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In this paper a procedure is outlined to simulate events for the reactions e +e ~ y y and 
3'Y3'. Various distributions thus obtained are presented. The standard radiative corrections are also 
calculated in this way. Moreover, an analytical expression for the total annihilation cross section is 
given up to order a 3. 

1. Introduction 

Whereas  mu pai r  p roduc t ion  and Bhabha  scat ter ing are expected to undergo  

inf luences f rom weak in terac t ions  and  hadron ic  vacuum pola r iza t ion  effects at 

higher  energies,  the e lec t ron-pos i t ron  ann ih i l a t ion  into  two and three pho tons  is 

expected to remain  a pure  Q E D  reac t ion  in this energy range. It may  therefore  p lay  

more  and more  the role of a reference react ion,  which one should quant i ta t ive ly  

know well. 

A numerica l  eva lua t ion  of the radia t ive  correct ions  to 

e + ( p + ) + e  - p _ ) - - ~ ' f ( q l ) + 3 , ( q 2 )  (1.1) 

exists [1] for those exper imenta l  cr i ter ia  which can be  descr ibed  in terms of an 

acol l inear i ty  angle ~" be tween ql and q2 and in terms of threshold energies Eth for the 

two de tec ted  photons .  W h e n  other  cuts have to be made  on the da ta  the numerica l  

in tegra t ion  p rog rams  have to be changed.  

In pract ice  it would  be  advan tageous  to be able to s imula te  numer ica l ly  the events 

of reac t ion  (1.1) and  of the reac t ion  

e + ( p + ) + e  ( p  ) - - ~ Y ( q , ) + Y ( q 2 ) + Y ( q 3 )  (1.2) 

at the same time. Al l  k inds  of select ion cri ter ia  can then be appl ied  to the sample  of 

(q l ,  q2, q3) four -momenta .  The number  of accepted events and  the knowledge  of the 

size of the cross sect ion for the total  number  of events then provides  the in format ion  
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needed to calculate the radiative correction. Of course, it will also often be useful 

specifically to generate events of reaction (1.2) when one wants to know the QED 

background to some kind of resonance decay. 
The ingredients we will need in order to simulate events are virtual corrections, 

soft bremsstrahlung corrections and the hard bremsstrahlung cross section. These 
will be summarized in sect. 2. In sect. 3 the total cross section for the annihilation 
into two and three photons will be given. An approximate calculation for the same 
quantity is outlined in sect. 4. The relatively simple distributions originating from 
this evaluation serve as basis for the generation of events. This approximate 
distribution is then changed into the exact distribution by a selection procedure as 
outlined in sect. 5. Sect. 6 finally gives a number of distributions and a set of values 
for the standard type of radiative corrections. 

2. Virtual corrections and bremsstrahlung 

The lowest order cross section for reaction (1.1) is given by 

where 

d o  o ot 2 1 + c~ 

d~  1 S e 2 -- C~ ' 

e=p+0/I P+l, 

C l = C O S 0 1  , 

(2.1) 

where 01 is the angle between ql and p+ and s = 4pZ+0 
order m2/E 2 have been neglected except in the denominator, since we also want to 

describe forward and backward scattering. The total lowest order cross section 
therefore reads, introducing a statistical factor of ½, 

(2.2) 

(2.3) 

= 4 E  2. In eq. (2.1) terms of 

do _ d,,o (1 + a, , ) ,  (2 .5)  
d~21 d~21 

where 8 A depends on E, c~ and k. The subscript A denotes that this correction is 

known analytically. It is obtained by adding the virtual and soft bremsstrahlung 
corrections. The exact expressions were first obtained by Harris and Brown [2] and 

The cross section for reaction (1.1) including virtual corrections and soft brems- 
strahlung, the energy of the third photon being limited by a value q3o/I P+] = k << 1, 
reads 

o o = -  l n ~ - I  = - - f t .  (2.4) 
m e  - -  S 
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later recalculated by others [1,3]*. Here we shall use the extreme relativistic limit 
( r n e / E  << 1) of the exact expression. Care must be taken not to overlook the narrow 
peaks in the extreme forward and backward directions. We thus obtain 

~ I 2 (  1 2 v ) ( l n k + v ) - 3  , 2 1 8A = -  [ - ~ - i - ' ~ r  +2l, l+c~)''" 

X [ - - 4 v 2 ( 3 - c 2 ) - - 8 v c  2 +4uv(5+  2c, + c  2) 

+ 4 w v ( 5 - 2 c  I + c ~ ) - - u ( 7 - 8 c  I + c ~ ) - w ( 7 + 8 c ,  + c  2) 

+ ~ ( c , ) ( 5 + 2 c , + c ~ ) + ~ ( - q ) ( 5 - 2 c  1+c2)] 

where 

+ 
e 2 -- c 2 [ 2u 2w 

2(1+¢ '2) e + c , - - ½ m  2+  e - - c ,  --Ira2_ 

~r2] + ( , ( c , ) - ~  ~ - -  
m 4 

( e + c l )  3 
i 2 + ( . ( - c , ) - , ~ )  

m 4 

4m2u 4m2w 
(eq- cl) 2 (e-- el) 2 

(~ -- c , ) '  

m = m o / I  r +  I, 

4 
= ½1n m2 , 

+c~) 
u =½In 2(era2 , 

w=½1n 2 ( e -  cl) 
m 2 

rl(cl) = Li2(l - ~2  (e + c~)) + {rr2, 

2 r n 2 ) ~  + 2 r n ~ 2  ]} 

- -  q ( e _ c  I ( e + c l )  2 ' 
(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

* Refs. [2, 3] contain some misprints (cf. ref. [1]). 
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the dilogarithm being denoted by Li 2. Outside the extreme forward and backward 
regions the triple and double pole terms in the last bracket may be omitted. 
Furthermore one can then take 

T/(___+CL)~__- - - 2 U 2 , - - 2 W  2, (2.12) 

respectively. The resulting expression is now 

3 A = -E{2(l~. - 2 v ) ( l n k + v ) + 3 - } ~ r  2 q 
2 ( 1 + c  2) 

X [ - -4v2(3- -  c2) - 8vc 2 + 4uv(5 + 2c~ + c 2) 

+ 4 w v ( 5 - - 2 c ,  +c~)- -u (5- -6c  I + c ~ ) - - w ( 5 + 6 c  I +c~)  

- 2 u 2 ( 5  + 2c, + c2) - 2w2(5 - 2c I + c~)]}.  (2.13) 

This expression agrees with the ones given in the literature [4, 5]. 
Furthermore we need the cross section for the annihilation into three photons. 

Here we again take the extreme relativistic limit of the exact cross section. The latter 
was obtained by Mandl and Skyrme, the former was derived in refs. [5,7]. It reads 

do do c~ 3 
- - ( 2 . 1 4 )  dI'123 d~l d~23dx 3 8,g. 2S ¢0123F' 

where 

_ XIX3 
°~'23 >'(z2)'x' =q,o/I P+I. (2.15) 

T(Z  2 ) ~ 2C - -  X 3 -~ ~X 3Z2, ( 2 .16 )  

z2 = cos~z, (2.17) 

the angle c~ 2 being the angle between ql and q3 and ~2 being the solid angle of the ith 
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F =  ~ --2m 2 k2 
2 i k3kl 

_ 2m 2 k2 + 2 ( k~ + k~ 
k; ~k, ~ 1  k~k~ 

= ~ M ( 1 , 2 , 3 ) ,  (2.18) 
@ 

where ~P denotes all permutations of (1,2,3) .  The quantities k~ and k; are given by 

ki =13+'0, = x , ( e -  c,). 

k; =t5_ "dl i = x,(e  + c,). (2.19) 

where 

:~_ =?*_/I ?+1, O, =q,/I ?+1. (2.20) 

3. The total cross sect ion 

The total cross section for the annihilation into two and three photons consists of 

do (3.1) 
o3Y = dFi2 3 dFi2 3 ' 

where the integral runs over all phase space except the regions where x i < k. In these 
regions the integrated soft and virtual corrections contribute: 

1 fda, do °2" =~-.~ d~2~' (3.2) 

with the cross section given by (2.5). 
The 3y cross section can be written in terms of the quantities M: 

0/3 1 
o " -  fdr,23,oL23 X M(1,2,3) (3.3) 

8,B" 2S 3! ~p 

_ 0/3 J ' '/'dVL23¢°mMIl'2'3~ ' (3.4) 
8~r2s 

where use has been made of 

dG23~',23 = dFqk'%k (3.5) 
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for any permuta t ion  of the photon  indices. It should be noted that instead of 

M(I, 2, 3) one can take any other function N(I ,  2, 3) which summed  over  all pe rmuta -  

tions again gives F [cf. eq. (2.18)]. 
It is convenient  to choose N in such a way that in the integration over x 3 the 

infrared divergence only occurs for x 3 ---, 0 and not for x 3 ~ e, the latter infrared 
divergence being related to one of the other photons  being soft. 

Writ ing out M(1,2 ,3)  explicitly in the energies and angles we find for the last term 
of M (i.e. the term not propor t ional  to m 2) 

M ' ( 1 , 2 , 3 )  -- 8e2[x'32 + x'(~] 4 4 

- d ) {  - 4 )  - 4 )  -4{  - 4 )  

4 4 
+ x . x 3 ( e _ c l ) ( e _ c 3 )  + x l x 3 ( e + c l ) ( e + c 3 ) ,  (3.6) 

where 

¢ 

x,  = e - x , .  (3 .7 )  

Since 

2 ~ x ;  (3 .8 )  
x l  y { z 2 )  " 

we see that the third term in eq. (3.6) behaves  like 1/x'32 which in combina t ion  with 

~123 diverges for x 3 ~ e. The par t  of  M propor t ional  to m 2 converges for x 3 --~ e. 
Instead of M'(1 ,2 ,  3) we shall use 

N'(1 ,2 ,3)  -- 16e2x32 8 
x~x~( e-- c~ )( e -  c~ ) x2( e - c'~ ) 

4 4 
+ XlX3(e_ c l ) (e_c3)  + Xl2r3(e+ cl)(e + {.3) . (3.9) 

This quant i ty  only diverges for x 3 --* 0. Combined  with the original m 2 terms, 
expression (3.9) gives a suitable expression N(1,2,3)  for the calculation of o 3v 
Added  to o 2~ it gives the total cross section for annihilat ion into two and three 
photons .  It should be noted that  both  N(1,2 ,3)  and M(1,2,3)  are not positive 
definite expressions,  but, of  course, the quant i ty  F is posit ive definite. 

In tegra t ing eq. (3.4) with the integrand N yields 

2o/3 
o 3 v =  [ -  ( 2 v -  1)2(21nk + 1) + 3] .  (3,10) 

s 
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Similarly the integration of (3.2), the integrand being given by (2.5) and (2.6) gives 
the expressions 

+2c~312(2v -1 )21nk  gv + 3 v  2 + ( 3 r r 2 - 6 ) v - t 1 2 ~ r 2 ] ,  (3.11) = _ } _ 4 3  O 2y O0 
S 

20~3 [41) 3 I) 2 i/,B "2] OT = o Z v q - O 3 V :  O0 q - ~ - [ g -  + ( ] q r e - -  2 )v  + 2 - . (3.12) 

It should be noted that the logarithmic terms in (3.10) and (3.11) agree with those 
obtained in ref. [5], but not the constant terms. In eq. (3.11) we could trace the origin 
of this difference to the use of eq. (2.14) instead of (2.6) in ref. [5]. The disagreement 
in o 3v could again lie in the treatment of the extreme forward and backward regions. 

4. An approximate cross section 

In this section we make an ansatz for an approximate 3"f cross section, which 
exhibits peaks at the same location as the exact cross section. Instead of the exact 

~tz3N(1,2,3) we take 

o~123.~(1,2,3) = 8x; 
ex3(e 2 -- c2)(e 2 --c~) 

4 4 
+ y ( c , ) ( e _ c , ) ( e _ c 3 )  + y ( _ c , ) ( e + c l ) ( e + c 3  ) . (4.1) 

This means that the m 2 terms in N have been omitted and, moreover, the second 
term in (3.9), whereas in the last two terms in (4.1)y(z2) of the phase-space factor 
has been replaced by y( +__ c i ). 

The quantity N(1,2,3) is positive definite and gives rise to a squared matrix 
element F, as in eq. (2.18). Since Al(i , j ,k)  gives rise to the same distribution as 
.~(1,2,3) except for a relabelling of the photons, it is sufficient to generate qt,q2,q3 
from N'(1,2, 3). We use the approximate distribution 

d k d c  1 dc 3 S e - -  ¢3 

where 

A -  = 2x; 1 2 (4.3) 
+ x~  e = - c  2 ~ -y (+__c , ) (e~c , ) "  
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From this we obtain successively 

with 

fdc3 dO ~__3 [A ln(e+c3)-A_ln(e--c3) ] 
dx3dc jdc  3 s + 

(4.4) 

fd¢, do __4ot3v [( x~ +1 lln( e+c, /+ /In  y(c,) ] (4.6) 
dx3dc---"-~ ~ -  ex3 -P ] t e -  c-----~l I P y ( - c , )  1' 

with 

o=2e+#x3 ,  / ~ = e -  1. (4.7) 

For the photon spectrum we obtain 

d6 8o~3v[2x'3v l ln(1 O )1 (4.8) 
d x  3 s e x 3  P ~ e  ' 

A = e + 1, (4.9) 

and the integrated spectrum reads (k << 1) 

r~3 dO 4a3v[ x 3 , ,1 Jk dX3-d~x3 -- s 4 v l n - ~ - - ( 2 v -  1)(x 3 - k ) - k ' l n k ' + x 3 1 n x  3 , (4.10) 

where k'  is defined like x; in eq. (3.7). Thus, 

O 3r = 4a3 v [ - a v l n k  - (2v - 1 ) k ' -  k ' ln  k ' ] .  (4.11) 
S 

The leading logarithmic term in 63~ is the same as in eq. (3.10). 

5. Generating events 
Choosing a k-value below which a photon energy can be neglected in an 

experiment, e.g. k = 0.01, one first uses o 2r and 63Y to decide whether one generates 
a 2y or 33, event. If it is a 23, event one uses eq. (2.5) for generating q .  If it is a 33, 
event one uses successively the integrated distributions (4.10), (4.6) and (4.4) to 
obtain x 3, ct and c a. This can be done for x 3 by generating a random number T1 in 

dO - 2v( + +A_) ,  (4.5) 
dx3dc I s 
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the interval [0,0 3v] and solving for x 3 the equation 

fk 
x3 d6 

d x 3 - r ~  = T/. 
(1x 3 

(5.1) 

For x 3 and c 1 these type of equations have to be solved numerically; in the case of 
(4.4) the two terms can be solved analytically. The azimuthal angles of ql and q3 
with respect to some plane through the beam axis are generated at random. In this 
way it is possible to generate quickly a large number  of (q~,qz,q3) momenta  sets, 
which follow the distribution of the approximate distribution ~0123 F. It turns out that 
the real distribution ~Olz 3F only deviates slightly from the approximate distribution, 
or, in other words, the weights 

w( q,,qz,q3 ) = F / F  (5.2) 

of the events are around 1. 

The set of nl events {(q~,q2,q3)} can be used either to calculate cross sections 
integrated over certain parts of phase space or to construct a restricted set of n 2 
events with weights 1. 

In the first case one sums the weights for those n 3 events which lie in the wanted 
part  of the phase space and multiplies this with 63~/n1. For instance, one can then 
obtain the type of radiative corrections calculated in ref. [1]. 

In the second case one generates e.g. a random number ~/ in the interval [0,2]. If 

< w(q, ,q2,q3), (5.3) 

the event (q~, q2, q3) is kept, otherwise not. The remaining events have weight 1, the 
number of events n 2 corresponds to a cross section o 3v, which one knows from eq. 
(3.10). It could also be obtained from summing all the weights and multiplying this 
number  with 6 3V/n 1. 

Of course, in practice one mostly combines the soft and hard photon events into 
one set with different weights or in a restricted set with weight 1. 

In the approach sketched here one generates a priori events in the full phase space. 
This is done because the symmetry of the problem can be exploited. Because of this 
the generation of events is fast so that it does not matter in practice that many 
events are experimentally uninteresting, being close to the beam. 

6. Some results 
In this section we give typical values both for the total cross section and for 

radiative corrections to the differential cross section. Moreover, histograms for some 
distributions are shown. 
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We express the total cross section o T, as given by eq. (3.12), in terms of the lowest 
order cross section o o and a correction 8 T through 

o T = %(1 + 6T) '  (6.1) 

Values for % and 6 r are listed in table 1. Although the leading logarithmic term in 
8 v behaves like v 2 just as in the mu pair production case, the actual value of 6 x is 
much smaller, which is mainly due to the coefficient in front of v 2. 

Radiative corrections to the differential cross section are also expressed in terms 
of a percentage correction 

do do 0 . 
df~ - ~ (1 + 6T) , (6.2) 

where 8 T depends on E, 0, the acollinearity angle ~" and threshold energy Eth. Values 
for 6 T can be obtained by the numerical integration of ref. [1] or by the event 
generating approach described above. Typical results are given in table 2. Besides 6 T 

TABLE 1 

The lowest order total cross section o o and the percentage correction 8 T 

for the total cross section, as given by eq. (6.1) 

E ( G e V )  3 5 10 15 25 50 100 

% ( n b )  64.2 24.5 6.6 3.03 1.15 0.305 0 .0806 

8 T(%) 13.8 15.3 17.4 18.8 20.5 23.0 25.7 

eV) 

( d e s )  

TABLE 2 

The radiative corrections to the lowest order differential cross section 
for various values of the beam energy E a n d  scattering angle 0 

3 15 

'~a &r 6A ~T 

20 - 7.9 - 0.3 ~+ 0.4 - 9.5 0.9 ± 0.5 

40  - 8.3 - 5.0 ± 0.2 - 9.9 - 6.0 ± 0.2 

60 - 8.3 - 6 . 8  -4-0.1 - 9.9 - 8.3 __+ 0.1 

90 - 8 . 3  - 7 . 8 _ + 0 . 1  - 9 . 9  - 9.4 ~+0.1 

For E = 3 GeV,  Eth = 0.2 G e V  for E = 15 GeV,  Eth = 3 GeV.  The acollinearity angle is in both cases 
~ ' = 1 0  °. 
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the quantity 6A [cf. (2.6) or (2.13)] is also given, evaluated for that k-value which 
represents the maximum photon energy for isotropic soft photon emission allowed 
for by the angle ~" (cf. ref. [1 ]). 

Finally, a set of 154831 events was generated for a beam energy of 15 GeV. An 
acollinearity and acoplanarity histogram were made for a subset of events. These 
events were required to have at least two energies larger than 3 GeV and to have 
angles in the interval [10 °, 170°]. Thus, e.g., the momenta qi and qj are such that 

qio,qjo > 3 GeV, (6.3) 

Oi,O j ~ [10 °, 170°]. (6.4) 

This subset contains 26 520 events. The acollinearity and acoplanarity distributions 
are shown in figs. 1 and 2, using the definitions 

~" : a rccos( -~ i '~ j ) ,  (6.5) 

q 'qf @ : arccos( 'q:'Iqf[)' (6.6) 

where qf  is the component of qi transverse to the beam direction. Events for which 
also the third energy and angle satisfy (6.3) and (6.4) have three possible ~" and q~ 

10000 

1000 

,oo 

0 

I I 

I 

50 I00 150 

' ' ' I ' ' ' ' I ' ' ' ' I ' ' 

10 

Fig. 1. The acollinearity distribution for a set of events at 15 GeV. 
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Fig. 2. The acoplanarity distribution for a set of events at 15 GeV. 
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Fig. 3. The energy distribution of the softest photon for a set of events at 15 GeV. 
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values. They have been added in each of the appropriate bins of the histogram, but 
with weight ~. 

Finally, from the subset considered, another subset is made for which the 
remaining momentum satisfies 

qt0 > 0.5 GeV, (6.7) 

and 01 satisfies (6.4). In this subset we denote the smallest photon energy of each 
event by k. A histogram of the k distribution thus obtained is shown in fig. 3. It 
contains ! 522 events. 
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voor Fundamenteel Onderzoek der Materie (F.O.M.). 

References 

[11 F.A. Berends and R. Gastmans, Nucl. Phys. B61 (1973) 414 
[2] I. Harris and L.M. Brown, Phys. Rev. 105 (1957) 1656 
[3] Y.S. TsaJ, Phys. Rev. 137 (1965) B730 
[4] F.A. Berends and R. Gastmans, in Electromagnetic interactions of hadrons, ed. A. Donnachie and G. 

Shaw (Plenum, 1978) vol. 2, p. 471 
[5] S.I. Eidelman and E.A. Kuraev, Nucl. Phys. BI43 (1978) 353 
[6] F. Mandl and T.H.R. Skyrme, Proc. Roy. Soc. A215 (1952) 497 
[7] F.A. Berends, R. Gastmans and T.T. Wu, University of Leuven preprint KUL-TF-79/022, submitted 

to 1979 Int. Syrup. on Lepton and photon interactions at high energies, 1979, Fermilab 


