but never finding the same
chain twice, In this way tracks (or more precisely
- reliable track candidates) can be recognized with-
out fitting; the only necessary measure of global
quality is the length of the chain. This is due to the
fact that the local cuts that define the elementary
trees tend to break chains containing bad hits. How
this work is shown in fig. 7 which illustrates a track
that would appear within the road in fig. 3. This track
does not appear as a long chain, since the potential
elementary tree consisting of links 5 and 9 does not
appear. This is due to the fact that the angle ~ is
roughly twice as large as e so links 5 and 9 fail the
equal slope cut if we assume that e is greater than
about half of the cut angle.

* We borrow the term tree from the graph theory [5] where
our links are called edges. Our trees may technically not be
trees since they may have joining branches but this does
not affect our algorithm.

ver fex - - * i f

Fig. 5. List of the elementary trees composed of links of
fig. 4. The selection criterion is the approximate equality of
slopes.

p

19

¢-- l e a f

- - l e a f

1) 1 / 1 2 7 l e a f

lea f - - \ 5 \ l 6

root

Fig. 6. A full tree composed from some elementary trees of
fig. 5 and containing the straight track from fig. 2.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 239

,23

49

--15

- - 9

Fig. 7. Example of a hit combination which has to be con-
sidered as a track candidate in the road but not in the tree
method. In the tree method this track does not appear as a
long chain since the elementary tree consisting of links 5
and 9 does not exist. This is because ~ is roughly twice as
large as e so the links 5 and 9 fail the equal slope cut if we
assume that e is greater than about half of the cut angle.

I f more than one reasonable track is found, addi-
tional global quality cuts like the X 2 from a fit to the
track can be applied. In our experiences, this fitting is
not a large burden, due to the high selectively in find-
ing tl~e tracks and the fact that each track is found

only once.
Of course this procedure becomes more compli-

cated when inefficient layers and wild hits are taken
into account. They require simple extensions
described in section 4, which retain the high selectiv-
ity and the guarantee that all tracks consistent with
the local cuts will be found with none being found

twice.

3. Links, elementary trees and full trees

A link is a segment of a potential track with
enough hits to determine the track parameters of the
segment. For example, if the tracks being sought are
straight lines or circles coming from the interaction
point, only two hits are required to define the track
parameters, Zo and tan X for straight tracks or R and
q~0 for circles. (For notat ion see appendix B). I f the
tracks are circles originating at arbitrary points (e.g.
decay vertices) at least three hits are necessary to
define a link since three points define a circle. So far

we have applied out method only to straight tracks
and circles coming from the origin, so for simplicity
we will always assume that two hits determine a link.

Since every pair of hits in different layers defines
a link *, the number of all possible links is far too
large to work with. The number of links that must
be considered can usually be reduced by limiting the
number of hits that must be considered in several
ways. First , we do not construct all links in the whole
chamber at once; we rather work in a specified region
of the chamber (for details see sect. 5 and appen-

dix B)
The second reduction is to consider only those

links whose track parameters are within an interesting
range. In the search for s - z tracks, only links whose
zo is within a fiducial region around the interaction
point are used. In the fast search for circular tracks,
we accept only those links whose radius, R, is larger

than a minimum value Rmi n.
The number of links remaining after this preselec-

t ion is still too large. Further reduction emerges from
the obvious strategy of first searching for tracks with
the smallest number of missing hits. For example, an
exhaustive search for tracks naturally divides into a
number of successive steps. In the frist step tracks
with no missing hits are sought. The next step looks
for tracks with one hit missing for any reason, the
third step seeks tracks with two missing hits, and so
forth. This strategy reduces the number of links
needed, since, for example, in the first step only links
between hits in adjacent layers are required. This

leads us to classify links by the number of gaps they
span, where gap refers to the space between two adja-
cent layers. In searching for tracks with no missing
hits we require only one gap links. In the next step
we also require two gap links, and so forth. Therefore
the best tracks are found using relatively few links.

The fourth possibility of reducing the number of
links occurs after a track is found. Its hits and their
l e f t - r igh t twins are cancelled from the hit list, which
in turn diminishes the number of links which can be
created while searching for further tracks. Note that
this interplay between finding the best tracks early
and cancelling hits leads to a considerable reduction
of the number of links as tracks are found, which is
essential for tracking within a jet .

The links required at a given stage of the search

* Since in TASSO the tracking is made always in projections,
see appendix B, the links are created only between hits
from layers of the same projection.

240 D.G. Cassel, H. Kowalski / Pattern recognition in layered track chambers

are combined into elementary trees. As stated in
sect. 2, the elementary tree consists of one link called
the trunk, together with all links having the middle
point in common, and with approximately the same
value of the track parameter. For example, in the
search for straight lines, the slope a = tan X and inter-
cept b = zo are calculated for each link being con-
sidered. Two links 1 and 2 with a hit incommon are
associated into an elementary tree if they satisfy the
cuts,

l a l - - a 2 l < A a , I b l - - b 2 1 < A b . (1)

The magnitudes of the cuts Aa and Ab are deter-
mined from the measurement errors for single hits
propagated to a and b. It is usually sufficient to check
only the slopes, since the slopes and intercepts are
strongly correlated, expecially after the z0 cut men-
tioned earlier. The cuts used for cirlces coming from
the origin will be discussed in sect. 5. Obviously, since
building elementary trees occurs in inner loops of the
program, the cuts used must be made on quantities
that can be rapidly calculated from the measured
coordinates of the hits.

The links involved in elementary trees are stored
in a list. The elementary tree associated with link
ILINK is specified by two arrays, NNEXT(ILINK)
and INEXT(IBRNCH, LINK). NNEXT(ILINK)is the
number of branches attached to link ILINK, and
IBRNCH runs from 1 to NNEXT(ILINK), if LINK
has any branches. INEXT (IBRNCH, ILINK) is the
index of branch IBRNCH of link ILINK. Of course,
NNEXT(ILINK) equals zero means that there are no
branches for that link. The word "next" really
describes a relationship between a trunk and its
branches; the branches come next after the trunk,
along the path of the particle. INEXT points from a
link to all others related to it by "next".

A full tree is a tree built on a preselected root link.
How root links are selected depends on the applica-
tion and is described later. The tree is built by asso-
ciating branches with the root link and then iterating
the process with all branches of all links in the tree.
Although fig. 6 illustrates a full tree built on link
number 1, there is not structure in the program that
actually represents it. Instead, we use a fast algorithm
which climbs up all possible paths on the tree and
recognizes tracks as chains of links. This algorithm,
which is of the Depth-First Search type [6], is the
core of the program. In the following we will give a
detailed description of its realization in our applica-
tion.

We illustrate the operation of the climbing algo-
rithm on the full tree of fig. 6. The algorithm is
given the address of the starting link, in this case,
ISTART = 1 and the arrays NNEXT and INEXT. It
woks with its own depth counter IDEPTH, link index
ILINK, and two arrays, LNKLST() and N B R N C H () ,
both indexed with IDEPTH. LNKLST is the list
of links climbed in the chain being created.
NBRNCH(IDEPTH) keeps track of the number of
branches of the link LNKLST(IDEPTH) that have
been already climbed. If NBRNCH(IDEPTH)=
NNEXT(LNKLST(IDEPTH)) then all branches from
the link LNKLST(IDEPTH) have been processed.

Since climbing-up the full tree from the one link
to another is obviously recursive, it would be easier to
describe it in a language that supports recursive proce-
dures. Although FORTRAN does not accommodate
recursive structures, it is possible to realize the algo-
rithm, at the cost of some clarity, with interleaved
GO TO statements. This is illustrated in fig. 8. Fig. 9
shows the algorithm written in an extension of FOR-
TRAN called FLECS. FLECS is a FORTRAN prepro-
cessor that translates block structure control state-
ments into normal FORTRAN statements. Recursion
is not supported in the sense that a stack is kept to

SUBROUTINE CLIMB (IROOT,NNEXT,INEXT)

INTEGER LL INK(~) ,NBRNCH(*) ,NNEXT(~*) , INEXT(m* , *~*)

IDEPTH = 0
ILINK = IROOT

10 CONTINUE ! CLIMB-UP-ILINK

IDEPTH = IDEPTH + I

NBRNCH(IDEPTH) = 0
LLINK (IDEPTH) = IL INK

20 CONTINUE ! CLIMB-UP-ILINKS-NEXT-BRANCH

NBRNCH(IDEPTH) = NBRNCH(IDEPTH) + 1

IBRNCH = NBRNCH(IDEPTH)

IF (IBRNCH .GT. NNEXT(ILINK)) GO TO 30

[LINK = INEXT(IBRNCN,ILINK)

GO TO 10

30 CONTINUE ! CLIMBING STOPPED AT THE TOP OF A CHAIN - SAVE IT

CALL SAVCHN(IDEPTH,LLINK)

50 CONTINUE ! CLIMB-DOWN-ILINK

IDEPTH = IDEPTH - i

IF (IDEPTH .EQ. O) RETURN

ILINK = LLINK (IBEPTH)

IF (NBRNCH(IDEPTH).LT.NNEXT(ILINK)) GO TO 20

GO TO 50

END

Fig. 8. A FORTRAN version of the subroutine CLIMB.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 241

SUBROUTINE CLIMB (IROOT~NNEXT,INEXT)

INTEGER LL INK(*) ,NBRNCH(~) ,NNEXT(* * *) , INEXT(* * , * * *)

IDEPTH = 0
IL INK = IROOT

CLIMB-UP-ILINK

CLII~B-ILINKS-NEXT-BRANCH

TO CLIMB-UP-ILINK

IDEPTH = IDEPTH + 1

• NBRNCH(IDEPTH) = 0
LLINK (IDEPTH) = IL INK

. . . F I N

TO CLIMB-ILINKS-NEXT-BRANCH

NBRNCH(IDEPTH) = NBRNCH(IDEPTtl) + 1

IBRNGH = NBRNCH(IDEPTH)

IF (IBRNCH .LE. NNEXT(ILINK))

ILINK = INEXT(IBRNCH,ILINK)

CLIMB-UP-ILINK

CLIMB-ILINKS-NEXT-BRANCH

. . . F I N

IF (IBRNCH .GT. NNEXT(ILINK))

• CALL SAVCHN(IDEPTH,LLINK)

• CLIMB-DOWN-ILINK

. . . F I N

• .FIN

TO CEIMB-DOWN-ILINK

IDEPTH = IDEPTH - 1

IF (IDEPTH .EQ. O) RETURN

ILI'NK = LLINK (IDEPTH)

IF (NBRNCH(IDEPTH).LT.NNEXT(ILI~K)) CLIMB-ILINKS-NEXT-BRANCH

IF (NBRNCH(IDEPTH).GE.NNEXT(ILINK)) CLIMB-DOWN-ILINK

. .F IN

END

Fig. 9. The CLIMB subroutine written in FLECS, a prepro-
cessor for FORTRAN that accommodates block structures.

allow the program to unwind from a sequence of
recursive procedures, but that is not important for
our purposes. The organization of the algorithm into
the blocks illustrated clarifies its logic. The program is
to be read like ordinary FORTRAN; except for the
FLECS control statements. The statements between
an IF and the associated FIN are to be executed if the
logical condition is satisfies. Likewise, the TO state-
ments define internal procedures terminated by the
associated FIN. A procedure is executed whenever
the string following the TO appears elsewhere in the
program. All variables in the subroutine are available
to all of the procedures, and the RETURN statement

results in a normal exit from the whole subroutine.
The subroutine begins with no links climbed and

the next link to climb being the starting link,
ISTART, so IDEPTH is set to zero and ILINK to
ISTART. This is illustrated in fig. 10a where all links
are drawn as dashed lines to show that no links
appear in LNKLST yet. The next step is to climb the
starting link, using the procedure CLIMB-UP-ILINK.
This procedure just stores the new link found in the
array LNKLST and sets the branch counter to its
starting value. It is done by incrementing IDEPTH,
updating LNKLST with ILINK, and clearing the
branch counter NBRNCH(IDEPTH). The result is
represented in fig. 10b by a solid line for link 1 to
indicate that it now appears in the link list.

Recursive climing is done by the procedure CLIMB-
ILINKS-NEXT-BRANCH. It first checks whether there
are branches to be climbed, so NBRNCH(IDEPTH)is
incremented by 1 and then compared to NNEXT
(ILINK). If NBRNCH is less than or equal to
NNEXT, there are branches to climb, so ILINK is
updated from INEXT and the new link is climbed by
CLIMB-UP-ILINK. Then the whole process is iterated
by having CLIM-ILINKS-NEXT-BRANCH reference
itself. The procedures CLIMB-ILINKS-NEXT-
BRANCH and CLIMB-UP4LINK climb from one link
to another following the chain of links, and store
every new link in the array LNKLST, until a link is
found which has no branches at all. (This occurs
when NBRNCH is larger than NNEXT.) This link,
which is a leave, is the end of a chain so the subrou-
tine SAVCHN is called to save this chain which is so
far only stored in LNKLST. This chain is one of the
track candidates in the tree. In the example of fig. 10
the first completed chain (fig. 10c) consists of links 1
and 5 since link 5 has no branches. After the end of a
chain is found and stored, the procedure CLIMB-
DOWN-ILINK is started. In this procedure, IDEPTH
is decremented by 1 which means that control is
passed to the previous link in a chain. If this link has
unused branches * the procedure CLIMB-DOWN-
ILINK is recursively continued; it quits with a
RETURN statement when it has climbed down link
ISTART so there are no more links in the array
LNKLST (i.e. IDEPTH equals 0).

* If the full tree being climbed has joining branches some
branches will be climbed more than once, but these branches
will always have different chains below them each time
they axe passed• Clearing NBRNCH in CLIMB-UP-ILINK
takes care of all potential problems.

242 D.G. Cassel, H. Kowalsk i / Pattern recognition in layered track chambers

T ! i

t tf i ' ' 5 i 5 ',,I

a b d e g h k [o q s

Fig. 10. The graphical representation of the action of the subroutine CLIMB on the tree of fig. 6. The full lines represent links
which are actually stored in the array LNKLST at any point in CLIMB.

Figs. 10a-s illustrate the operation of the sub-
routine CLIMB by showing the content of the array
LNKLST in all program steps. In this figure the
letters a, b, c, d ... s denote all updates of the array
LNKLST and the full lines represent links which are
actually stored in this array. The output of the sub-
routine CLIMB consists of all completed chains found
during its operation. In fig. 10 these are the chains c,
i, t and p. SAVCHN stores the chains that satisfy its
cuts in an appropriate list. The cuts used depend on
the application and two examples will be mentioned
in the next two sections.

In the TASSO experiment the tree algorithm was
written in FORTRAN as shown in fig. 8 to maintain
program compatibility. It is very fast since it accesses
the precomputed information stored in the links and
elementary trees by updating counters and computing
indices. The execution time is linear in the number of
links in the full tree, since each link is passed only
once going up and once going down.

In defining elementary trees, we mentioned that
the branches of an elementary tree were farther from
the interaction point than the trunk. We could have
defined trees with the branches closer to the interac-
tion point than the trunk. In fact, such elementary
trees are also needed in the procedures in Sections 4
and 5. We used additional arrays, IPREV and NPREV
to list branches which are closer to the interaction
point than the trunk, since the branches are "pre-
vious" to the trunks instead of "next" after them.
No additional computations are involved in filling
IPREV and no new links are added, since link i is pre-
vious to link j if link j is next to link i. From a given
root link CLIMB moves towards or away from the

interaction point in looking for chains, depending on
whether the "previous" or "next" pointers appear in
its argument list.

4. A systematic search for tracks

The highly systematic and exhaustive pattern
recognition strategy we describe here, was used in
finding straight tracks in the s - z plane determined by
combining circular tracks in the r - ¢ plane with the
hits in the 6 stereo layers (see appendix B). Of course,
the strategy is more general than straight tracks in
6 layers, but we stick to this example here, since
extensions are obvious. The goal was to rapidly and
efficiently find the s - z track associated with a given
r - ¢ track (this is explained in more details in appen-
dix B), even if this track had only 3 hits, while giving
preference to tracks with 6 hits over those with 5,
etc. This is accomplished by organizing the search in
the following stages *:

1) All 6-hit chains are found using the tree proce-
dure, fitted and stored in a track candidate list.

2) A 6-hit track is accepted and the search stops if
the track candidate with smallest X 2 among those
passing a Zo cut also passes the X 2 cut.

3) Otherwise all 5-hit track candidates are found,
fitted and stored.

* We discuss here only the organization of the program for
finding the s - z track itself. Other essential steps, in partic-
ular finding the necessary r-q~ track and cancelling the hits
and ambiguity twins belonging to the r - ¢ and s - z tracks,
are assumed to occur outside of this program.

D.G. Cassel, [1. Kowalski /Pattern recognition in layered track chambers 243

4) A 5-hit track is accepted if one is good enough
according to stage (2).

5) Otherwise all 4-hit track candidates are found,
fitted and stored.

6) A 4-hit track is accepted if one is good enough
according to stage (2).

7) Otherwise the zo and 9(2 cuts are relaxed and
the lists of 6, 5, and 4-hit tracks were again searched
in that order. The search stops when the best track
with a given number of hits is found to be acceptable.

8) If no 6, 5 or 4-hit track is acceptable, 3-hit
tracks are considered with tighter 9(2 cuts. This is
trivial since all 3-hit tracks are all pairs of links related
by the tan X and Zo cuts for links.

We achieve this organization which guarantees that
all tracks with a given number of hits have been
found at stages (1), (3) and (5) by controlling the
links used in elementary trees. We do not avoid find-
ing some 5 and 4-hit chains in stage (1), [and 4-hit
tracks in stage (3)], but they appear only once, so we
save them for later use if necessary.

We begin this search for tracks by establishing the
list of hits in the s - z plane as described in appendix B.
Building the list of elementary trees proceeds then in
organized steps. We have already mentioned that
classifying links according to the number of gaps
spanned is the key to controlling the number of
missing hits in found tracks. Fig. 11 illustrates the
complete classification for 6 layers. 6-hit tracks
obviously can be built only with links of types 1-5 ,
and a 6-hit track is a chain with one link of each type.
At the other extreme, links of type 15 span layers
1-6 , so they can only be used for 2-hit tracks; they
did not appear in the program. Of course, links of
types 6 - 9 are required for 5 hit tracks, to account
for inefficiencies in layers 2 -5 . Links of types 10-12
are needed in 4-hit tracks in which two successive
layers can be inefficient *. Finally, types 13 and 14
can appear in only 3-hit tracks.

For each link that occurs in an elementary tree we
store NNEXT, INEXT, NPREV and IPREV. We also
store the hit address in the s - z hit list of the hits on
the inner and outer end of the link. The elementary
tree list is organized with pointers [8]. This organiza-
tion enables us to find links of a given type and to
update rapidly the "next" and "previous" pointers

* Track f inding programs of ten limit the number o f succesive
missing layers in a track. This is accomplished au tomat -
ically in our strategy by limiting the types o f links used.

5

NUMBER

TYI?ENUMBER 1 2 3 Z, 5 6 '7 8 9 10 11 12 13 14 15
GAPSSPANNED1 1 1 1 1 2 2 2 2 3 3 3 /, 4 5

Fig. 11. Complete classification of all links for 6 layers.

when a link already in the list is associated with a new
link in anelementary tree.

After preparing this elementary tree list we loop
through all links of type 1 in the list and use them as
starting links for the tree algorithm. Only the "next"
pointers are used here since climbing can only move
outwards from type 1 links. The chains saved by
SAVCHN are examined and 6-hit ones are fitted and
saved in a track candidate list. In this step also some
chains constructed from one-gap links but with lower
number of hits are found. They are also fitted and
saved in the same list. This list is also organized with
pointers [8], so all tracks with a given number of hits
can be rapidly examined to facilitate stages (2), (4),
(6) and (7). At this point stage (1) is finished-all
6-hit track candidates have been found. Step (2) is
accomplished by looping through the 6-hit track can-
didates and rearranging the pointers to order the
track candidates list according to increasing 9(2 . The
first track with an acceptable zo is then the desired
track if 9(2 is small enough.

If no acceptable 6-hit track is found the search
continues with stage (3). There are now 3 ways to get
5-hit track candidates not already found,

(3a) by climbing outwards from all type 2 links,
(3b) by copying 6-hit tracks and deleting the hit in

layer 6,
(3c) by introducing elementary tracks with links

of types 6 - 9 and climbing trees in both directions
from these links.
In step (3c) track candidates are obtained by combin-
ing all top chains found by climbing outward from a
given link with all bottom chains found by climbing
inward from this link. Fig. 12 illustrates this with a
type 7 root link, where the chains 12b-12j arise from
the full tree 12a.

In order to avoid finding the same chains repeat-
edly, (3c) is organized in steps. In each step, a new
link is introduced and elementary trees are con-
structed by combining these links only with links of
lower type number. In step (3c) these are consecu-
tively the links of types 6, 7, 8 and 9. As in step (1),

244 D.G. Cassel, H. Kowaiski /Pattern recognition in layered track chambers

o b c d e g h i

Fig. 12. Track candidates (chains) obtained by combining top
chains and bottom chains starting with a type 7 link.

some chains with fewer than 5 hits can be found. For
example starting from a link of type 8 it is possible to
construct a 4-hit chain using a link of type 6.

Finding the remaining 4-hit track candidates in
stage (5) duplicates the logic of stage (3),

(5a) by climbing outwards from type 3 links,
(5b) by copying 5-hit tracks and deleting the last

hit
(5c) by introducing elementary trees with type

1 0 - 1 2 links and climbing trees in both directions
from the new link.
The systematic search described here leads to a track
finding program whose quality is equivalent to fitting
all possible hit permutations and choosing the best
ones according to X 2 and number of hits attached. It
has a slight bias towards increasing the number of
attached hits in a track since if there are two track can-
didates, both fidfilling the X 2 cut, the track with the
higher number of hits is chosen. This bias is easily
controlled by keeping the X 2 cut reasonably low.

In spite of its high quality the program is reason-
ably fast. The average IBM 370/168 CPU time con-
sumption in e+e - jet events at 15 GeV beam energy is
1 0 - 1 2 ms per s - z track. The high speed of the
method is in our view mainly due to three reasons:

a) The time consuming operations of following the
track and fitting is in our approach largely replaced
by chain construction from locally related links. The
determination of local relations demands only few
multiplications and divisions and the construction of
chains is a pure integer operation.

b) The information which was worked out once is
not lost. For example the information contained in
one-gap links, which is necessary for the 6-hit track
search is still required for 4-hit tracks.

3) Every chain is, with only one exception, con-
structed only once. The exceptional double construc-
tion occurs in step (5b) where the same 4-hit track
can be found by deleting two different last hits. Of
course, a quick search in the track list can eliminate
this duplication. Note that in the road method there
are usually many ways in which the same track can-
didates can be found.

5. A fast search for tracks

A fast track finding program based on our tree
climbing algorithm is used as the event filter in the
first pass data reduction in the TASSO experiment.
It must recognize a good event (i.e. one with circular
tracks in the r--¢ plane coming from near the origin)
in a background of 104 bad triggers. Therefore, it is
optimized for speed at the price of some efficiency
by working mainly with one-gap links and building
chains analogous to minimal spanning trees [9].

Since we are searching for tracks that are circles
through the origin, the links in this program are arcs
of circles joining hits in two nearby layers. Our start-
ing point was the observation that a real track will
nearly always be the chain with shortest geometric
length spanning all layers of the chamber. Except for
a few special cases, this is obviously true if the real
track is compared with a chain made with at least
some left-r ight twin hits.

However, it is not practical to use arc length in
recognizing tracks, since it is only second order in
the displacement of a bad hit from the real track, and
it cannot be evaluated quickly. Instead we use the
curvature of a link as the measure of distance as
shown in fig. 13. Here links 1 and 2 belong to the real
track, while 3 and 4 are derived from a bad hit. In
this case, link 4 has a smaller radius or larger curva-
ture than 1 and 2. In general, a chain formed with
one or more bad hits will have some links with larger
curvature than the real track. This implies that we
should use the links of smallest curvature first in the
search. The curvature or radius can be quickly evaiu-
ted in the limit of high momentum, using eq. (4) of

~ T R A C K
,X J

WIRE CYLINDERS
Fig. 13. Construction of curved 2-hit links with the help of
the interaction point.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 245

appendix B (with D = 0), which reduces to,

Or
= ~o + - - . (2)

2R

Here ~ is the angle of a hit in the layer of radius R,
and ~o is the angle of the tangent to the track at the
origin. For two hits i and], our curvature variable

is given by,

= ~ = Q - - _ Q (3)
r i - r i zXr

This expression is suitable, since it is first order in the
displacements of the hits, has no signularities, and can
be quickly evaluated *. (Note that the sign of (2 is
chosen to make R and K positive.) In our program we
use uncorrected drift distances to compute the ~p
angles. However, if more accuracy is necessary, the
angle /3 to the normal required for computing drift
time corrections (see appendix B) can be rapidly
approximated using these r and ~ values.

The program starts by splitting the event into frag-
ments in which the trackfinding takes place. The frag-
ments are crude subdivisions of event constructed by
associating hit 0 ° wires in nearby layers with similar
q5 angles, starting with wires in outer layers, and
working inwards. The proceedure is then iterated,
working alternately outwards and inwards until it
converges. A fragment contains only one track if it is
well isolated, but it will generally contain all of the
tracks in a narrow jet.

Next the links of the fragment are constructed.
For each hit wire in the fragment, its neighbours (i.e.
wires in adjacent layers with similar ~ angles) are
found. If a wire has no neighbour in an adjacent
layer, a jump to the next layer is allowed. Since the
lef t -r ight ambiguity gives two hits for every wire,
2 neighbouring wires give 4 links. For each link with
K less than a maximum value /~max, the curvature n
and the addresses of the two hits defining the link are
stored in the link list.

The link list is then ordered according to increas-
ing ~ with help of the Heapsort sorting algorithm
[10]. This ordering has three desirable properties:

1) Links belonging to high momentum tracks
appear early in the list.

* This expression is clearly useful only for cylindrical layers.
If plane layers are used, so Cartesian coordinates are
appropriate, the signed square of the curvature can be
obtained quickly without special functions using dot pro-
ducts.

2) Links belonging to a given real track are near
each other in the list.

3) Some of the links necessary to construct a long
chain involving some bad hits appear later in the list
than links from the corresponding real track.

(1) obviously biases the search towards finding the
high momentum tracks in a jet first. (2) and (3)
allow us to optimize the speed of our search, since
links for a real track are gathered together near the
beginning of the list, and nearly all long chains includ-
ing bad hits require links appearing later in the list.
Therefore, these chains need not appear if the pro-
gram is properly organized.

Now the links are pulled out of the list one after
another. The previous and next elementary trees are
then constructed using the new link as the trunk, but
only using links earlier in the list as branches. This
new link is then used as the starting link to construct
chains by climbing in both directions from it. Due to
(2) and (3) the first long chain (e.g. with 5 links in
our 9 0 ° layers) found in this way is most likely the
right track or a piece of it. If not all layers are crossed
a request for a small number of additional links is
made (i.e. 2 - 5) . If the found chain is not extended
by these links the search is stopped. The found chain
(or chains if more than one appears at the same time)
is then fitted and, if necessary, followed to the other
layers. If the track satisfies a X 2 cut it is accepted. If
there are several such tracks, both length and ?(2 are
used in selecting the best track.

Note that this way of finding tracks is influenced
by the minimal spanning tree construction. However,
there are important differences. The MST of a set of
hits is a tree that connects all hits and which has a
minimal weight (in our case it is a sum of curvatures
K's). Our "MST" is in general the chain with the mini-
mum weight than spans all or nearly all layers. We do
not construct a real MST since in our sets there are
always many hits, due to the lef t -r ight ambiguity,
which do not belong to any track.

After the track was found and accepted all hits
from wires used in the track are calcelled from the
active hit list, and all links formed with these hits are
cancelled from the link list, to prevent their reappear-
ence in subsequent tracks. Then all wires in the frag-
ment are checked again to find ones which, after the
cancellation, lost all of their direct neighbours. If
there are any, the program tries to construct links
spanning over two or three gaps for them. The search
for further tracks in the fragment continues itera-
tively with the shortened link list until all of the high

246 D. G. Cassel, H. Kowalski /Pattern recognition in layered track chambers

quality tracks through the origin are found. Hence
the program not only acts as a fast event filter, but
also provides the first approximation to a complete
list of tracks.

If a chain with at least 4 links is not found by
some maximum number of requests for new links
(between 20 and 40), the search is stopped and the
fragment is abandoned. This demand for rapidly
growing chains obviously greatly influences the speed,
and it again is possible only because (2) and (3) are
true.

This organization is particularly suitable for the
rapid rejection of background in the TASSO experi-
ment as mentioned at the beginning of this chapter.
The vast majority of background triggers are due to
interactions of the e + or e- beams with the beam pipe,
so there are no tracks coming from the interaction
point. From the point of view of the program, this
implies that there are no tracks in the fragment. How-
ever, this is recognized long before the whole frag-
ment is reconstructed since the search is already
abandoned after 20-40 unsuccessful requests for
links. In addition, this organisation automatically
finds high momentum tracks with the maximum
number of hits first. These are the best tracks (they
have the highest measurement quality and the most
important ones, so finding them first is essential to
any strategy to resolve complicated events. Here it
happens automatically.

Our patt.ern recognition program, called FOREST,
was optimised as an event filter since every TASSO
trigger event is sent through it. The average analysis
time is 60 ms, including 20 ms for reading, writing
and decoding. The TASSO trigger requires a mini-
mum number of tracks (chosen to be between 2 and
¢ depending on background condition) with o ,

P T > 3 2 0 MeV or two back to back tracks (PT
denotes the transverse momentum relative to the
beam axis). The efficiency is momentum dependent
since we work in this program with the uncorrected
space-drift time relation. The largest deviations from
linearity occur at large entrance angles/3 (see appen-
dix B and ref. 1) and therefore affect mainly the
low-PT particle tracks. The efficiency (per track) of
FOREST was found to be:

~40% for PT < 2 5 0 MeV/c,

88% for P T - 2 5 0 - 7 5 0 M e V / c ,

95-98% for PT > 750 MeV/c.

The decrease in the efficiency with PT is not due to

the use of the approximate form of eq. (4) described
above. The influence of this approximation is seen
only belowPT = 150 MeV.

The above efficiencies were determined with
hadronic events from one photon annihilation at 30
GeV. The efficiency of reconstructing Monte Carlo
events of the same type produced with linear speca-
drift time relations was found to be 93% for all kinds
of track from the interaction points with PT > 150
MeV.

Due to its high efficiency the program is able to
reduce the ratio of physics to background events
from 1 : 104 to 10 : 1, i.e. it produces an almost
clean event sample. These events are further analysed
with a considerably slowed road type program *,
called MILL, to obtain the highest possible efficiency
for all kinds of tracks. A slightly modified FOREST
program, working with the corrected space-drift
time relation is used also within the MILL program to
provide the first approximation to a complete list of
tracks. The MILL efficiency is around 97% for all
kinds of track with PT > 100 MeV.

6. Other tracks, other links and possible extensions of
the method

In spite of the fact that in TASSO we so far use
the link-and-tree method only to search for circles
from the neighbourhood of the interaction point and
for straight lines, this method is not restricted to
these cases. As we have already mentioned, the gener-
alization to searching for circles originating from arbi-
trary points, (e.g. decay vertices, secondary interac-
tions etc.) is straightforward. To find the projection
of this kind of track on the r -~ plane we have to
work with links built from three hits instead of two.
In the construction of elementary trees there are two
a priori possibilities:

a) to relate links of approximately equal track
parameters which have the first and the last hit in
common,

b) to relate links of approximately equal track
parameters which have the first two and the last two

hits in common, as shown in fig. 14.

* Roads are nsed only in finding r-4~ tracks, the track finding
in the s-z plane is done entirely with the strategy described
in sect. 4. Of course, this strategy would be appropriate for
the r-~ plane in the MILL program, but MILL was devel-
oped first and we have not yet brought it up to date.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 247

. ~---3~
i I / / /
t /

/ /
iI / /
t i
i !
J /
/,;

Fig. 14. An elementary tree constructed from three-hit links.
The dashed circles are branches and the solid one is trunk.

We would recommend the second possibility since it
introduces more information into the tree construc-
tion. Both track searching methods described in the
previous two chapters can also be used with 3-hit
links. The operation of the climbing algorithm is inde-
pendent of the kind of links and elementary trees
provided; however, the organization of link and ele-
mentary ~ree lists have to change since there are now
more types of links.

The use of three hits instead of two enlarges the
list of links considerably. To get a feel of how much
the program processing would slow down, we make
the following very rough estimate: The length Of the
link list is proportional to n ~ or n a, for 2 or 31hit
links respectively, where n denotes the average num-
ber of hits per layer in the considered region. In our
TASSO programs, n was typically 3 Or .4. Since the
execution time of the program is roughly propor-
tional to the number of links used, we estimate that
the 3-hit link program would also be a factor of 3 - 4
slower (assuming that the proportionality factor for
n 3 is similar to that for n2). This does not necessarily
lead to a considerable increase in the total computing
time, since the 3-hit link program would be used only
for the small fraction of all triggers containing physics
events.

It is also possible to generalize the link-and-tree
methods to detectors that make a dense sequence of
measurements on a track. In this case it makes no
sense to create links from every pair or triplet of

points; rather many points should be gathered into
one link. However, care should be taken that also in
the noisy regions of a chamber all links belonging to
real tracks are created. This should happen even if
jumps over large regions of a chamber are necessary
since the links with big jumps correspond to multigap
links in detectors with fewer layers as in the TASSO
detector. In spite of the fact that in dense measure-
ment chambers the number of hits is considerably
larger than in chambers with fewer layers, the number
of links created should be smaller since there i smore
information to eliminate wrong links. F rom the
created set of links, it should bepossible to construct
every track as a chain of links without any interrup-
tion. Then all the methods described above apply.

Another straighforward generalization of the
method is the case o f a detector with an inhomoge-
nious but slowly varying magnetic field. In this case
links, elementary trees and full trees can be con-
structed in the same way as described above as long as
the field is approximately constant in any elementary
tree region. In our method the track parameters of
the last link of a long chain can be quite different
from those of the first one, since they can (slowly)
dirft along the chain. The only parts of the program
which have to be changed to adapt it to the effects of
a nonhomogeneous magnetic field, are the track fits
which, of course, being nonlocal, have to feel devia-
tions from precise circles.

7. Conclusions

In this paper we have described a pattern recogni-
tion method based on the creation of lists of all track
elements and local relations between them. The
tracks are recognized as chain built from these ele-
ments. We have utilized two different applications of
the method, a systematic search and a quick search.
Both applications lead to efficient and fast programs.
From our experience in working these programs we
feel that it is posssible to write effective programs
working with the link-and-tree method for recon-
struction of all types of tracks.

Our method puts additional requirements on the
performance of tracking chambers. The joining of
links into elementary trees, which is a procedure of
preselecting link combinations, requires good local
precision (in contrast to a precision obtained by
sampling many measurements). Also a considerable
degree of homogeneity of the chamber (e.g. same

248 D.G. Cassel, 1-1. Kowalski / Pattern recognition in layered track chambers

drift cell size throughout the chamber) is extremely
valuable, since the tracks are recognized as chains of
only locally related links. Local inhomogeneities (e.g.
at the borders between different chamber types) tend
to break the chains and in turn make track finding
more difficult.

We developed this approach to track finding for
the TASSO experiment and we gratefully acknowl-
edge the numerous discussions with and the criticisms
of our TASSO colleagues. We are particularly
indebted to P. S6ding and G. Wolf. We would also
like to thank B. Radig and M.-J. Schachter for careful
reading of the manuscript and useful comments.

Appendix A

The T A S S O detector

The TASSO detector is illustrated in fig. 15. All of
the pattern recognition work described here used data
from the cylindrical inner drift chamber which is

described in more detail elsewhere [1]. Hits in the
proportional chamber inside the drift chamber were
added to tracks in later stages in the track reconstruc-
tion.

The cylindrical drift chamber is located inside the
coil of a large solenoid magnet with a nearly uniform
field of about 0.5 T parallel to the beam axis. The
sensitive length of the chamber is 323 cm. It has 15
equally spaced layers, 9 zero-degree (0 °) layers with
the sense wires parallel to the axis and 6 stereo layers
with the sense wires oriented approximately -+4 ° to
the axis. Each 0 ° degree wire layer forms a cylinder
whereas the twisted ones have a form of a hyper-
boloid. These layers are spaced 6.11 cm apart
between an inner radius of 36.7 cm and an outer
radius of 122.2 cm (measured at the ends of the
chamber). There is a total of 2340 drift cells each
with radial and azimuthal dimensions of 1.2 cm and
3.2 cm respectively. The celts are made of wires only;
the repeating unit of a cell consists of 3 field wires
and 1 sense wire.

The chamber was operated with a gas mixture of
either 90% argon and 10% methane (or 50% A, 50%

iJ - Chamber

Fig. 15. The TASSO detector viewed along the beam.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 249

ethane). Its observed efficiency was 98% per wire
including a 0.5% electronic inefficiency. The single
hit electronics recorded the drift time of the track
nearer to the sense wire if two tracks in an event
crossed the same cell. No measurement of the longi-
tudinal position of a hit on a single wire is made. The
recorded drift time and wire address for each hit wire
were passed on to the pattern recognition programs.

Appendix B

Geometry conventions and details o f the track find-
ing program

The input data for the pattern recognition pro-
gram consists of the addresses and measured drift
times for hit wires. Using an average drift velocity,
the drift time for each wire is converted to an approx-
imate drift distance d. This drift distance is assumed
to be an arc length on the wire circle * and the angles
eL and ~b R with respect to the x axis are calculated
for the two possible hits to the left and right of the
wire. These angles, the drift distances and bookkeep-
ing information are stored in a common block for
the track finding programs.

The first stage of the trackfinding uses only the 0 °
wires, yielding the projection of the track onto the
x - y or r--~ plane **. The magnetic field is suffi-
ciently uniform to allow use to assume that the pro-
jected tracks are circles and the 3-dimensional track is
a helix.

Fig. 16 illustrates the geometry of a circular track
intersecting a cylinder of 0 ° wires, r is the radius of
the wire cylinder and R is the radius of the track
circle centered at (xc,Yc). The track is at a distance D
from the origin at its point (xo,Yo) of closest approach
and its angle with respect to the x-axis is 4o there.
The track intersects the wire cylinder at angle q5 with
respect to the x-axis and it turned through an angle
in going between the point of closest" approach and
the wire cylinder. The track shown is a track with
Q = +1 and D ~> 0. A track that does not enclose the
origin has D < 0.

* For stereo wires we used the circle at z = O.
** The z axis is along the incident e + direction the y axis is

vertical and the x axis completes a r ight-handed coordi-
na te system.

In terms of these quantities the angle ¢ is given by

• r 2 R D - D 2 - r 2-]
~ = ~ 0 + Q arcsm~- 2 r (R - - - ~ J " (4)

The drift distance d, calculated with an average
drift velocity, is only approximately correct. The
actual drift distance depends not only on the drift
time (ergo d) but also on the angle 13 between the
normal to the wire cylinder and the track direction at
that point./3 is given by

¢J = arcsin 2rR " (5)

After a track is found using only 0 ° wires, the drift
distances are corrected using polynomials determined
in an iterative procedure *. For 's implic i ty we use
different polynomials in different intervals of t3 to
account for the dependence of the corrections upon
/3. A best fit track is then calculated using the cor-
rected drift distances, always projected onto the wire
circle.

After the projection of the track on the r-q~ plane
is found, a search for the corresponding projection in
the plane including z axis can be started. I f the dfp
angle of the 3-dimensional track is denoted by 3., the
z dependence of the track is given by

z =Zo = R ~ tan 3.=Zo + s tan 3., (6)

where Zo is the z coordinate of the track at (xo,Yo).
is calculated from

/'2 -~__~2 111/2
= 2 arcsin 4R(R - D) (7)

The projection of the track on the r-4~ plane defines
a cylinder with its axis parallel to the z axis, as illus-
trated in fig. 17. The helix describing the 3-dimen-
sional track must lie in this cylinder. The first step in
the s - z track finding is to calculate the z and s = R
values for all stereo hits that could possibly lie on the
track cylinder. The angle/3 for the track in the stereo
layer is calculated using the radius of the layer at
z = 0. The fully corrected drift distance for each hit
wire is used to determine the 4} angles of the left and
right hits, again using the position of the wire at
z = 0. For a single hit with angle ¢s this leads to the
point (Xs, Ys) on the stereo wire circle of radius
r s at z = 0 shown in fig. 17. I f the angle between the

* Since this expression is insensitive to D when D is small, the
corrections can already be made earlier using the radius of
curvature determined f rom the links as described in sect. 5.

250 D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers

TRACK

RIGHT H,'I'.~.4~/ _ - - t L
HIT WIRE " x ' , ~ / ~'-...~-WIRE CYLINDER
LEFT H I f~"~.;~'~ ["~\

/ I \ ! .; ao cJ,
/ ~ ' ~ . ~ I

[xo,Yo)] !
\\ I / /

Fig. 16. Geometry of a circular track intersecting a cylinder
of 0 ° wires.

wires in this layer and the axis is a , the hit

(8)

stereo
must lie on the line:

x = x s + e x Z , y = Ys + eyZ ,

with

ex = - t a n a sin Os , ey = tan a cos Os • (9)

I f the hit belongs to the track it must lie on the hit
cylinder, so the posit ion of the hit in space must be

(x~,ys)

T / p
ii ii iiii :,

 !iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
~,)

a)

jL Y projection in the r,~ plane

/z "\

\ \ cro - e tionth oogh
\ "~" " ~ / / ~ the hyperboloid at Z = 0

~ . ~ - ' ~ / ~ " at the end flange

b)
Fig. 17. Geometry of a Circular track intersecting a (not
explicitly shown) hyperboloid of stereo wires. (a) Three-
dimensional view; (b) Projection in the r - 0 plane.

the intersection of the line given by eq. (8) with the
cylinder given by

(x - xo) 2 + O , - y J - R ~ = 0 . (10)

The z coordinate of the intersection is,

- 2 c
z - (11)

b + (b 2 - 4 a c) 1/2 ,

where

a = t a n 2 a , b = - 2 X c e x - 2 y c e y , (12)

c = (xs - Xc) ~ + (ys - y c) ~ - n 2 •

The radius of the hit, r, is determined from z and
eq. (8). Eq. (6) then gives ~ so the values of z and
s = R ~ are known for this hit if it belongs to the
circular track. This calculation is repeated for all
hits on all stereo wires that intersect the track cylin-
der. This gives a set of hits in the s - z plane, each one
associated with a stereo layer. According to eq. (6),
z and s for a helix are linearly related, so the track
finding problem in the third dimension reduces to
finding straight tracks in the s - z plane.

This calculation is too time consuming to actually
use it on all possible stereo hits. Hits are first selected
quickly using the uncorrected ~b angle ~b s of the hit in
the z = 0 plane. This is done for each stereo layer by
fist calculating the angle 0T of the intersection of the
r-~b track with a circle of radius r s representing the
stereo layer at z = 0. A stereo hit in this layer is
accepted if its angle ~b s is

kb s - ~bwl < A~b. (13)

Aq~ is the angular difference between the positions of
the stereo wires in the given layer at Z = 0 and the
end of the chamber, suitably enlarged for resolution
and the missing corrections.

The s and z coordinates of each accepted hit and
its address in the master hit list are stored in a s - z hit
list indexed with layer number and serial number or
the accepted hit within the layer. The hits are ordered
according to increasing z to optimize constructing the
elementary trees. (With this ordering we can stop the
search when the outer link has a larger slope than the
inner link and fails the cut.)

References

[1] H. Boerner, H.M. Fischer, H. Hartmann, B. L6hr,
M. Wollstadt, D.G. Cassel, U. K6tz, H. Kowalski, B.H.
Wiik, R. Fohrmann and P. Schmiiser, DESY 80/27.

D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 251

[2] H. Kowalski, DESY 80/72.
[3] C.T. Zahn, Proc. Int. Computing Symp., Davos, (1973)

(North-Holland, Amsterdam, 1974).
[4] H. Grote and P. Zanella, CERN - Data Handling Divi-

sion, DD/80/11.
[5] F. Haxary, Graph theory (Addison-Wesley, Reading,

Mass.).
[6] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design

and analysis of computer algorithms (Addison-Wesley,
Reading, Mass.) p. 176.

[7] T. Beyer, FLECS user's manual, Department of Com-
puter Science, University of Oregon, Eugene, Oregon
97403 (1975).

[8] A.V. Aho, J.E. Hopcraft and J.D. Ullman, The design
and analysis of computer algorithms (Addison-Wesley,
Reading, Mass.) p. 44.

[9] A.V. Aho etal., op. cit., p. 173.
[10] A.V. Ahe et al., op. cir., p. 87.

