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An approximate formula is given for the luminosity function relating the processes ee ~ eeX 
and y*~,* --, X in the case where only one of the outgoing electrons is tagged whereas the other one 
is restricted to small angles (anti-tagging). The range of validity of this approach is discussed and a 
numerical comparison with the exact formula is given. It is also shown that multiple use of this 
formula can give the single tagging efficiency with good precision in cases where the anti-tagging 
condition is not imposed on the second electron. 

1. Introduction 

The general problem of calculating the QED factors (or ' luminosity functions') 
relating the processes ee ~ eeX and 7"7"  --, X has been discussed, in a more general 
framework than that of the equivalent photon approximation, in a recent paper  [1]. 

Expressions were given for the double tagged luminosity (both scattered electrons 

detected at angles >>me/E ( E = b e a m  energy, m e = e l e c t r o n  mass) and single 
tagged luminosity (only one electron detected). For the double tagging case no 
kinematical approximations were made, the luminosity functions being found by 
numerical integration of the exact transverse-transverse luminosity function [2, 3]. In 

the single tagging case, where it is necessary to consider angles ~ m e / E  for the 
undetected electron, simplifying kinematical assumptions were made so that the 
integration over the variable Q2 (see ref. [1] for all notation and definitions) could be 
done analytically. The present paper  presents an exactly equivalent but algebraically 
simpler form of this approximate single tagging function and investigates its 
accuracy with different constraints on the 'unobserved'  electron. The case of 'single 
tagging' (electron 1 unobserved over the whole angular range) is compared with 
'single anti-tagging' or ' tagging by absence' [4] where it is required that the electron 
does not appear  in one or more angular ranges. For the single tagging case multiple 
use of the approximate formula, in a way described in sect. 5, is found to 
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considerably increase the precision of the calculation. 
A recent paper by Carimalo et al. [5] has also considered single tagging experi- 

ments where one virtual photon is quasi-real; equivalent to our assumption, in 
deriving the approximate formula, that Ql z << z 2. Ref. [5] is more general in the sense 
that effects of longitudinal photons from the tagged electron are included and not all 
variables of the produced yy system are integrated out. The aim of the present work 
is to give accurate and simple expressions for the purely transverse-transverse 
luminosity function useful for extracting total photon-photon cross sections. 

2. Single tagged luminosity formulae 

In ref. [1] a threefold differential luminosity function for tagging one electron 
(electron 2) at angle 0 2 (0 2 >> m e / E  ) where the other electron (electron 1) is at an 
arbitrary angle corresponding to the fully allowed range of Ql z: Qmin2 < Q2 < Qmax,2 
where 

m 2 2 - -  e X l  2 

Qmin 4 ~  1- -x  l '  

2 Qmax = 1 - x l ,  

was given (ref. [1], eq. (11)). A similar formula can also be written for the case where 
electron 1 is in the limited angular range 

0 <  01 < 0 m a  x • 

In this case Q~ax is given by 

Omax2 = ( 1 -  x,)sin2(½0m~x). 

The corresponding threefold differential luminosity function is then 

( K ' -  2xl) 2 
d3E _ a 2 K,cot½02 K,2 

dOzdxldx 2 8~r z 

X [t in m2-~E XI 

2 (1 - xl) }x--------~l ., r ' - = z 2 + Q ~ .  

(l) 

Formula (1) is apparently 'non-factorising', i.e. variables of both scattered electrons 
appear together in the factors of the formula. However, it is easy to show when the 

__sin½Omax ] ' z  
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approximate relation for z 2 (eq. (10) of ref. [1]) is substituted in eq. (1) the following 
factorisable form is found: 

d 3 ~  _ 0/2 

dO2dxxdx 2 8~r2 fl(xl'Om~)f2(xz'O2)' 

fl(Xl'Omax)=[ln2E (1-Xl)  sin½Omax][ me Xl Xl l - x , ] - 2  (1 - x ' ~ ) x l  

= 

(x  2 + Q 2 _  2)2 

x 2 + Q~ 
~_ x2 + Q2] cot ½02 ' 

Q2 = (1 -- x 2 )sin 2 ½02. (2) 

The factorisability is clearly an advantage for use in Monte Carlo generators. 
Another advantage is that it is possible to perform the integration over the angular 
variable of electron 2 analytically, so that the differential luminosity of experimental 
interest, d£/dz, requires numerical integration over only one variable, x 1. Changing 
variables in eq. (2) from 02, x 2, x I to Q2, z, x l, gives 

- _ _  _ _  z 2 + Q2 _~ 2x, ( 3 )  
dQ2dzdx, 2rr2Zx2 Q2 [ z2 + Q2 • 

Integrating over Q2, 

d2~ 

dzdx I 
_ a 2 fl [12x~ ) 2x2 " 2 2]O~, 

2 ¢ r 2 Z T [ ~ 7 + z 2 - 2 x ,  lnQ~---~-ln{z q-Q2)--kQ2jQ ~ (4) 

2 QU,L are the upper and lower limits of the integration. For an angular range 
0L < 02 < Ov, QV, L2 are given by 

(1 -  z 2/x 1 ) sin 21 20U,L 2 
QU'L= [1 + (1/x 1 -- 1)sin 2 ½0U,L] 

(5) 

Eq. (5) follows from the definition of Q2 and eq. (10) of ref. [1]. dE/dz can now be 
found from eqs. (4), (5) by numerical integration over x 1. 

3 .  E x p e r i m e n t a l  t a g g i n g  c o n s t r a i n t s  

The use of eq. (4) and, in particular the accuracy of the calculation, depend 
crucially on the configuration of the experimental tagging system and whether or not 
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information is available on the presence or absence of electrons outside the accep- 
tance of the tagging system itself. Two extreme cases may be considered: 

(i) Single tagging. In this case, one electron is seen in the tagging detector, but 
the experimenter is (intentionally or unintentionally) 'blind' to the presence of a 
second electron, even if it occurs in a second, symmetrically placed tagging detector. 
This is the definition of 'single tagging' used in ref. [1]. To calculate the tagging 
efficiency the 'unobserved' electron is integrated over its full kinematic range from 

2 2 - -  Qmi~ to Qmax- 1 - x  r 
(ii) Single anti-tagging. This type of experiment, considered first in ref. [4], 

assumes that one electron is detected in a certain range of polar angle O L < 0 < 8 U 
say, and no other electron is seen in the range O L < 6 < 7 r -  O L. It is then inferred 
that the unobserved electron must lie in the angular cone of half angle 6 L about the 
beam opposite in direction to that of the detected electron. The tagging efficiency is 
given by integrating the Q2 of the unobserved electron from Q ~  to Q2 = (1 - xl)s in 2 
1 0  L .  

In practice the single anti-tagging possibility has only been realised on the 
compact PLUTO detector at PETRA. Other detectors at PETKA and PEP all have a 
dead region between the tagging system and the rest of the detector. The approxi- 
mate angular acceptances of the tagging systems, and the size of the dead region of 
some of the PETRA detectors are as follows: 

Detector 
Tagging acceptance Dead region 

(mrad) (mrad) 

PLUTO 23-70 none 
CELLO 25-50 50-153 
TASSO 18- 60 60-  207 
JADE 34-  70 70-  240 

To use the 'anti-tag' definition on CELLO, TASSO and JADE allowance must be 
made for the possibility that an electron enters the dead region. This can clearly be 
done by suitably modifying the range of integration. However, careful attention 
must be paid to the accuracy of the formula in this case, as the angles of the 
scattered electrons are now large. This problem is considered below. 

4. Accuracy of the approximate formula 

'Accuracy' as used here refers only to errors resulting from kinematical approxi- 
mations. It should not be forgotten, that for any specific process, the observed cross 
section may be much more affected by the neglect, here and in ref. of 

r _  

longitudinal photons, and by momentum transfer dependances of the virtual photon- 
photon processes. We are here concerned only with well identifiable errors in the 
purely QED factors. 



Ch. Berger, J. H. FieM / Luminosity function 589 

If 0m~ x in eq. (2) is sufficiently small it is expected from general arguments that 
eqs. (2)-(4) will be accurate. The essential condition for deriving eq. (11) of ref. [1] 
from the general expression eq. (9) is that 

<< z 2 

This will be a good approximation if 0m~ x satisfies 

sinZ½Om~ t 2 z 2. ~OmZax << 

In practice, at PETRA energies, only values of z ~ 0.03 are of interest, implying that 

Om~ , << 60 rnrad. 

Note that the condition for good accuracy of eqs. (2)-(4) relates the tagging angle 
(usually determined by purely technical considerations) to the energy scaled variable 
z. So if the formula has a given accuracy at a mass of 900 MeV or z = 0.03 for the V7 
system at PETRA energies (E = 15 GeV), it will have similar accuracy only for 
masses ~> 6 GeV at LEP energies ( E =  100 GeV). For smaller masses the exact 
transverse-transverse function (eq. (9) of ref. [1]) is needed. 

To study the accuracy of eq. (4), an angle 00 is chosen satisfying the condition 
¼002 <<z 2, but sufficiently large that for 0 > 0 o the m e / E 2 Q  2 terms in eq. (9) of ref. 
[1] may be dropped. A suitable choice is 00 = lOOm¢/E ~ 3.4 mrad (E = 15 GeV). 
An accurate estimation of the luminosity function in the region from 00 to 0m~ , can 
then be found by 4-dimensional numerical integration as described in ref. [1]. Notice 
that since the Q2 integration has now been done analytically eq. (4) above is 
completely equivalent to eq. (11) of ref. [1] where a twofold numerical integration 
over Q2 and x I was required. So the accuracy of eq. (4) is found by comparing two 
expressions for dE /dz :  

'exact' calculation: 

d Eex 

d z  
_/" dEE (OU,OL,Oo,z)dx 1 

d d z d x  1 

+ dO 1 d~  d x  I dzdO2dO~depdx~ , 

'approximate' calculation: 

d~ ap 
dz 

__ f  d2~ (OU,OL,Oma x z)dXl 
J d z d x l  , . 
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Fig. 1. Differential luminosity function for various angular tagging intervals. 

d2~/dzdxl is given by eq. (4) and dS~/dzdO2dOid@dx] by eq. (9) of ref. [1], with 
exchange of x 2 for z as variable and neglect of the m~/E2Q 2 terms. Fig. 1 shows 
curves of the ratio (d~eX/dz)/(d~t°t'LL/dz) where d~t°t'LL/dz is the leading log 

approximation to the total luminosity (eq. (6) of ref. [1]). 0L, 0 U = 25, 50 mrad are 
chosen and a range of 0m~ x values are taken. More than 50% of the luminosity can be 
seen to lie at angles less than 3.4 mrad for the unobserved electron. It is also evident 
that the simple ln(0m~x/0m~n) law for the angular dependence of the luminosity that 
follows from the equivalent photon approximation breaks down badly for 0ma x > 250 
mrad. Table 1 compares (d~eX/dz)/(d~t°t'LL/dz) with (d~ap/dz)/(d~t°t'LL/dz) for 

0m~ x =0.025,0.050,0.25,½~r tad and various values of z. The accuracy of the ap- 
proximate calculation is ~< 1% for 0m~ x = 25,50 mrad. It is a few percent at 

0m~ x - ~ r .  Eq. (4) used in the straightforward way 0ma x = 250 mrad, and - 20% for _ 1 
shown in table 1 therefore gives an accurate estimate of 'single anti-tag' luminosity 
with 8m~ x ~ 20 mrad as used by PLUTO, but only a rather poor estimate of the 
single tagging efficiency where the unobserved electron is integrated over the full 

angular range. 
The error in the numerical integration for the entries in table 1 is estimated to be 

of the order of ~< 1% in the worst case (z = 0.02). 
It turns out however that by using eq. (4) in a slightly more complicated way it 

can also give much more precise estimates of the single tagging efficiency. How this 
may be done is described in the next section. 
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TABLE 1 

591 

d ~  ex / d~, t°t,LL 
, 

25 < 02 < 50 mrad 
0 < q , < 2 ~ r  

d~aP / d~tOt,LL 
ap = / 

R dz / dz 
A -- (R ap - ReX)/ReX 
E = 15 GeV 

Omax --- 25 mrad 

z 0.02 0.06 0.11 0.16 0.21 
Rap 0.03049 0.04543 0.04476 0.04296 0.04130 
R ex 0.02987 0.04502 0.04458 0.04286 0.04120 
A(%) 2.0 0.9 0.4 0.2 0.2 

0ma x = 50 mrad 

R ap 0.03265 0.04906 0.04862 0.04689 0.04525 
R ex 0.03228 0.04832 0.04830 0.04671 0.04509 
A(%) 1.1 1.5 0.7 0.4 0.4 

0m~x = 250 mrad 

R ap 0.03765 0.05745 0.05759 0.05600 0.05441 
R ex 0.03410 0.05292 0.05596 0.05440 0.05332 
A(%) 10.4 8.6 2.9 2.9 2.0 

- - I  
0m~ x - 2~r 

R ap 0.04305 0.06653 0.06727 0.06583 0.06430 
R ex 0.03414 0.05337 0.05729 0.05672 0.05659 
A(%) 26.0 24.7 17.4 16.1 13.6 

5. Use of the approximate formula to give single tagging efficiency with good 
precision 

The poor accuracy of eq. (4) for 0ma x ~> 250 mrad is due to the condition Q2 <<Z 2, 
used in the derivation, being badly violated. However, the typical range of tagging 
angles for the observed electron is still such that the condition Q2 << z 2 is not badly 
violated (the forward tagging systems of all the PETRA detectors have maximum 
angles less than 80 mrad). Suppose the single tagging efficiency is needed for the 
angular range 25 < 02 < 50 mrad. As shown above the contribution Cl to the 
luminosity for 

0 < 01 < 3.4 mrad ,  25 < 02 < 50 mrad  , 

is given to good accuracy for z ~ 0.01 by straightforward use of eq. (4). I t  remains to 
calculate the remaining contribution (to compare with the values given in table 1, Ol 
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is integrated up to 17r rather than ~r: this changes the luminosity function by only a 
fraction of a percent) 

C2:3.4 mrad < 01 <l~r, 25 < 02 < 50 mrad. 

As eq. (4) makes no kinematical approximations for electron 2 this can be done by 
reversing the labels of electrons 1 and 2 and using the equation twice: 

for 0 <  01 < 50 mrad, 3.4 mrad < 02 <½~r, 

and 0 < 01 < 25 mrad, 3.4 mrad < 02 <½~r. 

Subtracting these gives the luminosity function for 

25 < 01 < 50 rnrad, 3.4 mrad < 02 <½~r. 

Exchanging the labels this is identical to C 2. Adding now C 1 and C 2 gives the desired 
single tagged luminosity function for the range: 

0 < 01 <½~r, 25 < 02 < 50 mrad. 

Numerical results of the calculation are given in table 2. Agreement is found with 
(d£eX./dz)/(dEt°t'LL/dz) at a level of better than one percent, except for the lowest 
2 values of z = 0.02, 0.06 where errors of 12%, 3.2%, respectively, are found. 

TABLE 2 
Single tagging luminos i ty  funct ion  calculation by mult iple  use of  eq. (4) (definit ions as in table 1) 

L1 : 0 < 01 < 3.4 mrad; 25 < 02 < 50 mrad 

z = 0.02 0.06 0.11 0.16 0.21 
R ap 0.02429 0.03501 0.03363 0.03166 0.02992 

L2: 0 < 01 < 50 mrad; 3.4 < 0 2 <l,ff  

R ap 0.2112 0.27187 0.29497 0.30490 0.30960 

L3: 0 < 0 1 < 2 5  mrad; 3.4 < 02 <½~r 

R ap 0.1973 0.25178 0.27149 0.27935 0.28258 

L2 - L3: 25 < 0 t < 50 mrad; 3.4 < 02 < ½~r 

R ap 0.01390 0.02009 0.02348 0.02555 0.02702 

LI + (L2  -- L3): 25 < 01 < 50 mrad; 0 < 02 < l,ff 

R ap 0.03820 0.05510 0.05711 0.05721 0.05694 

R ex 0.03414 0.05337 0.05729 0.05672 0.05659 

A(%) 12.0 3.2 --0.3 0.9 0.6 
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The extension of this calculation to allow for dead areas is straightforward. Notice 
that the subtracted form of eq. (4) used as an intermediate step in this calculation 
does in fact give a double tagging luminosity function valid for the case where 
electron 1 is at small angles (Q2 << z 2) and electron 2 is at arbitrary angles. For many 
double tagging applications it may be sufficiently accurate to use eq. (4) (1- 
dimensional numerical integration) rather than the formulae of ref. [1] where, in the 
general case of no kinematical restriction, a 4-dimensional numerical integration is 
needed. 

6. Summary and conclusions 

The approximate single tagging luminosity function, given in eq. (11) of ref. [1], 
has been shown to reduce to a factorisable form which can be integrated analytically 
over the variable Q2, thus yielding a twofold differential luminosity function in the 
variables x~, z-eq .  (4) above. The accuracy of this formula for different angular 
ranges of tagging has been studied by comparison with the general expression for the 
transverse-transverse luminosity function-eq. (9) of ref. [1]. The results of this 
comparison are shown in table 1. The precision is of the order of a percent or better 
down to values W v v / 2 E  = z as low as 0.02 for angles of the unobserved electron 
below 50 mrad. However integrating over the full angular range the approximate 
formula overestimates the tagging efficiency by ~ 20% for z values <~ 0.1. The single 
tagging luminosity curves given in ref. [1] will have errors of a similar magnitude. 
However, by multiple use of eq. (4) a much more accurate estimate of the single 
tagging efficiency can be made. Such a calculation is presented in table 2. Use of the 
formula to give an anti-tagging efficiency where the unobserved electron is required 
to be at angles below 20 mrad, as done by the PLUTO collaboration in their analysis 
of multihadronic 23' events, is expected to have errors below the 1% level, even for z 
values as low as 0.02. 

Finally, it should be stressed again, that 'accuracy' is used above only in the sense 
of well identifiable errors in the QED factors in the cross section, other effects such 
as the Q2 dependance of the virtual 73' cross section, and the effect of longitudinal 
photons have been completely neglected. 
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