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PATTERN RECOGNITION IN LAYERED TRACK CHAMBERS USING A TREE ALGORITHM 
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We present a new approach to the pattern recognition problem in multi-layer track chambers. Tracks are constructed from 
locally related hits using a tree algorithm. This approach has worked well in quite different track finding problems in the large 
cylindrical drift chamber in the TASSO detector at PETRA. Its success in analyzing complicated e+e - jet events indicates that it 
can be applied to other problems, including the complicated jet topologies expected at higher energy. 

1. Introduction 

High transverse momentum events with hadron 
jets have become a major preoccuptation of  high 
energy physicists. These events are difficult to ana- 
lyze because of  their tightly collimated jets with high 
multiplicities and secondary vertices. Multi-layer drift 
chambers have demonstrated their effectiveness in 
detecting the charged particles in these events. How- 
ever, they aggravate the already difficult track finding 
problem, since the lef t -r ight  ambiguity arising from 
the conversion of  drift time to space points yields 
background hits that are inherently near the real 
tracks. Fig. 1 illustrates this problem with a high 
energy e+e - annihilation jet event in the TASSO 
detector [1 ] at PETRA, shown with and without the 
tracks found. Utilization of  drift chambers to detect 
jet events obviously requires fast and efficient pro- 
grams that accurately solve the pattern recognition 
problem. At higher energies, where jets are expected 
to be more collimated and have higher multiplicity, 
the demands on program performance will undoubt- 
edly increase. 

In this paper we describe a new approach to track 
finding in multi4ayer track chambers which we call a 
link-and-tree method and which we have successfully 
applied in the TASSO experiment [2]. We gather hits 
into links (in the simplest case pairs of  points in 
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nearby layers) and construct lists of  links that are 
locally related to each other (e.g. two links with a hit 
in common and nearly the same slope would be 
related). We then construct complete tracks as 
unbroken chains of links from these lists of  related 
links using a fast tree search algorithm. Other track 
recognition methods have also used links and their 
local relationship [3] but we have taken a different 
approach which appears to be particularly appro- 
priate for the problems arising with jets in drift cham- 
bers. The versatility of  our approach is indicated by 
its application in two very different problems in the 
TASSO analysis, the rapid rejection of  background 
in the first stage, and the exhaustive search for tracks 
in the last stage. In both situations we find that this 
approach leads to fast, efficient and highly struc- 
tured programs that give us a measure of control that 
we have found lacking in our previous experience. 

In section 2 we introduce our approach by com- 
paring it with a naive version of  the more familiar 
road procedure. In section 3 we define the data struc- 
tures we used and show how the three algorithm com- 
bines them into track candidates. In section 4 we 
show how to use this strategy in an exhaustive search 
for tracks. Section 5 describes the especially fast 
search for high quality tracks using Minimal Spanning 
Tree ideas. We conclude with a few suggestions for 
extensions in section 6 and a summary in section 7. 

To make this paper self-contained, we include a 
few details of  the construction of  the relevant parts 
of  the TASSO inner detector in appendix A. In 
appendix B, we collect a few geometric expressions 
and give some details of  the TASSO track finding that 
are not directly related to the new strategy. 
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2. General 

To illustrate how our approach works, we compare 
it with a road [4] procedure in a considerably simpli- 
fied example. Fig. 2 illustrates a straight track in a 
drift chamber, along with the extra hits resulting 
from the left-right ambiguity. The road method 
takes any two hits from the innermost and outermost 
layers and gathers all the hits within a road around 
the track determined by these two hits. From our 
experience in working with this method the first diffi- 
culty is that the road generally cannot be too narrow, 
since the track parameters determined from two hits 

may be imprecise. Therefore, there is often more than 
one hit per layer inside the road as shown in fig. 3, 
and the best track has to be found by fitting all per- 
mutations of  hits within the road. Fitting is slow, so 
fitting the large number of possible permutations 
requires substantial CPU time. The second difficulty 
results from chamber inefficiencies, which forces the 
program to cycle through a substantial fraction of all 
layer pairs to choose the hits that define roads. This 
means that many of  the permutations will be encoun- 
tered again and again as different layer-pairs are used. 
These complications diminish the apparent simplicity 
of  the method and make it difficult to understand the 



D.G. Cassel, H. Kowalski /Pattern recognition in layered track chambers 237 

TASSO 

ro 

. . . . . . .  : 3 . . . .  :9 

x4 -  i 21 

,11.09.80 

%. 

% 
%• 

l 

i 
tn 

r 2 

• . " . 44 . \  t .N. z: 
• . /~, 

• 0 

Y 

(b) 

Fig. 1. A typical TASSO one photon annihilation hadronic event (a) withough track reconstruction; (b) with track reconstruction. 

performance. For example, to be sure that all possible 
track candidates with at most two missing chambers 
have been found, it is necessary to carry the loops 
over chamber pairs nearly to completion. The ques- 
tion of  how many road-defining pairs to use is a cut 
that must be studied and optimized along with other 
cuts. Since it is generally impossible to fit all permu- 
tations of  hits in all possible roads, programs that use 
this approach usually include strategies for reducing 
the number of  roads and permutations. This further 
obscures understanding the performance. 

In our procedure, speed, clarity and control are 
obtained at the price of  working with objects which 
are more complicated than single hits: in this exam- 
ple, the elementary objects are pairs of  hits called 
"links" illustrated in fig. 4 and the "elementary 

trees" composed of them. Since a link has two hits, 
a link already determines the parameters of  a straight 
track or a circular track coming from the interaction 
point. The elementary tree of  any given link is com- 
posed of this link, which is then called the trunk of  
the elementary tree, and all links having the vertex in 
common and with approximately the same values of  
track parameters. (These links are then called 
branches of  the elementary tree.) Of course, a trunk 
of one elementary tree can also be a branch of 
another one. Examples of  elementary trees are shown 
in fig. 5. (In this case the track parameter is the slope 
of the link.) The common vertex and the near equal- 
ity of track parameters are the local relationship 
between links mentioned above. 

The elementary trees can be combined to form a 
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Fig. 2. A straight track in a drift chamber along with the 
extra hits from the left-right ambiguity (the horizontal scale 
is considerably larger than the vertical one). 
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Fig. 4. A set of one-gap links corresponding to a hit pattern 
of the track from fig. 2., The numbers indicate the indices of 
the links in the link list. 

Fig. 3. The straight track of fig. 2 together with the road 
determined by a pair of hits. 

full tree as shown in fig. 6. * The correct track is 
immediately recognized as the longest chain of links 
in the full tree. (The length of a chain is the number 
of links in it.) In the program a fast algorithm climbs 
the full tree from the root link, locating all chains 
from the root to any leaf but  never finding the same 
chain twice, In this way tracks (or more precisely 
- reliable track candidates) can be recognized with- 
out fitting; the only necessary measure of global 
quality is the length of the chain. This is due to the 
fact that the local cuts that define the elementary 
trees tend to break chains containing bad hits. How 
this work is shown in fig. 7 which illustrates a track 
that would appear within the road in fig. 3. This track 
does not appear as a long chain, since the potential 
elementary tree consisting of links 5 and 9 does not 
appear. This is due to the fact that the angle ~ is 
roughly twice as large as e so links 5 and 9 fail the 
equal slope cut if we assume that e is greater than 
about half of the cut angle. 

* We borrow the term tree from the graph theory [5] where 
our links are called edges. Our trees may technically not be 
trees since they may have joining branches but this does 
not affect our algorithm. 

ver fex - - *  i f  

Fig. 5. List of the elementary trees composed of links of 
fig. 4. The selection criterion is the approximate equality of 
slopes. 
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Fig. 6. A full tree composed from some elementary trees of 
fig. 5 and containing the straight track from fig. 2. 
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Fig. 7. Example of a hit combination which has to be con- 
sidered as a track candidate in the road but not in the tree 
method. In the tree method this track does not appear as a 
long chain since the elementary tree consisting of links 5 
and 9 does not exist. This is because ~ is roughly twice as 
large as e so the links 5 and 9 fail the equal slope cut if we 
assume that e is greater than about half of the cut angle. 

I f  more than one reasonable track is found,  addi- 
tional global quality cuts like the X 2 from a fit to the 
track can be applied. In our experiences, this fitting is 
not  a large burden,  due to the high selectively in find- 
ing tl~e tracks and the fact that  each track is found 

only once. 
Of course this procedure becomes more compli- 

cated when inefficient layers and wild hits are taken 
into account.  They require simple extensions 
described in section 4, which retain the high selectiv- 
ity and the guarantee that  all tracks consistent with 
the local cuts will be found with none being found 

twice. 

3. Links, elementary trees and full trees 

A link is a segment of a potential  track with 
enough hits to determine the track parameters of  the 
segment. For  example,  if  the tracks being sought are 
straight lines or circles coming from the interaction 
point,  only two hits are required to define the track 
parameters,  Zo and tan X for straight tracks or R and 
q~0 for circles. (For  notat ion see appendix B). I f  the 
tracks are circles originating at arbitrary points (e.g. 
decay vertices) at least three hits are necessary to 
define a link since three points define a circle. So far 

we have applied out method only to straight tracks 
and circles coming from the origin, so for simplicity 
we will always assume that  two hits determine a link. 

Since every pair of  hits in different layers defines 
a link *, the number of  all possible links is far too 
large to work with. The number of  links that must 
be considered can usually be reduced by limiting the 
number of hits that  must be considered in several 
ways. First ,  we do not  construct all links in the whole 
chamber at once; we rather work in a specified region 
of  the chamber (for details see sect. 5 and appen- 

dix B) 
The second reduction is to consider only those 

links whose track parameters are within an interesting 
range. In the search for s - z  tracks, only links whose 
zo is within a fiducial region around the interaction 
point  are used. In the fast search for circular tracks, 
we accept only those links whose radius, R,  is larger 

than a minimum value Rmi n. 
The number of  links remaining after this preselec- 

t ion is still too large. Further reduction emerges from 
the obvious strategy of  first searching for tracks with 
the smallest number of  missing hits. For  example, an 
exhaustive search for tracks naturally divides into a 
number of  successive steps. In the frist step tracks 
with no missing hits are sought. The next  step looks 
for tracks with one hit  missing for any reason, the 
third step seeks tracks with two missing hits, and so 
forth. This strategy reduces the number of  links 
needed, since, for example,  in the first step only links 
between hits in adjacent layers are required. This 

leads us to classify links by the number of  gaps they 
span, where gap refers to the space between two adja- 
cent layers. In searching for tracks with no missing 
hits we require only one gap links. In the next step 
we also require two gap links, and so forth.  Therefore 
the best tracks are found using relatively few links. 

The fourth possibility of reducing the number of  
links occurs after a track is found. Its hits and their 
l e f t - r igh t  twins are cancelled from the hit  list, which 
in turn diminishes the number of  links which can be 
created while searching for further tracks. Note that 
this interplay between finding the best tracks early 
and cancelling hits leads to a considerable reduction 
of the number of  links as tracks are found, which is 
essential for tracking within a jet .  

The links required at a given stage of  the search 

* Since in TASSO the tracking is made always in projections, 
see appendix B, the links are created only between hits 
from layers of the same projection. 
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are combined into elementary trees. As stated in 
sect. 2, the elementary tree consists of  one link called 
the trunk, together with all links having the middle 
point in common,  and with approximately the same 
value of the track parameter. For example, in the 
search for straight lines, the slope a = tan X and inter- 
cept b = zo are calculated for each link being con- 
sidered. Two links 1 and 2 with a hit incommon are 
associated into an elementary tree if they satisfy the 
cuts, 

l a l - - a 2 l < A a ,  I b l - - b 2 1 < A b .  (1) 

The magnitudes of the cuts Aa and Ab are deter- 
mined from the measurement errors for single hits 
propagated to a and b. It is usually sufficient to check 
only the slopes, since the slopes and intercepts are 
strongly correlated, expecially after the z0 cut men- 
tioned earlier. The cuts used for cirlces coming from 
the origin will be discussed in sect. 5. Obviously, since 
building elementary trees occurs in inner loops of  the 
program, the cuts used must be made on quantities 
that can be rapidly calculated from the measured 
coordinates of  the hits. 

The links involved in elementary trees are stored 
in a list. The elementary tree associated with link 
ILINK is specified by two arrays, NNEXT(ILINK) 
and INEXT(IBRNCH, LINK). NNEXT(ILINK)is  the 
number of  branches attached to link ILINK, and 
IBRNCH runs from 1 to NNEXT(ILINK), if LINK 
has any branches. INEXT (IBRNCH, ILINK) is the 
index of branch IBRNCH of link ILINK. Of course, 
NNEXT(ILINK) equals zero means that there are no 
branches for that link. The word "next"  really 
describes a relationship between a trunk and its 
branches; the branches come next after the trunk, 
along the path of the particle. INEXT points from a 
link to all others related to it by "next".  

A full tree is a tree built on a preselected root link. 
How root links are selected depends on the applica- 
tion and is described later. The tree is built by asso- 
ciating branches with the root link and then iterating 
the process with all branches of  all links in the tree. 
Although fig. 6 illustrates a full tree built on link 
number 1, there is not structure in the program that 
actually represents it. Instead, we use a fast algorithm 
which climbs up all possible paths on the tree and 
recognizes tracks as chains of  links. This algorithm, 
which is of the Depth-First Search type [6], is the 
core of  the program. In the following we will give a 
detailed description of  its realization in our applica- 
tion. 

We illustrate the operation of  the climbing algo- 
rithm on the full tree of  fig. 6. The algorithm is 
given the address of  the starting link, in this case, 
ISTART = 1 and the arrays NNEXT and INEXT. It 
woks with its own depth counter IDEPTH, link index 
ILINK, and two arrays, LNKLST( ) and N B R N C H ( ) ,  
both indexed with IDEPTH. LNKLST is the list 
of  links climbed in the chain being created. 
NBRNCH(IDEPTH) keeps track of the number of 
branches of  the link LNKLST(IDEPTH) that have 
been already climbed. If  NBRNCH(IDEPTH)= 
NNEXT(LNKLST(IDEPTH)) then all branches from 
the link LNKLST(IDEPTH) have been processed. 

Since climbing-up the full tree from the one link 
to another is obviously recursive, it would be easier to 
describe it in a language that supports recursive proce- 
dures. Although FORTRAN does not accommodate 
recursive structures, it is possible to realize the algo- 
rithm, at the cost of  some clarity, with interleaved 
GO TO statements. This is illustrated in fig. 8. Fig. 9 
shows the algorithm written in an extension of  FOR- 
TRAN called FLECS. FLECS is a FORTRAN prepro- 
cessor that translates block structure control state- 
ments into normal FORTRAN statements. Recursion 
is not supported in the sense that a stack is kept to 

SUBROUTINE CLIMB (IROOT,NNEXT,INEXT ) 

INTEGER LL INK(~) ,NBRNCH(* ) ,NNEXT(~* ) , INEXT(m* , *~* )  

IDEPTH = 0 
ILINK = IROOT 

10 CONTINUE ! CLIMB-UP-ILINK 

IDEPTH = IDEPTH + I 

NBRNCH(IDEPTH) = 0 
LLINK (IDEPTH) = IL INK 

20 CONTINUE ! CLIMB-UP-ILINKS-NEXT-BRANCH 

NBRNCH(IDEPTH) = NBRNCH(IDEPTH) + 1 

IBRNCH = NBRNCH(IDEPTH) 

IF (IBRNCH .GT. NNEXT(ILINK)) GO TO 30 

[LINK = INEXT(IBRNCN,ILINK) 

GO TO 10 

30 CONTINUE ! CLIMBING STOPPED AT THE TOP OF A CHAIN - SAVE IT 

CALL SAVCHN(IDEPTH,LLINK ) 

50 CONTINUE ! CLIMB-DOWN-ILINK 

IDEPTH = IDEPTH - i 

IF (IDEPTH .EQ. O) RETURN 

ILINK = LLINK (IBEPTH) 

IF (NBRNCH(IDEPTH).LT.NNEXT(ILINK)) GO TO 20 

GO TO 50 

END 

Fig. 8. A FORTRAN version of the subroutine CLIMB. 
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SUBROUTINE CLIMB (IROOT~NNEXT,INEXT) 

INTEGER LL INK(* ) ,NBRNCH(~) ,NNEXT(* * * ) , INEXT(* * , * * * )  

IDEPTH = 0 
IL INK = IROOT 

CLIMB-UP-ILINK 

CLII~B-ILINKS-NEXT-BRANCH 

TO CLIMB-UP-ILINK 

IDEPTH = IDEPTH + 1 

• NBRNCH(IDEPTH) = 0 
LLINK (IDEPTH) = IL INK 

. . . F I N  

TO CLIMB-ILINKS-NEXT-BRANCH 

NBRNCH(IDEPTH) = NBRNCH(IDEPTtl) + 1 

IBRNGH = NBRNCH(IDEPTH) 

IF (IBRNCH .LE. NNEXT(ILINK)) 

ILINK = INEXT(IBRNCH,ILINK) 

CLIMB-UP-ILINK 

CLIMB-ILINKS-NEXT-BRANCH 

. . . F I N  

IF (IBRNCH .GT. NNEXT(ILINK)) 

• CALL SAVCHN(IDEPTH,LLINK ) 

• CLIMB-DOWN-ILINK 

. . . F I N  

• .FIN 

TO CEIMB-DOWN-ILINK 

IDEPTH = IDEPTH - 1 

IF (IDEPTH .EQ. O) RETURN 

ILI'NK = LLINK (IDEPTH) 

IF (NBRNCH(IDEPTH).LT.NNEXT(ILI~K)) CLIMB-ILINKS-NEXT-BRANCH 

IF (NBRNCH(IDEPTH).GE.NNEXT(ILINK)) CLIMB-DOWN-ILINK 

. .F IN 

END 

Fig. 9. The CLIMB subroutine written in FLECS, a prepro- 
cessor for FORTRAN that accommodates block structures. 

allow the program to unwind from a sequence of  
recursive procedures, but that is not important for 
our purposes. The organization of  the algorithm into 
the blocks illustrated clarifies its logic. The program is 
to be read like ordinary FORTRAN; except for the 
FLECS control statements. The statements between 
an IF and the associated FIN are to be executed if the 
logical condition is satisfies. Likewise, the TO state- 
ments define internal procedures terminated by the 
associated FIN. A procedure is executed whenever 
the string following the TO appears elsewhere in the 
program. All variables in the subroutine are available 
to all of the procedures, and the RETURN statement 

results in a normal exit from the whole subroutine. 
The subroutine begins with no links climbed and 

the next link to climb being the starting link, 
ISTART, so IDEPTH is set to zero and ILINK to 
ISTART. This is illustrated in fig. 10a where all links 
are drawn as dashed lines to show that no links 
appear in LNKLST yet. The next step is to climb the 
starting link, using the procedure CLIMB-UP-ILINK. 
This procedure just stores the new link found in the 
array LNKLST and sets the branch counter to its 
starting value. It is done by incrementing IDEPTH, 
updating LNKLST with ILINK, and clearing the 
branch counter NBRNCH(IDEPTH). The result is 
represented in fig. 10b by a solid line for link 1 to 
indicate that it now appears in the link list. 

Recursive climing is done by the procedure CLIMB- 
ILINKS-NEXT-BRANCH. It first checks whether there 
are branches to be climbed, so NBRNCH(IDEPTH)is 
incremented by 1 and then compared to NNEXT 
(ILINK). If  NBRNCH is less than or equal to 
NNEXT, there are branches to climb, so ILINK is 
updated from INEXT and the new link is climbed by 
CLIMB-UP-ILINK. Then the whole process is iterated 
by having CLIM-ILINKS-NEXT-BRANCH reference 
itself. The procedures CLIMB-ILINKS-NEXT- 
BRANCH and CLIMB-UP4LINK climb from one link 
to another following the chain of links, and store 
every new link in the array LNKLST, until a link is 
found which has no branches at all. (This occurs 
when NBRNCH is larger than NNEXT.) This link, 
which is a leave, is the end of  a chain so the subrou- 
tine SAVCHN is called to save this chain which is so 
far only stored in LNKLST. This chain is one of the 
track candidates in the tree. In the example of  fig. 10 
the first completed chain (fig. 10c) consists of  links 1 
and 5 since link 5 has no branches. After the end of  a 
chain is found and stored, the procedure CLIMB- 
DOWN-ILINK is started. In this procedure, IDEPTH 
is decremented by 1 which means that control is 
passed to the previous link in a chain. If  this link has 
unused branches * the procedure CLIMB-DOWN- 
ILINK is recursively continued; it quits with a 
RETURN statement when it has climbed down link 
ISTART so there are no more links in the array 
LNKLST (i.e. IDEPTH equals 0). 

* If the full tree being climbed has joining branches some 
branches will be climbed more than once, but these branches 
will always have different chains below them each time 
they axe passed• Clearing NBRNCH in CLIMB-UP-ILINK 
takes care of all potential problems. 
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Fig. 10. The graphical representation of the action of the subroutine CLIMB on the tree of fig. 6. The full lines represent links 
which are actually stored in the array LNKLST at any point in CLIMB. 

Figs. 10a-s  illustrate the operation of  the sub- 
routine CLIMB by showing the content of  the array 
LNKLST in all program steps. In this figure the 
letters a, b, c, d ... s denote all updates of  the array 
LNKLST and the full lines represent links which are 
actually stored in this array. The output of the sub- 
routine CLIMB consists of all completed chains found 
during its operation. In fig. 10 these are the chains c, 
i, t and p. SAVCHN stores the chains that satisfy its 
cuts in an appropriate list. The cuts used depend on 
the application and two examples will be mentioned 
in the next two sections. 

In the TASSO experiment the tree algorithm was 
written in FORTRAN as shown in fig. 8 to maintain 
program compatibility. It is very fast since it accesses 
the precomputed information stored in the links and 
elementary trees by updating counters and computing 
indices. The execution time is linear in the number of  
links in the full tree, since each link is passed only 
once going up and once going down. 

In defining elementary trees, we mentioned that 
the branches of  an elementary tree were farther from 
the interaction point than the trunk. We could have 
defined trees with the branches closer to the interac- 
tion point than the trunk. In fact, such elementary 
trees are also needed in the procedures in Sections 4 
and 5. We used additional arrays, IPREV and NPREV 
to list branches which are closer to the interaction 
point than the trunk, since the branches are "pre- 
vious" to the trunks instead of  "next"  after them. 
No additional computations are involved in filling 
IPREV and no new links are added, since link i is pre- 
vious to link j if link j is next to link i. From a given 
root link CLIMB moves towards or away from the 

interaction point in looking for chains, depending on 
whether the "previous" or "next"  pointers appear in 
its argument list. 

4. A systematic search for tracks 

The highly systematic and exhaustive pattern 
recognition strategy we describe here, was used in 
finding straight tracks in the s - z  plane determined by 
combining circular tracks in the r - ¢  plane with the 
hits in the 6 stereo layers (see appendix B). Of course, 
the strategy is more general than straight tracks in 
6 layers, but we stick to this example here, since 
extensions are obvious. The goal was to rapidly and 
efficiently find the s - z  track associated with a given 
r - ¢  track (this is explained in more details in appen- 
dix B), even if this track had only 3 hits, while giving 
preference to tracks with 6 hits over those with 5, 
etc. This is accomplished by organizing the search in 
the following stages *: 

1) All 6-hit chains are found using the tree proce- 
dure, fitted and stored in a track candidate list. 

2) A 6-hit track is accepted and the search stops if 
the track candidate with smallest X 2 among those 
passing a Zo cut also passes the X 2 cut. 

3) Otherwise all 5-hit track candidates are found, 
fitted and stored. 

* We discuss here only the organization of the program for 
finding the s - z  track itself. Other essential steps, in partic- 
ular finding the necessary r-q~ track and cancelling the hits 
and ambiguity twins belonging to the r - ¢  and s - z  tracks, 
are assumed to occur outside of this program. 
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4) A 5-hit track is accepted if one is good enough 
according to stage (2). 

5) Otherwise all 4-hit track candidates are found, 
fitted and stored. 

6) A 4-hit track is accepted if one is good enough 
according to stage (2). 

7) Otherwise the zo and 9(2 cuts are relaxed and 
the lists of 6, 5, and 4-hit tracks were again searched 
in that order. The search stops when the best track 
with a given number of hits is found to be acceptable. 

8) If  no 6, 5 or 4-hit track is acceptable, 3-hit 
tracks are considered with tighter 9(2 cuts. This is 
trivial since all 3-hit tracks are all pairs of links related 
by the tan X and Zo cuts for links. 

We achieve this organization which guarantees that 
all tracks with a given number of hits have been 
found at stages (1), (3) and (5) by controlling the 
links used in elementary trees. We do not avoid find- 
ing some 5 and 4-hit chains in stage (1), [and 4-hit 
tracks in stage (3)], but they appear only once, so we 
save them for later use if necessary. 

We begin this search for tracks by establishing the 
list of hits in the s - z  plane as described in appendix B. 
Building the list of elementary trees proceeds then in 
organized steps. We have already mentioned that 
classifying links according to the number of gaps 
spanned is the key to controlling the number of 
missing hits in found tracks. Fig. 11 illustrates the 
complete classification for 6 layers. 6-hit tracks 
obviously can be built only with links of types 1-5 ,  
and a 6-hit track is a chain with one link of each type. 
At the other extreme, links of type 15 span layers 
1-6 ,  so they can only be used for 2-hit tracks; they 
did not appear in the program. Of course, links of 
types 6 - 9  are required for 5 hit tracks, to account 
for inefficiencies in layers 2 -5 .  Links of types 10-12 
are needed in 4-hit tracks in which two successive 
layers can be inefficient *. Finally, types 13 and 14 
can appear in only 3-hit tracks. 

For each link that occurs in an elementary tree we 
store NNEXT, INEXT, NPREV and IPREV. We also 
store the hit address in the s - z  hit list of the hits on 
the inner and outer end of the link. The elementary 
tree list is organized with pointers [8]. This organiza- 
tion enables us to find links of a given type and to 
update rapidly the "next" and "previous" pointers 

* Track f inding programs of ten  limit the number  o f  succesive 
missing layers in a track. This is accomplished au tomat -  
ically in our strategy by limiting the types  o f  links used. 

5 . . . . . . . . . . . . . . .  

NUMBER 
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Fig. 11. Complete  classification of  all links for 6 layers. 

when a link already in the list is associated with a new 
link in anelementary tree. 

After preparing this elementary tree list we loop 
through all links of type 1 in the list and use them as 
starting links for the tree algorithm. Only the "next" 
pointers are used here since climbing can only move 
outwards from type 1 links. The chains saved by 
SAVCHN are examined and 6-hit ones are fitted and 
saved in a track candidate list. In this step also some 
chains constructed from one-gap links but with lower 
number of hits are found. They are also fitted and 
saved in the same list. This list is also organized with 
pointers [8], so all tracks with a given number of hits 
can be rapidly examined to facilitate stages (2), (4), 
(6) and (7). At this point stage (1) is finished-all 
6-hit track candidates have been found. Step (2) is 
accomplished by looping through the 6-hit track can- 
didates and rearranging the pointers to order the 
track candidates list according to increasing 9( 2 . The 
first track with an acceptable zo is then the desired 
track if 9(2 is small enough. 

If  no acceptable 6-hit track is found the search 
continues with stage (3). There are now 3 ways to get 
5-hit track candidates not already found, 

(3a) by climbing outwards from all type 2 links, 
(3b) by copying 6-hit tracks and deleting the hit in 

layer 6, 
(3c) by introducing elementary tracks with links 

of types 6 - 9  and climbing trees in both directions 
from these links. 
In step (3c) track candidates are obtained by combin- 
ing all top chains found by climbing outward from a 
given link with all bottom chains found by climbing 
inward from this link. Fig. 12 illustrates this with a 
type 7 root link, where the chains 12b-12j arise from 
the full tree 12a. 

In order to avoid finding the same chains repeat- 
edly, (3c) is organized in steps. In each step, a new 
link is introduced and elementary trees are con- 
structed by combining these links only with links of 
lower type number. In step (3c) these are consecu- 
tively the links of types 6, 7, 8 and 9. As in step (1), 
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o b c d e g h i 

Fig. 12. Track candidates (chains) obtained by combining top 
chains and bottom chains starting with a type 7 link. 

some chains with fewer than 5 hits can be found. For 
example starting from a link of  type 8 it is possible to 
construct a 4-hit chain using a link of  type 6. 

Finding the remaining 4-hit track candidates in 
stage (5) duplicates the logic of  stage (3), 

(5a) by climbing outwards from type 3 links, 
(5b) by copying 5-hit tracks and deleting the last 

hit 
(5c) by introducing elementary trees with type 

1 0 - 1 2  links and climbing trees in both directions 
from the new link. 
The systematic search described here leads to a track 
finding program whose quality is equivalent to fitting 
all possible hit permutations and choosing the best 
ones according to X 2 and number of  hits attached. It 
has a slight bias towards increasing the number of  
attached hits in a track since if there are two track can- 
didates, both fidfilling the X 2 cut, the track with the 
higher number of hits is chosen. This bias is easily 
controlled by keeping the X 2 cut reasonably low. 

In spite of  its high quality the program is reason- 
ably fast. The average IBM 370/168 CPU time con- 
sumption in e+e - jet events at 15 GeV beam energy is 
1 0 - 1 2  ms per s - z  track. The high speed of  the 
method is in our view mainly due to three reasons: 

a) The time consuming operations of  following the 
track and fitting is in our approach largely replaced 
by chain construction from locally related links. The 
determination of  local relations demands only few 
multiplications and divisions and the construction of  
chains is a pure integer operation. 

b) The information which was worked out once is 
not lost. For example the information contained in 
one-gap links, which is necessary for the 6-hit track 
search is still required for 4-hit tracks. 

3) Every chain is, with only one exception, con- 
structed only once. The exceptional double construc- 
tion occurs in step (5b) where the same 4-hit track 
can be found by deleting two different last hits. Of 
course, a quick search in the track list can eliminate 
this duplication. Note that in the road method there 
are usually many ways in which the same track can- 
didates can be found. 

5. A fast search for tracks 

A fast track finding program based on our tree 
climbing algorithm is used as the event filter in the 
first pass data reduction in the TASSO experiment. 
It must recognize a good event (i.e. one with circular 
tracks in the r--¢ plane coming from near the origin) 
in a background of  104 bad triggers. Therefore, it is 
optimized for speed at the price of  some efficiency 
by working mainly with one-gap links and building 
chains analogous to minimal spanning trees [9]. 

Since we are searching for tracks that are circles 
through the origin, the links in this program are arcs 
of  circles joining hits in two nearby layers. Our start- 
ing point was the observation that a real track will 
nearly always be the chain with shortest geometric 
length spanning all layers of  the chamber. Except for 
a few special cases, this is obviously true if the real 
track is compared with a chain made with at least 
some left-r ight  twin hits. 

However, it is not  practical to use arc length in 
recognizing tracks, since it is only second order in 
the displacement of  a bad hit from the real track, and 
it cannot be evaluated quickly. Instead we use the 
curvature of  a link as the measure of  distance as 
shown in fig. 13. Here links 1 and 2 belong to the real 
track, while 3 and 4 are derived from a bad hit. In 
this case, link 4 has a smaller radius or larger curva- 
ture than 1 and 2. In general, a chain formed with 
one or more bad hits will have some links with larger 
curvature than the real track. This implies that we 
should use the links of  smallest curvature first in the 
search. The curvature or radius can be quickly evaiu- 
ted in the limit of  high momentum, using eq. (4) of  

~ T R A C K  
,X J 

WIRE CYLINDERS 
Fig. 13. Construction of curved 2-hit links with the help of 
the interaction point. 
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appendix B (with D = 0), which reduces to, 

Or 
= ~o + - - .  (2) 

2R 

Here ~ is the angle of  a hit in the layer of  radius R,  
and ~o is the angle of  the tangent to the track at the 
origin. For two hits i and ], our curvature variable 

is given by, 

= ~ =  Q - -  _ Q (3) 
r i -  r i zXr 

This expression is suitable, since it is first order in the 
displacements of  the hits, has no signularities, and can 
be quickly evaluated *. (Note that the sign of  (2 is 
chosen to make R and K positive.) In our program we 
use uncorrected drift distances to compute the ~p 
angles. However, if more accuracy is necessary, the 
angle /3 to the normal required for computing drift 
time corrections (see appendix B) can be rapidly 
approximated using these r and ~ values. 

The program starts by splitting the event into frag- 
ments in which the trackfinding takes place. The frag- 
ments are crude subdivisions of event constructed by 
associating hit 0 ° wires in nearby layers with similar 
q5 angles, starting with wires in outer layers, and 
working inwards. The proceedure is then iterated, 
working alternately outwards and inwards until it 
converges. A fragment contains only one track if it is 
well isolated, but it will generally contain all of the 
tracks in a narrow jet. 

Next the links of  the fragment are constructed. 
For each hit wire in the fragment, its neighbours (i.e. 
wires in adjacent layers with similar ~ angles) are 
found. If  a wire has no neighbour in an adjacent 
layer, a jump to the next layer is allowed. Since the 
lef t -r ight  ambiguity gives two hits for every wire, 
2 neighbouring wires give 4 links. For each link with 
K less than a maximum value /~max, the curvature n 
and the addresses of  the two hits defining the link are 
stored in the link list. 

The link list is then ordered according to increas- 
ing ~ with help of  the Heapsort sorting algorithm 
[10]. This ordering has three desirable properties: 

1) Links belonging to high momentum tracks 
appear early in the list. 

* This expression is clearly useful only for cylindrical layers. 
If plane layers are used, so Cartesian coordinates are 
appropriate, the signed square of the curvature can be 
obtained quickly without special functions using dot pro- 
ducts. 

2) Links belonging to a given real track are near 
each other in the list. 

3) Some of  the links necessary to construct a long 
chain involving some bad hits appear later in the list 
than links from the corresponding real track. 

(1) obviously biases the search towards finding the 
high momentum tracks in a jet first. (2) and (3) 
allow us to optimize the speed of our search, since 
links for a real track are gathered together near the 
beginning of  the list, and nearly all long chains includ- 
ing bad hits require links appearing later in the list. 
Therefore, these chains need not appear if the pro- 
gram is properly organized. 

Now the links are pulled out of  the list one after 
another. The previous and next elementary trees are 
then constructed using the new link as the trunk, but 
only using links earlier in the list as branches. This 
new link is then used as the starting link to construct 
chains by climbing in both directions from it. Due to 
(2) and (3) the first long chain (e.g. with 5 links in 
our 9 0 ° layers) found in this way is most likely the 
right track or a piece of it. If  not all layers are crossed 
a request for a small number of  additional links is 
made (i.e. 2 - 5 ) .  If  the found chain is not  extended 
by these links the search is stopped. The found chain 
(or chains if more than one appears at the same time) 
is then fitted and, if necessary, followed to the other 
layers. If  the track satisfies a X 2 cut it is accepted. If  
there are several such tracks, both length and ?(2 are 
used in selecting the best track. 

Note that this way of  finding tracks is influenced 
by the minimal spanning tree construction. However, 
there are important differences. The MST of a set of 
hits is a tree that connects all hits and which has a 
minimal weight (in our case it is a sum of  curvatures 
K's). Our "MST" is in general the chain with the mini- 
mum weight than spans all or nearly all layers. We do 
not construct a real MST since in our sets there are 
always many hits, due to the lef t -r ight  ambiguity, 
which do not belong to any track. 

After the track was found and accepted all hits 
from wires used in the track are calcelled from the 
active hit list, and all links formed with these hits are 
cancelled from the link list, to prevent their reappear- 
ence in subsequent tracks. Then all wires in the frag- 
ment are checked again to find ones which, after the 
cancellation, lost all of  their direct neighbours. If  
there are any, the program tries to construct links 
spanning over two or three gaps for them. The search 
for further tracks in the fragment continues itera- 
tively with the shortened link list until all of  the high 
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quality tracks through the origin are found. Hence 
the program not only acts as a fast event filter, but 
also provides the first approximation to a complete 
list of tracks. 

If a chain with at least 4 links is not found by 
some maximum number of requests for new links 
(between 20 and 40), the search is stopped and the 
fragment is abandoned. This demand for rapidly 
growing chains obviously greatly influences the speed, 
and  it again is possible only because (2) and (3) are 
true. 

This organization is particularly suitable for the 
rapid rejection of background in the TASSO experi- 
ment as mentioned at the beginning of this chapter. 
The vast majority of background triggers are due to 
interactions of the e + or e- beams with the beam pipe, 
so there are no tracks coming from the interaction 
point. From the point of view of the program, this 
implies that there are no tracks in the fragment. How- 
ever, this is recognized long before the whole frag- 
ment is reconstructed since the search is already 
abandoned after 20-40  unsuccessful requests for 
links. In addition, this organisation automatically 
finds high momentum tracks with the maximum 
number of hits first. These are the best tracks (they 
have the highest measurement quality and the most 
important ones, so finding them first is essential to 
any strategy to resolve complicated events. Here it 
happens automatically. 

Our patt.ern recognition program, called FOREST, 
was optimised as an event filter since every TASSO 
trigger event is sent through it. The average analysis 
time is 60 ms, including 20 ms for reading, writing 
and decoding. The TASSO trigger requires a mini- 
mum number of tracks (chosen to be between 2 and 
¢ depending on background condition) with o ,  

P T > 3 2 0  MeV or two back to back tracks (PT 
denotes the transverse momentum relative to the 
beam axis). The efficiency is momentum dependent 
since we work in this program with the uncorrected 
space-drift time relation. The largest deviations from 
linearity occur at large entrance angles/3 (see appen- 
dix B and ref. 1) and therefore affect mainly the 
low-PT particle tracks. The efficiency (per track) of 
FOREST was found to be: 

~40% for PT < 2 5 0  MeV/c, 

88% for P T - 2 5 0 - 7 5 0 M e V / c ,  

95-98% for PT > 750 MeV/c. 

The decrease in the efficiency with PT is not due to 

the use of the approximate form of eq. (4) described 
above. The influence of this approximation is seen 
only belowPT = 150 MeV. 

The above efficiencies were determined with 
hadronic events from one photon annihilation at 30 
GeV. The efficiency of reconstructing Monte Carlo 
events of the same type produced with linear speca- 
drift time relations was found to be 93% for all kinds 
of track from the interaction points with PT > 150 
MeV. 

Due to its high efficiency the program is able to 
reduce the ratio of physics to background events 
from 1 : 104 to 10 : 1, i.e. it produces an almost 
clean event sample. These events are further analysed 
with a considerably slowed road type program *, 
called MILL, to obtain the highest possible efficiency 
for all kinds of tracks. A slightly modified FOREST 
program, working with the corrected space-drift 
time relation is used also within the MILL program to 
provide the first approximation to a complete list of 
tracks. The MILL efficiency is around 97% for all 
kinds of track with PT > 100 MeV. 

6. Other tracks, other links and possible extensions of 
the method 

In spite of the fact that in TASSO we so far use 
the link-and-tree method only to search for circles 
from the neighbourhood of the interaction point and 
for straight lines, this method is not restricted to 
these cases. As we have already mentioned, the gener- 
alization to searching for circles originating from arbi- 
trary points, (e.g. decay vertices, secondary interac- 
tions etc.) is straightforward. To find the projection 
of this kind of track on the r -~  plane we have to 
work with links built from three hits instead of two. 
In the construction of elementary trees there are two 
a priori possibilities: 

a) to relate links of approximately equal track 
parameters which have the first and the last hit in 
common, 

b) to relate links of approximately equal track 
parameters which have the first two and the last two  

hits in common, as shown in fig. 14. 

* Roads are nsed only in finding r-4~ tracks, the track finding 
in the s-z plane is done entirely with the strategy described 
in sect. 4. Of course, this strategy would be appropriate for 
the r-~ plane in the MILL program, but MILL was devel- 
oped first and we have not yet brought it up to date. 
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Fig. 14. An elementary tree constructed from three-hit links. 
The dashed circles are branches and the solid one is trunk. 

We would recommend the second possibility since it 
introduces more information into the tree construc- 
tion. Both track searching methods described in the 
previous two chapters can also be used with 3-hit 
links. The operation of the climbing algorithm is inde- 
pendent of the kind of links and elementary trees 
provided; however, the organization of link and ele- 
mentary ~ree lists have to change since there are now 
more types of links. 

The use of three hits instead of two enlarges the 
list of links considerably. To get a feel of how much 
the program processing would slow down, we make 
the following very rough estimate: The length Of the 
link list is proportional to n ~ or n a, for 2 or 31hit 
links respectively, where n denotes the average num- 
ber of hits per layer in the considered region. In our 
TASSO programs, n was typically 3 Or .4. Since the 
execution time of the program is roughly propor- 
tional to the number of links used, we estimate that 
the 3-hit link program would also be a factor of 3 - 4  
slower (assuming that the proportionality factor for 
n 3 is similar to that for n2). This does not necessarily 
lead to a considerable increase in the total computing 
time, since the 3-hit link program would be used only 
for the small fraction of all triggers containing physics 
events. 

It is also possible to generalize the link-and-tree 
methods to detectors that make a dense sequence of 
measurements on a track. In this case it makes no 
sense to create links from every pair or triplet of 

points; rather many points should be gathered into 
one link. However, care should be taken that also in 
the noisy regions of a chamber all links belonging to 
real tracks are created. This should happen even if 
jumps over large regions of a chamber are necessary 
since the links with big jumps correspond to multigap 
links in detectors with fewer layers as in the TASSO 
detector. In spite of the fact that in dense measure- 
ment chambers the number of hits is considerably 
larger than in chambers with fewer layers, the number 
of links created should be smaller since there i smore  
information to eliminate wrong links. F rom the 
created set of links, it should bepossible to construct 
every track as a chain of links without any interrup- 
tion. Then all the methods described above apply. 

Another straighforward generalization of the 
method is the case o f  a detector with an inhomoge- 
nious but slowly varying magnetic field. In this case 
links, elementary trees and full trees can be con- 
structed in the same way as described above as long as 
the field is approximately constant in any elementary 
tree region. In our method the track parameters of 
the last link of a long chain can be quite different 
from those of the first one, since they can (slowly) 
dirft along the chain. The only parts of the program 
which have to be changed to adapt it to the effects of 
a nonhomogeneous magnetic field, are the track fits 
which, of course, being nonlocal, have to feel devia- 
tions from precise circles. 

7. Conclusions 

In this paper we have described a pattern recogni- 
tion method based on the creation of lists of all track 
elements and local relations between them. The 
tracks are recognized as chain built from these ele- 
ments. We have utilized two different applications of 
the method, a systematic search and a quick search. 
Both applications lead to efficient and fast programs. 
From our experience in working these programs we 
feel that it is posssible to write effective programs 
working with the link-and-tree method for recon- 
struction of all types of tracks. 

Our method puts additional requirements on the 
performance of tracking chambers. The joining of 
links into elementary trees, which is a procedure of 
preselecting link combinations, requires good local 
precision (in contrast to a precision obtained by 
sampling many measurements). Also a considerable 
degree of homogeneity of the chamber (e.g. same 
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drift cell size throughout the chamber) is extremely 
valuable, since the tracks are recognized as chains of  
only locally related links. Local inhomogeneities (e.g. 
at the borders between different chamber types) tend 
to break the chains and in turn make track finding 
more difficult. 

We developed this approach to track finding for 
the TASSO experiment and we gratefully acknowl- 
edge the numerous discussions with and the criticisms 
of  our TASSO colleagues. We are particularly 
indebted to P. S6ding and G. Wolf. We would also 
like to thank B. Radig and M.-J. Schachter for careful 
reading of  the manuscript and useful comments. 

Appendix A 

The T A S S O  detector 

The TASSO detector is illustrated in fig. 15. All of  
the pattern recognition work described here used data 
from the cylindrical inner drift chamber which is 

described in more detail elsewhere [1]. Hits in the 
proportional chamber inside the drift chamber were 
added to tracks in later stages in the track reconstruc- 
tion. 

The cylindrical drift chamber is located inside the 
coil of  a large solenoid magnet with a nearly uniform 
field of about 0.5 T parallel to the beam axis. The 
sensitive length of  the chamber is 323 cm. It has 15 
equally spaced layers, 9 zero-degree (0 °) layers with 
the sense wires parallel to the axis and 6 stereo layers 
with the sense wires oriented approximately -+4 ° to 
the axis. Each 0 ° degree wire layer forms a cylinder 
whereas the twisted ones have a form of a hyper- 
boloid. These layers are spaced 6.11 cm apart 
between an inner radius of  36.7 cm and an outer 
radius of 122.2 cm (measured at the ends of the 
chamber). There is a total of  2340 drift cells each 
with radial and azimuthal dimensions of  1.2 cm and 
3.2 cm respectively. The celts are made of  wires only; 
the repeating unit of  a cell consists of  3 field wires 
and 1 sense wire. 

The chamber was operated with a gas mixture of  
either 90% argon and 10% methane (or 50% A, 50% 

iJ - Chamber  

Fig. 15. The TASSO detector viewed along the beam. 
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ethane). Its observed efficiency was 98% per wire 
including a 0.5% electronic inefficiency. The single 
hit electronics recorded the drift time of the track 
nearer to the sense wire if two tracks in an event 
crossed the same cell. No measurement of  the longi- 
tudinal position of a hit on a single wire is made. The 
recorded drift time and wire address for each hit wire 
were passed on to the pattern recognition programs. 

Appendix B 

Geometry conventions and details o f  the track find- 
ing program 

The input data for the pattern recognition pro- 
gram consists of  the addresses and measured drift 
times for hit wires. Using an average drift velocity, 
the drift time for each wire is converted to an approx- 
imate drift distance d. This drift distance is assumed 
to be an arc length on the wire circle * and the angles 
eL and ~b R with respect to the x axis are calculated 
for the two possible hits to the left and right of  the 
wire. These angles, the drift distances and bookkeep- 
ing information are stored in a common block for 
the track finding programs. 

The first stage of the trackfinding uses only the 0 ° 
wires, yielding the projection of the track onto the 
x - y  or r--~ plane **. The magnetic field is suffi- 
ciently uniform to allow use to assume that the pro- 
jected tracks are circles and the 3-dimensional track is 
a helix. 

Fig. 16 illustrates the geometry of a circular track 
intersecting a cylinder of  0 ° wires, r is the radius of  
the wire cylinder and R is the radius of  the track 
circle centered at (xc,Yc). The track is at a distance D 
from the origin at its point (xo,Yo) of closest approach 
and its angle with respect to the x-axis is 4o there. 
The track intersects the wire cylinder at angle q5 with 
respect to the x-axis and it turned through an angle 
in going between the point of  closest" approach and 
the wire cylinder. The track shown is a track with 
Q = +1 and D ~> 0. A track that does not enclose the 
origin has D < 0. 

* For stereo wires we used the  circle at z = O. 
** The z axis is along the incident e + direction the  y axis is 

vertical and the  x axis completes  a r ight-handed coordi- 
na te  system.  

In terms of these quantities the angle ¢ is given by 

• r 2 R D - D  2 - r  2-] 
~ = ~ 0  + Q arcsm~- 2 r ( R - - - ~  J "  (4) 

The drift distance d, calculated with an average 
drift velocity, is only approximately correct. The 
actual drift distance depends not only on the drift 
time (ergo d) but also on the angle 13 between the 
normal to the wire cylinder and the track direction at 
that point./3 is given by 

¢J = arcsin 2rR " (5) 

After a track is found using only 0 ° wires, the drift 
distances are corrected using polynomials determined 
in an iterative procedure *. For 's implic i ty  we use 
different polynomials in different intervals of  t3 to 
account for the dependence of the corrections upon 
/3. A best fit track is then calculated using the cor- 
rected drift distances, always projected onto the wire 
circle. 

After the projection of the track on the r-q~ plane 
is found, a search for the corresponding projection in 
the plane including z axis can be started. I f  the dfp 
angle of  the 3-dimensional track is denoted by 3., the 
z dependence of the track is given by 

z =Zo = R ~  tan 3.=Zo + s tan 3., (6) 

where Zo is the z coordinate of  the track at (xo,Yo). 
is calculated from 

/'2 -~__~2 111/2 
= 2 arcsin 4R(R - D) (7) 

The projection of the track on the r-4~ plane defines 
a cylinder with its axis parallel to the z axis, as illus- 
trated in fig. 17. The helix describing the 3-dimen- 
sional track must lie in this cylinder. The first step in 
the s - z  track finding is to calculate the z and s = R 
values for all stereo hits that could possibly lie on the 
track cylinder. The angle/3 for the track in the stereo 
layer is calculated using the radius of  the layer at 
z = 0. The fully corrected drift distance for each hit 
wire is used to determine the 4} angles of the left and 
right hits, again using the position of the wire at 
z = 0. For a single hit with angle ¢s this leads to the 
point (Xs, Ys) on the stereo wire circle of  radius 
r s at z = 0 shown in fig. 17. I f  the angle between the 

* Since this  expression is insensitive to D when  D is small, the  
corrections can already be made earlier using the  radius of  
curvature determined f rom the links as described in sect. 5. 
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Fig. 16. Geometry of a circular track intersecting a cylinder 
of 0 ° wires. 

wires in this layer and the axis is a ,  the hit  

(8)  

stereo 
must lie on the line: 

x = x s + e x Z ,  y = Ys + eyZ , 

with 

ex = - t a n  a sin Os , ey = tan a cos Os • (9) 

I f  the hit belongs to the track it must  lie on the hit  
cylinder, so the posit ion of  the hit  in space must be 

(x~,ys) 

T / p  
ii ii iiii  :, 

 !iiiiiiiiiiiiiiiiiiiiiiiiiiiiii 
~, . . . .  ) 

a) 

jL Y projection in the r,~ plane 

/z "\ 

\ \ cro  - e tionth oogh 
\ "~" " ~ /  / ~ the hyperboloid at Z = 0 

~ .  ~ . . . . - ' ~ / ~ "  at the end flange 

b) 
Fig. 17. Geometry of a Circular track intersecting a (not 
explicitly shown) hyperboloid of stereo wires. (a) Three- 
dimensional view; (b) Projection in the r - 0  plane. 

the intersection of  the line given by eq. (8) with the 
cylinder given by 

( x -  xo)  2 + O , -  y J  - R ~ = 0 .  (10 )  

The z coordinate of  the intersection is, 

- 2 c  
z - (11) 

b + (b 2 - 4 a c )  1/2 , 

where 

a = t a n 2 a ,  b = - 2 X c e x  - 2 y c e y  , (12) 

c = (xs - Xc) ~ + (ys - y c )  ~ - n 2 • 

The radius of the hit,  r, is determined from z and 
eq. (8). Eq. (6) then gives ~ so the values of  z and 
s = R ~  are known for this hit if it belongs to the 
circular track. This calculation is repeated for all 
hits on all stereo wires that intersect the track cylin- 
der. This gives a set of  hits in the s - z  plane, each one 
associated with a stereo layer. According to eq. (6), 
z and s for a helix are linearly related, so the track 
finding problem in the third dimension reduces to 
finding straight tracks in the s - z  plane. 

This calculation is too  time consuming to actually 
use it on all possible stereo hits. Hits are first selected 
quickly using the uncorrected ~b angle ~b s of  the hit  in 
the z = 0 plane. This is done for each stereo layer by 
fist calculating the angle 0T of  the intersection of  the 
r-~b track with a circle of  radius r s representing the 
stereo layer at z = 0. A stereo hit  in this layer is 
accepted if  its angle ~b s is 

kb s - ~bwl < A~b. (13) 

Aq~ is the angular difference between the positions of  
the stereo wires in the given layer at Z = 0 and the 
end of  the chamber, suitably enlarged for resolution 
and the missing corrections. 

The s and z coordinates of  each accepted hit and 
its address in the master hit list are stored in a s - z  hit 
list indexed with layer number and serial number or 
the accepted hit  within the layer. The hits are ordered 
according to increasing z to optimize constructing the 
elementary trees. (With this ordering we can stop the 
search when the outer link has a larger slope than the 
inner link and fails the cut.) 
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