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The origin of the discrepancy between recent calculations of the connection between the A-parameters of lattice and 
continuum pure gauge theory is explained. The calculation is extended to include fermions. 

The continuum limit of  SU(N) euclidean lattice gauge theory is expected to be obtained by taking the limit lat- 
tice spacing a ~ 0, and the bare coupling go ~ 0 such that the renormalisation group invariant mass parameter 

AL _ a - 1  exp(_l/2/30g02) O30g02) - B , / 2 ~  [1 + O(g2)] , (1) 

tends to a finite non-zero limit. Here/30,/31 are the universal first two coefficients of  the Callan-Symanzik/3-func- 
tion [1] 

/30 = ( 4 ~ r ) - 2 [  ~N-  ~ T(R)nf] , /31 = (470 -4  [ ~  N2 -- ~ N T ( R ) n f -  4C2(R)T(R)nf]  . (2) 

The actual value of  A L is arbitrary: it just fixes the mass scale of  the continuum theory. Physical masses are ex- 
pressed as (in principle calculable) constants times A L. For example, from Monte Carlo studies Creutz [2] esti- 
mated for the string tension for the case N = 2 in the absence of  fermions (/'/f = 0)  

a 1/2 ~ 70 A L . (3) 

To give such results phenomenological significance it is necessary to connect A L to corresponding A parameters 
defined in the continuum theory: 

A - M  exp[-1/2/30g2(M)] (flog 2 (M)-3a/2/~o2 [1 + O(g 2 (M))j . (4) 

Recently, Hasenfratz and Hasenfratz [3] and Dashen and Gross [4] have performed the calculation (for the case 
nf = 0) and they both  find AMOM/A L is a large number (&60 for N = 2) so that one obtains from (3) the phenom- 
enologically satisfying result 

t~ 1/2 ~ AMO M . (5) 

The precise values of  AMOM/A L obtained by the two groups, however, differ by 5%. Although such a small differ- 
ence is phenomenologicaUy unimportant ,  especially since the effect of  massless fermions were not taken into ac- 
count, the origin of  the discrepancy should be theoretically understood. It is one of  the purposes of  this note to 
clarify this point. The other is to extend the result to include fernfions (nf =/= 0). These results will become relevant 
when Monte Carlo or equivalent methods are extended to include fermions [5] or when strong coupling estimates 
are made [6] analogous to those already performed for the case nf = 0 [7]. The results are presented in table 1 
and as one sees the nf dependence is not too dramatic for small nf. 

1 Supported by the Deutsche Forschungsgemeinschaft. 
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Table 1 
Ratios of various A parameters. 

N=2 N=3 

nf=O 1 2 3 4 flf’0 1 2 3 4 

*MIN 

AL 
1.46 9.21 12.09 16.85 25.81 10.85 12.78 15.41 19.09 24.49 

57.40 61.39 66.64 73.85 84.26 83.42 89.24 96.36 105.24 116.57 

6.40 6.42 6.46 6.51 6.56 6.40 6.41 6.44 6.46 6.49 

.-- 

Just as the continuum A depends on the renormalisation scheme employed, the lattice A, depends on the 
choice of lattice action. The calculations reported here refer to the standard Wilson action [9]. 

+s=- c &&, +K c [$x,(1 - Y,,)U,,,G,+; + @x+fi(l +y,>&,~,1 
x X,/J 

+gii2 c 
X,P#V 

wJx,r u,+~,“u,t+;,M u;,, - 1). (6) 

Now it follows from eqs. (l), (4) that 

hr(A/AL)=lnaM- (1/2po)(g-2(M)-g~2) t 0(g2) (7) 

and thus as it has been stressed by Celmaster and Gonsalves [8] and Parisi [lo] to extract the relation between 
various A parameters it is sufficient to obtain the relationship between go and g(M) correct to first non-trivial order 
which can be done by suitable one-loop calculations. I will first summarize the (different) calculations of the two 
groups [3,4] referred to above and explain the origin of the discrepancy between their results and then list the re- 

sults for the case nf #O. 
Hasenfratz and Hasenfratz [3] evaluate two- and three-point functions in weak coupling lattice gauge theory. 

Specifically for computational ease they calculate the three-point function rabc 
I = 0, p2 = q2 = M2 in the Fey= gauge. Requiring r,“t’w@, -p, 0)l 

,,vw(p, 4, r) at the asymmetric point 
_ p 2 _M2 o t h ave no correction proportional 

to the bare vertex defines the MOM renormalisation scheme. This calculation, which is in principle straightforward 
but technically involved, yields a value for AL/AM= . Finally to obtain the relation between A, and more conven- 
tionally employed A parameters, for example AMIN defined by minimal subtraction using dimensional regularisation, 
a continuum calculation of AM-/AMIN is performed. Dashen and Gross [4] use a background field method gen- 
eralised to lattice gauge theories. The ratio of the lattice and continuum partition functions Z,, 2 in a weak back- 
ground field A$) for weak coupling is calculated and one finds (for a + 0): 

ln(.Z~/Z)=[-~(g~2-g-2(jTf))-~~olnaMC] sd4S,$+‘$. (8) 

Requiring 2, = Z yields, using eq. (7): 

AL/A= C. (9) 

The method is rather elegant and can be done relatively easily by hand. Care has to be taken, however, to correct- 
ly introduce the infrared and ultraviolet regularisations. Using Pauli-Villars regularisation Dashen and Gross end 
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up with a value for AL/Apv.  Finally, to compare with the result of  Hasenfratz and Hasenfratz they use a value of  
Apv/AMI N implicitly calculated by ' t  Hooft  [11 ].  Repeating the calculation of  Dashen and Gross with the small 
modification of  using directly dimensional regularisation in the continuum part of  the calculation I find complete 
agreement with Hasenfratz and Hasenfratz. The error mus thus arise in the transformation from Pauli-ViUars to 
dimensional schemes. Indeed one small error is manifest in section 13 of  ' t  Hooft 's  important paper [ 11 ] ,  in 
which he considers this relationship. 

' t  Hooft 's  reasoning is based on merely comparing the integrals occurring in the Pauli-Villars and dimensional 
schemes. In particular in the contribution which arises from the ghosts and the part of  the gaussian vector field 
fluctuations which "behave like scalars", ' t  Hooft  [ 11 ] argues one should replace (u = 4 - e, and M 0 the Paul i -  
ViUars regulator mass, J - ~ (In 4zr - 7) = 0.9769042) 

s (1.0) l n M  0 -+ 1/e + J  - i - ~  • 

However, in v dimensions there are v equivalent scalar fields (and two ghosts) and hence the coefficient multiplying 
the integrals is implicitly e-dependent. This must be taken into account since the integrals are singular as e -~ O. 
Thus in the contribution referred to above one should replace 

11 (11) 0 - ,  (1 - + s -  ?-9 ~ 1/e  + J  - 

The other (larger) term arising from the vector field fluctuation has no such e-dependent factor. 
Taking this into account one would extract from 't  Hooft ' s  calculation, 

(Apv/AMIN) In f=0 = exp(J  + ~ ) ,  (12) 

and inserting this in Dashen and Gross's computat ion the discrepancy with Hasenfratz and Hasenfratz is resolved * 
Results: Using the background field method the contribution Za f from the fermions to the lattice partition func- 

tion in the weak field, weak coupling approximation is given by taking the limit: 

8K ~ 1 - ~ mfa 

of the expression 

in g f  = _ ~ l ( f d 4 x  f(O)f(O)~T(R)nfuv uv] - l r  J (2rt) 4 d4p (1/G(p)2-~'rzPzPlnG(p)]2)It°lU 2 , (13) 

where G(p) is given by 

4 4 2 
G(p)= ~sin2p~+(1/4K2)(1-2K ~a cosp~) . (14) 

~=1 u =1 

The infrared singularity as mf -+ 0 is cancelled by the continuum contribution. Adding the fermion and vector (and 
ghost) contributions one obtains the result for the ratio of  lattice and continuum A-parameters; 

AL/AMI N = exp ( J  + 3~ 1 [ 1/16N - NP + T(R)nfP3] ) ,  (15) 

where 

3 1/2rr 2) . (16) v =  k . (   el+ 8 8 e 2 +  - 

, 1  Unfortunately there still remains the possibility that eq. (12) is incorrect due to a mistake in the Pauli-Villars calculation itself. 
(The same mistake would have been made by both 't Hooft and Dashen and Gross and would be cancelled in the finally quoted 
AMIN/AL.) Such a possibility has been recently emphasized to me by P. Hasenfratz who also referred me to Shore [ 12] who has 
previously stressed this point. 
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and where P1, P2, P3 are the following integrals: 

P1 - f d/3 e-8¢I 4 (2/3), 
0 

9 April 1981 

(17) 

P2 = f d/3~e-8tQ4(2/3) - (1 - e-O)/16rflfl}, 
0 

(18) 

d4 { 4 } 
P3 - f ~ - ~  {1/G(P) 2 - ~ [ a P a P f n G ( p ) 1 2 } K  =1 u~=10( 7r- IPuI) -~[1/ (p2)  2 - 1/(P 2 + 1) 2] • (19) 

The integrals P1 and P2 have been numerically evaluated by Dashen and Gross [4] to high accuracy: 

P1 = 0.1549334 PZ = 0.0240132, (20) 

giving 

P= 0.0849780 (21) 

These integrals have been checked by Stehr (to order 10 -5). Stehr has also estimated P3 using a straightforward 
Monte'Carlo program: 

P3 = 0.006887 + (0.000009 statistical error). (22) 

Using the same program for the evaluation o fP  2 in its equivalent form as a 4-dimensional integral Stehr found 
0.0246. We thus cannot rule out a similar systematic error of ~2% in the above result eq. (22). The values of 
AMIN/AL following from eqs. (15), (21), (22) are given in table 1 for all the fermions in the fundamental represen- 
tation i.e. T(R) = 1/2, for nf = 0, 1, 2, 3, 4 and fo rN= 2, 3. These can be converted to values for AL/AMo M us- 
ing the results of Celmaster and Gonsalves [8]. In table 1 the results for (AMoM/AL)~= 1 (Feynman gauge) are also 
included 

(AMoM/AL)a= 1 = exp(t3~ 1 {N[(1/9&r 2) (23 + ~I) + P - 1/16N 2] - T(R)nf[(1/12rr 2) (1 + -~I) + P3] }) ,  (23) 

where 

1 
In x - 2.3439072 (24) 1 - - 2  f x 2 - -  .... 

0 - x + l  

_ which may be of some use in future calculations. In addition in table 1 appear the values for (AMoM/AMIN)a-1, 
Defining the functions F i, i = 0, 1, 2 in the continuum theory by 

bc l-~uv~o(p, -- p, 0)lp2=M2 =gfabc[(281avPw -- 6tatopv -- 8vwpu ) (F0(M 2) + Z l # e  I) 

+ 28u,,PooF 1 (M 2) + 2p~,pvPo~ F2(M2)I , (25) 

I find in the Feynman gauge using dimensional regularisation (and the trace of the unit matrix in v dimensions to 
be [4]: 

F0(M2)Ia=I =(g2/167r2) { ( - -~N+~T(R)n f ) [1 / e+J  In(M/#)] as 20 - - ~ N  + "vT(R)nf} ,  (26) 

4 FI(M2)Ia=I = (g2/16rr2) [ ~ N -  ~ T(R)nf] , (27) 
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The results for nf  = 0 agree with those of  Hasenfratz and Hasenfratz [3] .  Using the well-known result [ I] for the 
wave function renormalisation constant  Z 3 one then obtains 

(AM----~/AMIN)a= 1 = exp [J + (29N - 10 T ( R ) n f ) / ( 3 3 N -  12T(R)nf)]  . (28) 

I am particularly indebted to J. Stehr for performing the numerical calculations for me. Advice given by  
H. Kowalski and various members o f  the DESY Theory Group on numerical integration programs was much ap- 

preciated. Finally I would like to thank H. Sharatchandra, P. Hasenfratz, H. Lehmann, M. Ltischer, G. Mtinster 
and K, Symanzik for useful discussions and to N. Kawamoto for encouraging me to extend the calculation to in- 
clude fermions. 
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