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In this paper a procedure is outlined to simulate events for the reactions e* e = ~» yy and
yvy7y. Various distributions thus obtained are presented. The standard radiative corrections are also
calculated in this way. Moreover, an analytical expression for the total annihilation cross section is
given up to order o’.

1. Introduction

Whereas mu pair production and Bhabha scattering are expected to undergo
influences from weak interactions and hadronic vacuum polarization effects at
higher energies, the electron-positron annihilation into two and three photons is
expected to remain a pure QED reaction in this energy range. It may therefore play
more and more the role of a reference reaction, which one should quantitatively
know well.

A numerical evaluation of the radiative corrections to

e (pr)+te (po)—>v(q) +v(q:) (1.1)

exists [1] for those experimental criteria which can be described in terms of an
acollinearity angle { between ¢, and ¢, and in terms of threshold energies E,, for the
two detected photons. When other cuts have to be made on the data the numerical
integration programs have to be changed.

In practice it would be advantageous to be able to simulate numerically the events
of reaction (1.1) and of the reaction

et (py)te (p)—=v(q)+v(qy) +v(q;) (1.2)

at the same time. All kinds of selection criteria can then be applied to the sample of
(¢,,9,.95) four-momenta. The number of accepted events and the knowledge of the
size of the cross section for the total number of events then provides the information
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needed to calculate the radiative correction. Of course, it will also often be useful
specifically to generate events of reaction (1.2) when one wants to know the QED
background to some kind of resonance decay.

The ingredients we will need in order to simulate events are virtual corrections,
soft bremsstrahlung corrections and the hard bremsstrahlung cross section. These
will be summarized in sect. 2. In sect. 3 the total cross section for the annihilation
into two and three photons will be given. An approximate calculation for the same
quantity is outlined in sect. 4. The relatively simple distributions originating from
this evaluation serve as basis for the generation of events. This approximate
distribution is then changed into the exact distribution by a selection procedure as
outlined in sect. 5. Sect. 6 finally gives a number of distributions and a set of values
for the standard type of radiative corrections.

2. Virtual corrections and bremsstrahlung

The lowest order cross section for reaction (1.1) is given by

do, o 1+¢f

== 1 A
30,5 o (2.1)
where
e=pyo/l Pils (2.2)
¢, =cosb,, (2.3)

where 6, is the angle between ¢, and p, and s =4p3, =4E> In eq. (2.1) terms of
order m? /E? have been neglected except in the denominator, since we also want to
describe forward and backward scattering. The total lowest order cross section
therefore reads, introducing a statistical factor of 3,

27a’ $ 7
Oy = B (]nr—n—z"l):—s—'ﬁ. (2.4)

The cross section for reaction (1.1) including virtual corrections and soft brems-
strahlung, the energy of the third photon being limited by a value q,, /| p, | =k < 1,
reads

dU _ doo
g, —E(1+8A), (2.5)
where 8, depends on E, ¢, and k. The subscript A denotes that this correction is
known analytically. It is obtained by adding the virtual and soft bremsstrahlung
corrections. The exact expressions were first obtained by Harris and Brown [2] and
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later recalculated by others [1,3]*. Here we shall use the extreme relativistic limit
(m, /E < 1) of the exact expression. Care must be taken not to overlook the narrow
peaks in the extreme forward and backward directions. We thus obtain

1
2(1 +c12)

0y = —%{2(1 —20)(Ink+o)+3—47* +
X [—402(3 *cf‘) — 8vct +4uv(5 +2¢, +clz)
+dwo(S—2¢, +c})—u(7— 8¢, +c}) = w(7+ 8¢, +¢})

+(e)(5+2¢; + ) +n(—c)(5—2¢, + clz)]

e? —c? 2u N 2w
201+c?)|ete, —im? e~c, —im?

4 4
+(n(c,) = 3o ) =2+ (n(—¢,) —dn?) ——
(n(e) 1 )(e+c])3 (n(—c,) =4 )(64(,1)3
2 2 2 2
__4m uz_ 4mw2 2m - 2m ns (2.6)
(etc)) (e—c)) (e—¢) (etq)
where
m=m./| p,|, (2.7)
4
v:%ll’l—i (2.8)
m
20e+e
u=14in (e . 2 (2.9)
m
2 —
wzgln—(i{‘—), (2.10)
m
Iy 2 12
n(c,) =Li|1——=(e+c))| +zm (2.11)
m

* Refs. [2.3] contain some misprints (cf. ref. [1]).
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the dilogarithm being denoted by Li,. Outside the extreme forward and backward
regions the triple and double pole terms in the last bracket may be omitted.
Furthermore one can then take

n(*e,) = —2u?, —2w?, (2.12)
respectively. The resulting expression is now

1

43
5, = _;{2(1 ~20)(nk o) +3 a4 S

X [—402(3 —c2)—8vc? + 4uv(5 + 2¢, + )
+dwo(5 —2¢, + ) —u(5—6¢;, + ) —w(5 + 6¢c, +c})

—2u?(5+2¢, +cF) — 2w3(5 — 2¢, +c]2)]}. (2.13)

This expression agrees with the ones given in the literature {4, 5].

Furthermore we need the cross section for the annihilation into three photons.
Here we again take the extreme relativistic limit of the exact cross section. The latter
was obtained by Mandl and Skyrme, the former was derived in refs. [5,7]. It reads

de do s

dly;  dQ,dQdx; 8772_9“"231?* (2.14)
where
X1X3

T R ~ 2.15
EERRNEN dio/| P+ (2.15)
wz,)=2e— x5+ x;32,, (2.16)
z, = cosa,, (2.17)

the angle «, being the angle between g, and ¢, and £, being the solid angle of the ith
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photon, and

kb k 2 [ k3t kY
F= —2mi— 4 2 2
2 2k’ kgzkl k}"é( ki ki

=2 M(1.2,3), (2.18)

where <7 denotes all permutations of (1,2,3). The quantities &, and k/ are given by
ki=p, -4, =xe=c),
ki=p ¢ =x/(e+c,), (2.19)
where

bo=p/lpels 9, =4/ p.|- (2.20)

3. The total cross section

The total cross section for the annihilation into two and three photons consists of

= fdrmdr123 (3.1)

where the integral runs over all phase space except the regions where x, < k. In these
regions the integrated soft and virtual corrections contribute:

z,fdsz,dg , (3.2)

with the cross section given by (2.5).
The 3y cross section can be written in terms of the quantities M:

Iy o« 1
g _8W2s'3_!fdrlza‘*’123§M(1,2,3) (3.3)

123‘*’123M(1»2’3)’ (3-4)

where use has been made of

Al _drjkwljk (3-5)
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for any permutation of the photon indices. It should be noted that instead of
M(1,2,3) one can take any other function N(1,2,3) which summed over all permuta-
tions again gives F [cf. eq. (2.18)].

[t is convenient to choose N in such a way that in the integration over x; the
infrared divergence only occurs for x; — 0 and not for x; — e, the latter infrared
divergence being related to one of the other photons being soft.

Writing out M(1,2,3) explicitly in the energies and angles we find for the last term
of M (i.e. the term not proportional to m?)

862[)(/% -I-x;z] _ 4 B 4

xixile—ci)le=c3) xile—cf) xie—cf)

M(1,2,3) =

4 4

+ + . 3.6
xxsle—c ) e—c;)  xx;(etc))etcy) (3.6)
where
X, =e—Xx;. (3.7)
Since
2ex;
X, =—. 3.8
: )’(Zz) (38)

we see that the third term in eq. (3.6) behaves like 1 /x;> which in combination with
w,,; diverges for x; — e. The part of M proportional to m* converges for x; — e.
Instead of M’(1,2,3) we shall use

16e‘2x§2 8

xixHe—c)e—c2)  xie—cd)

4 4
+ .
X1x3(€”cl)(€’*c3) xlx3(e+cl)(e+c3)

N(1,2,3)=

(3.9)

This quantity only diverges for x; — 0. Combined with the original m? terms,
expression (3.9) gives a suitable expression N(1,2,3) for the calculation of ¢°.
Added to 6% it gives the total cross section for annihilation into two and three
photons. It should be noted that both N(1,2,3) and M(1,2,3) are not positive
definite expressions, but, of course, the quantity F is posttive definite.
Integrating eq. (3.4) with the integrand N yields
oY = g‘ﬁ [

— (20 1)*2Ink+1)+3]. (3.10)



28 F.A. Berends, R. Kleiss / e e annihilation

Similarly the integration of (3.2), the integrand being given by (2.5) and (2.6) gives
the expressions

3
027200+2—?—[2(20—1)21nk+%v3+3vz+(%w2—6)0ﬁﬁ'n2], (3.11)
— 2V g3 = 20, v 2 (22 1,2
or=0""+o —00+T[§D -0+ (37 _2)U+2_ﬁ77]. (3.12)

It should be noted that the logarithmic terms in (3.10) and (3.11) agree with those
obtained in ref. [5], but not the constant terms. In eq. (3.11) we could trace the origin
of this difference to the use of eq. (2.14) instead of (2.6) in ref. [5]. The disagreement
in 637 could again lie in the treatment of the extreme forward and backward regions.

4. An approximate cross section

In this section we make an ansatz for an approximate 3y cross section, which
exhibits peaks at the same location as the exact cross section. Instead of the exact
w3 N(1,2,3) we take

’
8x;

exy(e? —cf)(e? —c})

w3 N(1,2,3) =

4 4
e ele—a) i aeteera) Y

This means that the m? terms in N have been omitted and, moreover, the second
term in (3.9), whereas in the last two terms in (4.1) y(z,) of the phase-space factor
has been replaced by y(==c)).

The quantity N(1,2,3) is positive definite and gives rise to a squared matrix
element F, as in eq. (2.18). Since N(i,j,k) gives rise to the same distribution as
N(1,2,3) except for a relabelling of the photons, it is sufficient to generate q,.95.93
from ]\7(1,2,3). We use the approximate distribution

dé o A A,
=— 4.2
dkdc dc; s(e—c3+e+c3)’ (4.2)
where
2/
a =251 2 . (4.3)

Xy e2—¢2 HEe)eFe)
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From this we obtain successively

_[dc ___dé—_:a—B[A ]n(e+c )—A_ln(e—q)], (4‘4)
3dx,de,de; s 177 ’
dé o’
=2 + 4.5
dx;dc, s 20(d, +4), (49)

4o’ | x5 1 (e+cl) 1 y(cy)
Bz BV -1 . (46
/dc‘dx3dc, s [(ex3 o )" e—¢ pn_v(~C,) (4.6)
with
p=2e+px;, p=e—1. (4.7)

For the photon spectrum we obtain

dé 8_0‘32[2)‘3” ln( p)

dx, s ex; p

| »
with
A=e+1, (4.9)

and the integrated spectrum reads (k < 1)

[ae =2 g 20 1), k) = Kk x5 (410

where k£’ is defined like xj in eq. (3.7). Thus,

531 =""y[—4olnk—(2v— 1)k’ — k'Ink’]. (4.11)

The leading logarithmic term in 637 is the same as in eq. (3.10).

5. Generating events

Choosing a k-value below which a photon energy can be neglected in an
experiment, e.g. K = 0.01, one first uses ¢2” and 63" to decide whether one generates
a 2y or 3y event. If it is a 2y event one uses eq. (2.5) for generating ¢,. If it is a 3y
event one uses successively the integrated distributions (4.10), (4.6) and (4.4) to
obtain x,, ¢, and c¢,. This can be done for x, by generating a random number 7 in
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the interval [0,6°] and solving for x, the equation
X3 dé
‘//‘( d)@a =7. (5 .1)

For x; and ¢, these type of equations have to be solved numerically; in the case of
(4.4) the two terms can be solved analytically. The azimuthal angles of ¢, and ¢,
with respect to some plane through the beam axis are generated at random. In this
way it is possible to generate quickly a large number of (q,,q,,4;) momenta sets,
which follow the distribution of the approximate distribution w5 . It turns out that
the real distribution w,; F only deviates slightly from the approximate distribution,
or, in other words, the weights

w(q1.95.95) = F/F (5.2)

of the events are around 1.

The set of n, events {(¢,.4,.9;)} can be used either to calculate cross sections
integrated over certain parts of phase space or to construct a restricted set of n,
events with weights 1.

In the first case one sums the weights for those n, events which lie in the wanted
part of the phase space and multiplies this with 6°7/n,. For instance, one can then
obtain the type of radiative corrections calculated in ref. [1].

In the second case one generates e.g. a random number 7 in the interval [0,2]. If

1<w(q,.95.93). (5.3)

the event (q,, g,. q5) is kept, otherwise not. The remaining events have weight 1, the
number of events n, corresponds to a cross section ¢°Y, which one knows from eq.
(3.10). It could also be obtained from summing all the weights and multiplying this
number with 6°7/n,.

Of course, in practice one mostly combines the soft and hard photon events into
one set with different weights or in a restricted set with weight 1.

In the approach sketched here one generates a priori events in the full phase space.
This is done because the symmetry of the problem can be exploited. Because of this
the generation of events is fast so that it does not matter in practice that many
events are experimentally uninteresting, being close to the beam.

6. Some results
In this section we give typical values both for the total cross section and for
radiative corrections to the differential cross section. Moreover, histograms for some
distributions are shown.
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We express the total cross section o, as given by eq. (3.12), in terms of the lowest
order cross section g, and a correction 81 through

or =0p(1+81). (6.1)

Values for o, and § are listed in table 1. Although the leading logarithmic term in
8+ behaves like v just as in the mu pair production case, the actual value of 81 is
much smaller, which is mainly due to the coefficient in front of v2.

Radiative corrections to the differential cross section are also expressed in terms
of a percentage correction

do _dg,
where 61 depends on E, 8, the acollinearity angle { and threshold energy E ;. Values
for 81 can be obtained by the numerical integration of ref. [1] or by the event
generating approach described above. Typical results are given in table 2. Besides 8

TABLE |
The lowest order total cross section a;, and the percentage correction 8
for the total cross section, as given by eq. (6.1)

E(GeV) 3 5 10 15 25 50 100

ay(nb) 64.2 24.5 6.6 3.03 1.15 0.305 0.0806

8 1(%) 13.8 15.3 17.4 18.8 20.5 23.0 25.7
TABLE 2

The radiative corrections to the lowest order differential cross section
for various values of the beam energy E and scattering angle §

E
(GeV) 3 15
9
(dew) 8y 8y EN 81
20 -19 —03x+04 —=9.5 —09=x05
40 —8.3 —-50x02 —99 —60x02
60 —83 —68+0.1 —-99 —83+0.1
90 —83 —78=%=0.1 —99 —94=0.1

For E=3 GeV, E;, =0.2 GeV for E=15 GeV, E,;, =3 GeV. The acollinearity angle is in both cases
{=10°.
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the quantity 8, {cf. (2.6) or (2.13)] is also given, evaluated for that k-value which
represents the maximum photon energy for isotropic soft photon emission allowed
for by the angle { (cf. ref. [1]).

Finally, a set of 154831 events was generated for a beam energy of 15 GeV. An
acollinearity and acoplanarity histogram were made for a subset of events. These
events were required to have at least two energies larger than 3 GeV and to have
angles in the interval [10°,170°]. Thus, e.g., the momenta g, and g; are such that

4i0.9;0 > 3 GeV, (6.3)
6,.6, € [10°,170°]. (6.4)

This subset contains 26 520 events. The acollinearity and acoplanarity distributions
are shown in figs. 1 and 2, using the definitions

¢ = arccos(—§,°4;). (6.5)
T,,T

xpzarccos(— q; qu ) (6.6)
lg; qu

where ¢ is the component of g, transverse to the beam direction. Events for which
also the third energy and angle satisfy (6.3) and (6.4) have three possible { and v

[ LI T Ll l L) T ¥ | I 1 1 1 1 l 1 1] :
1000 | |
Dy - E
©lo 100 | -
10} 5
: L A Il 1 | i 1 A 1 l 1 L 1 1 I 1 3

0 50 100 150

C

Fig. 1. The acollinearity distribution for a set of events at 15 GeV.
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! ! 1 T l 1 T T T l L T L 1 l T 1

10000 §

1000 |

T 1 r|ll|||

0 50 ) 100 150

Fig. 2. The acoplanarity distribution for a set of events at 15 GeV.,

‘50 ! T ¥ I LI T Iﬁ 1 1 T L i 1 i}

Fig. 3. The energy distribution of the softest photon for a set of events at 15 GeV.
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values. They have been added in each of the appropriate bins of the histogram, but
with weight 1.

Finally, from the subset considered, another subset is made for which the
remaining momentum satisfies

41 > 0.5 GeV, (6.7)

and 8, satisfies (6.4). In this subset we denote the smallest photon energy of each
event by k. A histogram of the k distribution thus obtained is shown in fig. 3. It
contains 1522 events,
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