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We show that the Schr6dinger representation exists in renormalizable quantum field theory to 
all orders in the perturbation expansion. In this sense, completeness of the SchrSdinger states also 
holds. However, the field operator that is being diagonalized on a smooth three-dimensional 
hypersurface differs from the usual renormalized one by a factor that diverges logarithmically if the 
distance from the hypersurface goes to zero. This requires a limit procedure to be employed if 
expectation values of the renormalized field operator are to be computed in this representation. The 
Schr6dinger functional differential operator involves point splitting A and has coefficients depend- 
ing logarithmically on A, and also some by factors A -1, A 2, A 4. Details are given for the massless 
~b44 theory, but the extension to other models, in ' . . 1 . parhcular with spm-~ fermlons, is outlined. The 
Casimir potential for disjoint surfaces is shown to be finite to all orders in the perturbation 
expansion, and computed for a pair of parallel plates to first order in massless ~b 4. 

1. Introduction 

Soon after the inven t ion  of q u a n t u m  field theory,  its Schr6dinger  r ep resen ta t ion  

was also known,  and  it has been  m e n t i o n e d  since in some text books  [1]. Cal- 

culat ions,  however ,  were first done  in the in terac t ion  represen ta t ion ,  which is 

formal ly  re la ted to the Schr6dinger  r ep resen ta t ion  by a change of basis. Later ,  

covar iant  fou r -d imens iona l  formalisms (S-matrix calculus, G r e e n  funct ions,  and  in 

par t icular  funct ional  integrals) were used almost  exclusively. Even  more  than  the 

in terac t ion  represen ta t ion ,  which preserves a certain conceptual  role in scat ter ing 

theory,  the Schr6dinger  r ep resen ta t ion  fell into disrepute ,  the more  so since it seems 

to have been  cons idered  to be non - r eno rma l i zab l e ,  as the in terac t ion  represen ta t ion  
indeed  is [2, 3]. 

More  recently,  however ,  the search for n o n - p e r t u r b a t i v e  methods  in s t rong-  

in te rac t ion  theory led to the discussion of highly non-po in t l i ke  objects  (dual strings, 

Wilson loops). The dynamics  of such objects  was fo rmula ted  in terms of QFTs  with 

boundar i e s  [4, 5], an at t ract ive set t ing due to the high flexibility and perfect ion of the 

Q F T  formalism.  Prescr ibing the value of the q u a n t u m  field on a boundary ,  however ,  

means  using the Schr6dinger  represen ta t ion ,  slightly ex tended  from flat to curved 

boundar ies .  This led us to consider  renormal izab le  QFTs  with boundar ies ,  since 

n o n - r e n o r m a l i z a b l e  theories  a l ready pose unso lved  p rob lems  in infinite space- t ime.  

1 
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Superrenormalizable theories, on the other hand, offer no particular difficulty in this 
respect and, above all, do not appear* to describe interesting physics here. 

We show here that in renormalizable models, the Schr6dinger wave functional 
exists to all orders in per turbat ion theory, and give what we believe to be strong 
arguments  that the Schr6dinger functional differential opera tor  that appears  in the 
Schr6dinger equation does so as well. For simplicity, we treat only the 4~ 4 theory in 
detail, and mostly choose it massless since masses are inessential here, but describe 

the principles of extension to other models. Dimensional  regularization is used and 
mostly the euclidean frame, since the transition to the Minkowski f rame is obvious. 
Renormalizat ion group equations are given at every stage. 

In sect. 2, we discuss how boundary conditions (in particular, homogeneous  and 
inhomogeneous Dirichlet ones) are implemented  by surface interaction. That  the 
latter can be introduced in the renormalized infinite-space theory and hereby only 

causes divergences absorbable in logarithmic factors is crucial for the renor- 
malizability, as we show in sect. 3. An immediate  consequence is the finiteness of the 

Casimir effect (for a pair of parallel plates, for instance) to all orders, and we compute  
it to first order in massless ~b~ theory in sect. 4. In sect. 5 we show that if the 
renormalized field operator ,  or its derivative in the normal direction, approaches the 
boundary plane, a factor, different in the two cases, with logarithmic dependence on 
the distance from the boundary must be applied to keep matrix elements finite. In 
sect. 6 we construct the Schr6dinger functional differential operator ,  which requires 
point splitting, as it does in the free field theory. Completeness and unitarity are 

discussed in sect.7. That  the field opera tor  that is being diagonalized is not the 
renormalized one forces us to use a limit procedure if expectations of the field 
opera tor  are to be computed.  We discuss the extension of our method to other 

, 1 • models in sect. 8, and give some details for the spin-5 Majorana  field in an appendix. 
We also point out the divergences that arise if the transition to the interaction 

representat ion is a t tempted.  We note that, unfortunately,  the present  methods are 
not applicable to the string lagrangians [4] as long as these are not shown to be 
renormalizable in infinite space. Conclusions are stated in sect. 9. Some technical 
material  is relegated to the appendices. 

2. Boundary conditions by surface interactions 

Consider the theory of a free one-component  scalar field with (euclidean) action 
density in ~, dimensions: 

Lo = - ~0,,~b0,~b - lm2~b2.  (2.1) 

Let  F be a simply connected (not necessarily bounded) region of space with u - 1  
dimensional smooth boundary  OF, described by f ( x )  = 0, x ~ R ~, with f ( x )  > 0 in F 

* Recently, however, Migdal [5] has proposed a free-fermion theory with boundaries for model use in 
QCD. 
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and f(x) < 0 in the complementary region F' .  Consider now the augmented action 

density 
Lr  = Lo - 3 (f(x ) )d~ (x - OOf)O~,c~ (x )O, f (x  ) , (2.2) 

where -OOf is an infinitesimal vector pointing from x c O/" outwards. We show in 
appendix A that the functional integral with source is 

f @ ~ b e x p [ I L r + f  J~b ] 

= const (F ) exp  {~ fr fr  J ( x )Gr (x '  x')J(x')+½ fr' fr ' J (x )Gr ' `x ' x ' , J (x ' ) ]"  

Here  GrD is the Dirichlet Green function in if, 

( m  2 2 F - - O x ) G D ( X ,  X')  = ~ (X  - - X ' ) ,  

GrD(x,x')=O , x eaF,  

(2.3) 

and GN(X, X') the Neumann Green function* in F ' ,  

2 2 F' (m --ox)GN (x, x') = 8(x -- x') , 

OnG r' (x, x') = O, x e OF, 

x, x' s F ,  (2.4a) 

x' e F ,  (2.4b) 

! x,x  ~ F ' ,  (2.5a) 

x' ~ F ' ,  (2.5b) 

- lim GGr'(x ,  x') = 6(x, x ' ) ,  (2.7c) 
x ~ aN from F' 

X' E3F 

* If F '  is infinite and  m 2 = 0, GN vanishes  at infinity s t rongly e n o u g h  to r e n d e r  this funct ion  unique .  (See 

also append ix  A.)  

- lim GrD(X, x')3'n = 8(x, x ' ) ,  (2.7b) 
x ~OF from F 

x' c3F 

with an the (to F ' ,  interior) normal derivative at x. 
We can say, for short, that in (2.3) 

d~ (x) ~ 0,  x -~ OF from F ,  (2.6a) 

a . & ( x ) ~ O ,  x - ~ O F f r o m F ' ,  (2.6b) 

meant in the sense of arguments of correlation functions. Note that in (2.3) there are 
no correlations between points in F and in F ' ;  that is, F and F '  have been decoupled 

from each other by the surface interaction. 
We recall the familiar relations 

Gr(x ,  x') = G r ( x  ', x ) ,  Gr'(x, x') = Gr'(x  ', x ) ,  (2.7a) 
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where 6(x, x') is the &function on OF. The function 

lim O.Gr (x, x')0' .= lim 3.Gr (x, ' ~ ' r~ ' x )O.=--O.GDO. (2.8) 
x~a /~  f r o m / "  x'-~OF from F 

x'EOF x~3F 

is a negative definite kernel on OF which will later appear often. 
Inhomogeneous Dirichlet boundary conditions are implemented by replacing Lr 

of (2.2) by 

Lra = Lr + ~ (f  (x ) )A (x )3 ~b (x ) 3~f (x ). (2.9) 

In simplified notation, 

Lra = - ½O.¢b O.gb - ½m 2¢b 2.4_ 8 (0")~) One) --  6 (g)A O.¢b (2.10) 

where the operator  ordering in the third term, specified in (1,2), must be kept in 
mind. From (2.3) it follows by substitution for J that 

I ~4~exp[I  LrA+I  J¢ b] 

=const(F) exp[½fr lrJGrJ+½Ir ,  lr, j G r ' j  

AO.GDO.A - AO.G , (2.11) 
F F F 

where, however, we have discarded a singular linearly divergent term proportional to 
~orA 2 in the exponent  which, to allow explicit subtraction in (2.10), requires 
smearing the last 0.~b in (2.10) with an L 2 function within a layer adjoining OF inside 
F and letting that layer shrink to zero width. (We give this formulae in subsect. 5.2.) 
From (2.11) and (2.7b) it now follows that (2.6a) is replaced by 

rb(x)->A(x~OF), x-~OFfromF, (2.12) 

while (2.6b) remains unchanged. 
If OF is a plane, there is no difficulty in taking space parallel to the plane 3 - e  

dimensional (e > 0), such that ~, = 4 - e. We give formulae, to be used later, for this 
case. In (2.2), we set f(x) = y, with* x the 3 -  s dimensional coordinate along the 
plane and the y-axis pointing into F orthogonal to the plane, such that y, y' > 0 is the 
Dirichlet and y, y' < 0 the Neumann region. To simplify, we set m = 0 and then have 

G ~  (x, x') = ~ - - 2 + ~ / 2 r ( 1  - ½~) 

x{[(x-x')Z+(y-y')Z]-~+~/RT:[(x-x')2+(y+y')2]-~+~/2}, (2.13) 

with Fourier transforms 

f dxG~(xy, x'y ')  e i k ( x - x ' )  

= (2k)-l[e-kly-yq qz e-ktY+Y'l] ~ t~ (k ,  yy ' ) ,  (2.14) 

* A l l  b o l d  f a c e  a r g u m e n t s  a r e  3 - e d i m e n s i o n a l .  
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where k = ]k[ (or = (k2+m2)  1/2 if m >0) .  One notes the singularity in 

G0y,t~D(k, yy') = 3(y -- y') -- k2t~N(k, ( - y ) ( - y ' ) ) .  (2.15) 

Eq. (2.8) becomes 

FT 3,GD~" = - k .  (2.16) 

For one argument on the boundary with inner normal derivative, 

, , - 2 + e / 2  1 X , ) 2  + y 2 ] - - 2 + e / 2  3y'OD(a:);, X y )[y'=0 = W F(2 -~e )y [ (x  - , (2.17) 

with Fourier transform e-kL 
The Fourier transform with respect to all variables is (again, for m i> 0) 

/ .  oD o¢ t "  

J_ dy elqyJ_ dy'  eiq'¢[O(y,O(y')GD(k, yy ' )+  O(-y )O(-y ' )GN(k ,  yy')] 
oo oo 

= 27rB(q + q')(k 2 + q2)-1 _ k - l ( k 2  + q2)-1(k2 + q,2) 1[k2 + ik(q + q') + qq']. 

(2.18) 

Here  the first term is the free-space function, and the second term, being generated 
by the surface interaction in (2.2), is a sum of factorizing parts. Eq. (2.18) is less 

singular than are the Fourier transforms of the Dirichlet or Neumann function. 

3. Renormalizat ion 

3.1. REGULARIZATION AND DIVERGENCES 

To be able to add the interaction term to (2.10), we must choose a regularization. 
While the renormalized theory is fixed by the renormalization conditions for the 
superficially divergent (s.d.) vertex functions (the amputated one-particle irreducible 
(1PI) parts of the connected Green functions) alone, the precise form of the counter 
terms depends on the regularization employed. For most of our considerations, a 
plane ~F is sufficient, and then, for calculations, dimensional regularization is the 
most convenient: 3 - e space dimensions (Re e > 0), one (euclidean or minkowskian) 
time dimension. This is as effective as introducing a lattice in space while keeping 
time continuous, but by itself does not break Lorentz invariance such that renor-  
malization of the speed of light is not needed. Leaving the time direction 
unregularized means, however, that the ordering prescriptions in (2.2) and (2.9) must 
be kept in mind and that the form of the counter terms to these "bare"  terms is, in 
general, not the one expected on the basis of naive canonical reasoning. (Pauli- 
Villars regularization is stronger and more generally applicable, but more cumber- 
some to calculate with.) 

Therefore,  with plane aF, we add to (2.10) the interaction term 

L i n t  = - 2~g/~ ~b 4 (3.1) 
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and counter terms to cancel the singularities proport ional  to e n developing in 

Green  functions when e NO. Such singularities stem from coalescing vertices in 
(here, euclidean) s.d. 1PI Feynman graphs. Counter  terms need be associated only 
with final subtractions, since divergences due to the coalescence of a subset of the 
vertices are compensated by the counter terms for final subtractions of the corre- 

sponding subgraph [3, 6]. In the final subtraction, all vertices of the graph coalesce. 
It is now convenient  to separate  the Dirichlet and Neumann propagator  (2.13) or 

(2.14) or (2.18) into the free-space part  and the remainder,  which involves the 
surface vertex in (2.2) at least once and which we call the surface propagator .  [This 
separation is also manifest  for non-planar  OF, cf. (A.11), (A.14).] If a graph has at 
least one surface propagator ,  it can coalesce only on OF. Thus, the 1PI graphs 
requiring final subtraction are either free-space ones, if they involve free-space 
propagators  only, or surface ones. The free-space ones require in L the usual 
covariant counter terms, 

AL = - ( Z 3  - 1)10,~,~ O,~b - ( Z 1  - 1 ) l g / z  q~ 4 - ( Z 2  - 1 ) l m  2,~ 2 , (3 .2 )  

since the s.d. of these graphs is the usual one: 

g)~ = 4 - E ,  (3.3) 

where E is the (even) number  of external lines. 

3.2. SURFACE GRAPHS AND SURFACE COUNTER TERMS 

It here suffices to consider OF as effectively flat. The singularity of a surface 
propagator ,  with both endpoints close to OF and also to each other, is the same as for 
the free-space propagator ,  see (2.13). Therefore,  if one vertex in a coalescing group 
of vertices is fixed near OF, the s.d. therefrom is the same as for the corresponding 
free-space graph. There  is in addition, however,  the integration of the fixed vertex 
over  a small distance across OF. This reduces the s.d. relative to the free-space graph 
by one, such that 

Dot = 3 - E .  (3.4) 

Thus, for E = 0, a "vacuum"  graph, the divergence is cubic (we return to this in 
sect. 4), and for E = 2, linear. The latter requires one to add to the action density 

ALor = (Z4-1)6(o ' )&O,& + (ClA + c2R I In A)6(tr)~b 2. (3.5) 

In dimensional regularization, Z 4 - 1  can be chosen as a power series in e 1. The 
linear divergence also requires the term proport ional  to the cutoff (up to logarithms), 
absent if dimensional regularization were sufficient, and the term proport ional  to a 
typical curvature R i of OF, with logarithmically divergent coefficient (here indicated 
symbolically), vanishing for flat OF. 
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Lastly we consider the effect of the A-vertex in (2.10). It binds one external leg of 

the graph with a normal derivative to the surface. The s.d. of a surface graph is then 

the same as if that line were amputated, since a gain of three powers (2 4- 1) from the 

line and derivative is compensated by the same loss due to the three-dimensional 
integration over the surface, supposing that the endpoint on the surface is smeared 

with a smooth function A. (It actually suffices that the endpoint does not coincide 
with some other endpoint of the graph on OF.) Thus, altogether 

DatA = 3 -- E - Ea ,  (3.6) 

and D = 1 for E = EA = 1 and for E = 0, EA = 2. This demands in addition to (3.5) the 
counter terms 

A L a F A  = - ( Z s  - 1)6(o')A0~(9 + (c3A  + c4R-1  In A )a(o ' )A& 

+(csA 4-c6R -1 In A)8(cr)A 2 . (3.7) 

Again, Z5 - 1 can be chosen in dimensional regularization to be a power series in e - l ,  

and what was said after (3.5) applies to the c-terms. Collecting the action and also 
adding, for completeness, the source term for ~b 2 we have 

L = - 1Z3Ota ff  ) a~) -- 2~4Z1 gl.z e~ t ) 4 __ 1Z2  m 2(/) 2 4- j~) 4- ½KZ2ck 2 

4- Z4¢~ (ov)(~ an~) - Z 5 ¢~ ( tr )A c3,~ + Z6l.z - ~ m  2 K  - Z 6 l[.z ~ K  2 

4- Z 7 6  (O')l.Z -~ O,K + c- terms,  (3.8) 

where the c-terms now also encompass 

( c7A  4 - c 8 R  -1 In A )6(o') l . t -~K.  

The perturbation expansion with (3.8) (setting K ---- 0) is discussed in appendix B, and 
here we only summarize the results. 

The calculations on the Dirichlet and on the Neumann side can be done separately, 
due to the decoupling of the two regions mentioned after (2.3). The (unamputated!) 

Green functions on the Dirichlet side obey the Dirichlet condition where A = 0, and 

are, as a consequence of this, independent of the renormalization condition that fixes 
the choice of Z4 which, in dimensional renormalization, is 

Z 4 = 1 + l T r - 2 e  l g + O ( g 2 ) .  (3.9) 

(That it differs from the usual 

Z 3 = 1 - ( 3  • 2 1 ° ~ 4 8 ) - l g 2 4 - O ( g 3 )  (3.10) 

is due to the incompleteness of the regularization as emphasized in subsect. 3.1.) 
Also the c-terms in (3.5) are, for (unamputated) Green functions if A = 0, ineffective 
on the Dirichlet side. 

In the separate calculation on the Dirichlet and Neumann sides, the difference in 
propagators actually has the effect that in (3.5) and (3.7), the coefficients of the 
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counter terms are different on the two sides. Namely, the counter terms then stand, as 
they are used, infinitesimally off OF inside/" and inside F ' ,  respectively, and they do 
not commute with the decoupling generating term ~b0,~bS(~r), in the interpretation 
(2.2). In particular, ALorA of (3.7) has to be set zero on the Neumann side. 

On the Neumann side, the boundary condition (2.6b) cannot be upheld even to 
first order in perturbation theory, due to the necessity, for finiteness, of the Cl term in 
(3.5). This terms, which destroys the Neumann property because of (2.7c), represents 
(to first order) the A-l~(x) subtraction in (5.6a) below, or the corresponding 
subtraction in the regularization (6.16), the principal value being proportional to the 
renormalized first-order 2-point vertex in the sense of (B.1). However, since the 
Neumann part factors off and is A independent [for this the Neumann property 
(1.5b) of the bare propagators suffices], we need not discuss it further. 

3.3. RENORMALIZATION GROUP PROPERTIES 

The functional integral with action density (3.8) (setting K---0) is denoted by 
gr(A I J). It factorizes into the Dirichlet part, depending on A and on J in F, and the 
Neumann part, depending on J in F' ,  and we disregard the second factor until sect. 4. 

From (3.8) one derives [7], by differentiation with respect to lz, the renor- 
malization group equation 

[lz ~+~(g, e) ~--g+T(g) frJ~j-~(g) forA~-~+n(g)mZa-~] ~(AIJ)=0. 
(3.11) 

Here, as usual, 
--1 

fl(g, e) = -eg  + fl(g) = -eg[  l + g ~-g ln (ZlZ32 )] 

= - e g + ( 1 6 ~  2) 1392+O(g3) ,  (3.17a) 

"g(g) = ½fl(g, e) ~g In Z3 = (3 • 21°¢r4)-lg2 + O(g3) , (3.12b) 

0 
r/(g) = 13(g, e) ~gg In (Z2Z~ 1 ) = (16~'2)-ag + O(g2), (3.12c) 

while 

o'(g) =/3(g, e) a-~ In (ZsZ31 ) 

= (327r2)-lg + O(g 2) 

is a new parametric function, e-free under minimal choice of 

Z5 = 1-(32~r2e) l g + O ( g 2 )  • 

(3.12d) 

(3.13) 
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Note that the differentiation leading to (3.11) also produces the insertion 

AL = l~l(g, e)~g In (Z4Z31 ) '  Z4~(o'-)~/~0n( ~ (3.14) 

in the functional integral. However,  this insertion gives zero due to the Dirichlet 
condition emphasized at the end of subsect. 3.2, and we may consider the -A0,4~ 
vertex in (3.8) as going to aF from F latest, as we shall make explicit in subsect. 5.4. 

To keep the notation simple, we shall now take as aF  the (euclidean) time plane 
y -- 0, as we did at the end of sect. 2. We write the sources J (xy)  and A(z). The Green 
functions 

G ( Z l  • • " z t l X l y l  • ' • x,y,) 
l 

= 1] [6/6A(zi)] ~ [6/6J(xiyi)] In q'(AIJ)lA=,=o (3.15) 
i = 1  i = l  

are connected, and zero unless n + l = even. Eq. (3.11) becomes 

0 +/3(g, e) +ny(g)-lo'(g)+~7(g)m2~m2 G ( Z l  • • • Z l } X l y l  " ' "  x n y n ) = 0 .  

(3.16) 

4. Casimir effect 

4 . 1 .  G E N E R A L  D I S C U S S I O N  

Renormalization renders all Green functions finite. It leaves untouched the 
quartically UV-divergent  vacuum graphs, i.e. those without external lines, for which 
final subtraction (which would simply remove the whole graph) is not prescribed. It 
can be meaningful, however, to compare the vacuum energy, obtained (for the scalar 
field) by 

T 

E/" =-limoo T - a l n  I ~& exp[ f0  dtfdxL(&,&~)] (4.1) 

for different v-1 dimensional regions/~ and with different boundary conditions on 
the u-2 dimensional boundary a/~. (The relation to the notation so far is: F =/~ x 
[0, T], OF = aF x [0, T] plus the irrelevant t = 0 and t = T closures.) 

One easily sees, however, that the quantity that is simple to compute is not the 
vacuum (i.e. ground-state) energy in F, but the total energy, which is the ground-state 
energy in/~ with, e.g. Dirichlet boundary conditions, plus the one in the comple- 
mentary region /~' with Neumann boundary conditions. Then the boundary- 
independent  free-space energy can be omitted, and the remainder is given by surface 
graphs only. In particular, in the simplest setting of Dirichlet conditions on the inner 
sides of two parallel plates, at distance L, the Neumann part is independent  of L such 
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that the L-dependence  of the total energy is the same as if the two Neumann  regions 
were absent, disregarding the free-space part.  

As we shall see, the Casimir potential  between disjoint surfaces is always well 
defined. That  for a single surface, e.g. a sphere, in general is not, at least for the family 
of boundary  conditions discussed in appendix A, due to divergence of the free-field 
part  if taken absolutely and not, for example,  relative to some other shape. In such a 
case, the physical problem requires a more  complete formulation, which will then 
imply some other boundary conditions [8] than the (idealizing) Dirichlet (or Neu- 
mann) one. 

4.2. F R E E  F I E L D  

Here,  the surface graphs have merely the ~ba,~b vertices on OF shown in (2.2), and 
it is easy to derive the simple graphical expansion* 

E D r  + E N r '  -- const = -- lim 2a-T-l[2 Tr 0 ~ + ~ 2 2  Tr O , G .  OnG 
T-~oo 

+ 1 2 3 T r ~ .  anG" O , G + .  . . ] ,  (4.2) 

where Tr is the trace on the surface OF = 0F x [0, T] and O,G is defined in (A.5b). 
The first term in the square bracket  is zero under appropr ia te  (e.g., Pauli-Villars) 
regularization for symmetry  reasons. (This reflects the well-known fact that the 
strongest, cubically divergent part  of the surface energy has the opposite sign in the 
Dirichlet and Neumann  case.) The higher terms in (4.2) all vanish for flat OF (i.e. 0F), 
since then O,G is zero (see appendix A). 

In the ar rangement  of two parallel plates in distance L, however,  a , G  is not zero if 
its two arguments  are on different plates. In the massless theory in v dimensions, i.e. 
two v-2 dimensional parallel plates in v-1 dimensional space, 

a , G  = - ½zr-" /2F( lv)[ (x  - x ' )  2 + L E ] - ' / Z L ,  (4.3) 

where x and x '  are the (u - 2 + 1)- dimensional arguments on the two plates extended 
in euclidean time. While on the r.h.s, of (4.2) the odd terms all vanish, the even ones 
are easily summed and lead to the well-known result 

( E D r  + E N r '  -- const) /area  

= _ 2 - ~ . - ~ / 2 F ( ½ v ) ( ( v ) L  ,+l = - ~ r tZL -3 if v = 4 .  (4.4) 

Hereby  in ( ( v ) =  ~ = 1  n ~ the nth term is obtained f rom the "one- loop"  polygon 
with n vertices on each plate. Eq. (4.2) also shows that the Casimir potential  decays 
exponentially in the massive case. 

* Eq.  (4.2) is a spec ia l  case of a f o rmu la  of Ba l ian  and  D u p l a n t i e r  [9]. 
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4.3. INTERACTING FIELD 

The higher-order  vacuum surface graphs are (for v = 4) cubically divergent [E = 0 
in (3.3)] provided they can shrink to a point on OF. If, however,  OF consists of two 

disjoint pieces OF1 and OF2, the surface graphs o n  c~/~1 are independent  of the location 
of OF2, and vice versa. Only the surface graphs with vertices on both 0F1 and 0[2 
depend on the relative location, and since they cannot be shrunk to a point they are 
finite provided all subdivergences have been subtracted by counter terms. These are 
the usual free-space counter  terms (3.2) and the ones on 0F1 and OF2, as prescribed by 
(3.5), that render the surface graphs for these subsurfaces finite. Thus, the Casimir 

effect is finite and computable  for any configuration of disjoint surfaces at each of 
which the theory has been made finite by counter terms as if the other surfaces did not 

exist. 
Since we know (see appendix B) that the homogeneous  Dirichlet condition can be 

implemented for the plane without need of a new renormalization parameter ,  the 
Casimir energy of a pair of parallel plates with these conditions on the two insides 
obeys, in massless &4 4 , theory, according to (4.1) and (3.16), 

I ~ + f l ( g , e )  E ( g , L , l ~ , e ) = O .  (4.5a) 

Thus 
E(g, L, IX, e )/area ~ L-3÷~e(g(g, (Ltx) -1, e), e) 

- - L  -3+~ ~ cn(e)[~,(g, (Ll.t) 1, e)]" ,  (4.5b) 
n - - 0  

where g is the usual sliding coupling constant and the c, (e)* are computable,  with 
Co(e) from (4.4). 

Since the massless &4 4 theory is "asymptotically free in the infrared",  ~ in (4.5b) 
vanishes, if e = 0, proport ional  to (ln L) -1 as L + oo, such that then only the Co(0) 
term survives. This universality (i.e. independence of g) is a counterpart  of the one 
observed by Liischer [11] in a two-dimensional  problem, and is, since insensitive to 
UV cutoffs, not affected by the fairly well established [12] non-existence of the 
continuum &4 theory in the UV. 

4.4. FIRST-ORDER-CALCULATION 

In terms of zeroth-order  Dirichlet Green functions, we have, from (4.1), (4.5b) 

L-3+~Cl(e )g, (g, (L/z) - t ,  e) 

, +[i0 = ggtx dy {[G~ (0y, 0y) - G(00)] 2 -  [GD(0y, 0y) -- G(00)] 2 

& 

- [GD(0 (L  - y ) ,  O(L - y ) ) -  G(00)]2}-  2 J ,  dy [GD(0y, 0 y ) -  G(00)] 2] 
. o  

+ O(g2).  (4.6) 
* We do not discuss here the IR problems [10] of the expansion in (4.5b) if e >0. 
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L ' ' - - ½ e )  G D  ( x y ,  x y ) = 1 7 " r - Z + ~ / Z F ( l  

X ~. { [ ( x - x ' ) 2 + ( y - y ' + 2 n L ) 2 ]  -1÷~/2 
n = - o c ~  

- [ ( x  - x ')  2 + (y + y '  + 2nL)2] -1÷~/2} (4.7) 

is the Dirichlet  Green  function for a pair  of 3 - e  dimensional  plates at y = 0 and 

y = L, while G o  is given in (2.13) and G ( . . . )  is the f ree-space function.  The cross 

term f rom the first square bracket  in the curly bracket  in (4.6) removes  the f ree-space 
mass renormal iza t ion  to the one - loop  (i.e. ze ro th-order )  graph discussed in subsect. 

4.2. The  second and third terms in the curly bracket  in (4.6) r emove  the two 

single-plate surface graphs to first order .  The  last integral  in (4.6) extends these last 
two graphs to the whole  half-space relevant  for  the single plate p rob lem (otherwise 

the integrat ion over  0 • • • L only would  have given an unal lowed L - d e p e n d e n c e  to 
the single-plate subtractions).  A p a r t  f rom this, in (4.6) the integrat ion over  0 • • • L 

only is permi t ted  since the energy  contr ibut ions  f rom the two outer  regions are, after 
the f ree-space parts  are subtracted,  L- independen t .  

We  now insert into (4.6) 

GD (Oy, Oy) - G(O0) = ¼~.-2+~/2 ( 2 L ) - 2 + , F ( I  _ ½e) 

x [2( (2  - e) - ( (2  - e, y/L) - ( (2  - e, 1 - y /L ) ]  

= (48L2)-111 - 3 ( s i n  ( try/L))-2] ,  if e = 0 ,  (4.8) 

where  ((z ,  a )  is the general ized (- funct ion,  and find 

Cl(e) = 2 -9+2" r r -4+ 'F (1 -½e)  2 

x [((2 - e) 2 + (1 - cos r r e ) B ( -  1 + e, 3 - 2e ) ( (3  - 2e)]  

= 2 -11  " 3 - 2  if *e = 0 

= -2-7"rr-2(2"y1- C2 + l r r  2) i f e  = 1 , 

where  C is Euler ' s  constant  and 

1 O 2 

yl  = ~ Os----~ [(s - 1)((s)]ls=l • (4.9) 

The  U V  finiteness of (4.6), independent ly  of the counter  terms in (3.5), generalizes 

to any disjoint  pair  of smoo th  surfaces:  Let  G ~  be the Dirichlet  Green  function that  

vanishes on OF1 and G~) 2 the one  that  vanishes on OF1 + OF2. Then  

G~ z-G~) = 2 G  1 .  [ 1 - 2 0 . - ~ 3  -1 .  O,G 1, 

* This  resul t  was ob ta ined  by T o m s  [13] us ing  d imens iona l  regular iza t ion .  
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where  the  surface  in tegra t ions  and invers ion are on 01"2 only,  vanishes of second 

o rde r  if the two a rgumen t s  coalesce and go to 0 F  1 together .  This secures  the 

convergence  of 

rdX {[G~ 2 (x, x) - G(0) ]  2 - [ G ~  (x, x) - G(0)]  2 - [G  2 (x, x) - G(0) ]  2} 

near  OF1 for  e > - 1 .  

5. Behaviour at the boundary 

5.1. CALCULATIONS TO FIRST O R D E R  

For  the G r e e n  funct ions  (2.13), we define Four ie r  t r ans forms  by 

f d z l ' " f  d z t l d x l ' " f  dx, exp[i~kiz,+i~p~xi] 

× a ( z l "  • • Z l [ X l y l  • • • x n y n )  

= (27r)4-~8(E P + E  k ) G ( k l  • • • k~lptya"" P.Y.) • 

Us ing  the  p r o p a g a t o r  (2.14), we find to first o rder  in g 

G ( [ p y ( - p ) y ' )  = 0(y _ y , ) { p - 1  e-py sh (py ' )  

y' 

+ 2  5+~rr-2+~/2p-2gtz ~[ f dtt-2+~(sh (pt))Ze-.,y+y,) 
I - a  0 

+ e -py sh (py ' )  dt  t -2÷~ sh (pt) e -pt 

+ s h ( p y ) s h ( p y ' ) I y  d t t -Z+~e-2p ' ]}+(y~- ->y ' ) ,  (5.1) 

where  p = [ p ] .  While  the Dir ichle t  condi t ion ( ~ ( ( p y ( - p ) 0 ) = 0  is satisfied, 
c~y,(~((py(-p)y') has, if e > 0 but  y '  = 0, an e a singulari ty as e %0,  whereas ,  if e = 0, 
it blows up logar i thmical ly  as y'",a 0. In the first case, the r e m e d y  is the factor  Zs ,  
given in (3.13) to this order ,  while at e = 0. 

lim [1 + (32~r2)-1g In ( t~y ' ) ] ay ,G( ]py( -p )y ' )  
y'-~0 

( ~ ( - p  ]py) = e-PY[1 + (327r 2) lg(~0(2) - I n  (2p~-1)) ]  

j , b  

- (32~rZ)-lg e P Y  / dt  t -1 e -2pt . (5.2) 
Jy 
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The r.h.s, differs insignificantly from the corresponding minimal-subtraction 
function computed directly from (3.8) using the prescriptions of appendix B. 

Letting y ~ 0  in the e > 0 formula for (~( -p  [py), again produces a 1/e  singularity, 
remedied by the factor 1 + (32~'2e)-lg, which is Z j 1 Z 3  to this order. At e = 0, we 
must again introduce a logarithmic factor, 

lim {[1 - (32z r  2) 2g(1 +In (/zy))]t~(-p [py)} = 1. (5.3) 
y ~ 0  

If we form 0yG (-p]  py), however, we must, to let y "-a 0, make a subtraction, which we 
choose at zero momentum. Thereupon,  at e = 0, the same factor as in (5.2) is 
required: 

lim {[1 + (32zr 2) lg In ( lzy)][OyG(-plpy)  - 0yG(0[ 0y)]} 
y ~ 0  

d(p( -p l l )  = -p[1 - (16~r2)-1 g(ln (2p/~ -1) - ~(2))], (5.4) 

whereas at e > 0 the factor Z5 from (3.13) is again appropriate. As in (5.2), the r.h.s. 
in (5.4) differs insignificantly from the corresponding minimal-subtraction result. 
The functions in (5.1), (5.2), and (5.4) obey (3.16) with (3.12) to first order in g. 

For computations in appendix D it is useful to observe that the r.h.s, of (5.2) and 
(5.4) are also given by 

co 

G ( - p [ p y )  = e -pr + (64zr2p) l g  f dt e-m(e -ply tl_e-p(y+t~)lz2p+(ttz)-2 ' 
J0 

where 

c¢) 

G(( -p )p[ )  = - p  + (32zr2)-1g Io dt e-ZPt/x2P+(t/x) -2 , 

(5.5a) 

(5.5b) 

P+x 2 = lira [x-20(x  - A ) - A - 1 6 ( x ) - 6 ' ( x )  In A] (5.6a) 
A ~ O  

is the one-sided principal value related by 

P+x-2 = [x~X _ (A - 2 ) - l t ~ ' ( x ) ] l x  =2 (5.6b) 

to the function defined by Gelfand and Shilov [14]. 
The other first-order graph is the lowest-order contribution to the four-point 

function G ( l k l y l k z y 2 k 3 Y 3 ( - k l - k e - k 3 ) y 4 ) .  One easily sees that it, and all first 
y-derivatives, are ordinary functions of the k and the y, and vanish if one or more y is 

set to zero without derivative. 

5.2. GENERATING SURFACE ARGUMENTS 

Eq. (3.8) shows that for e > 0, 

Z5Oy ctb(xy ) ~ 6/  6A  (x ) . 
y ~ 0  

(5.7) 
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Eq. (5.2) indicates that, for e = 0, this needs to be replaced by 

c (y)0yqb(xy) ~ 6/~SA(x). (5.8a) 

More generally, in view of (5.4), 

lim {c(y)[Oy(~/6J(xy))-A(x)ay(~(O 10y) ]~ (AIJ )}  = (S/~A(x))~P(AIJ).  (5.8b) 
y~0 

Here  we recognize the subtraction corresponding to a particular choice of c5 in (3.7), 
while the c3 term does not contribute due to the Dirichlet property.  In terms of Green 

functions (3.15), (5.8b) is 

lim {c (y)[~yG(za " " " Zt[xyxlyl " ' " x,,y.)-- ~nO611 ~ (X - -  zl)OyG(O[Oy)]} 
y-->O 

= G ( z I  ' ' "  z t x [ x l y l  " ' ' X n y n ) ,  (5 .8C)  

valid, however,  only in the sense of distributions with smooth test functions A and J. 

We can choose 

c(y) = [ 0 y G ( - p [ p y ) -  0yt~(010y)]- lG(p(-p) l) lv-o (5.9) 

which defines c(y) up to a merely g (and, in the massive case, In mtz 1) dependent  

factor that depends on the convention used in computing the r.h.s, of (5.9). c(y) as 

defined by (5.9) satisfies 

0 0]  
1~-~+3(g)  ~g- 'g (g ) -o ' (g )+  ~(g)mZ 0 ~  c(y) = 0 , (5.10) 

which renders (5.8c) consistent with (3.16). In the massless case, c(y) is a power 
series in g with coefficients polynomial  in In ~y. In the massive case (5.9) also yields a 
dependence  on m which can, however,  be factored away under neglect also of O(y) 
terms, since the U V  effect to be achieved by c (y) is m-independent .  Note that, while 

ZsZ31 in (3.10d) is, in minimal subtraction convention, uniquely determined by 
o-(g), this is not so, except in the leading and next-to-leading logs, for c(y) from 

(5.10), even if m = 0. 
Eq. (5.8c) is easily interpreted: an external leg of G is upon normal differentiation 

bent  to the boundary.  Therefore,  we need discuss only the cases of superficial 
divergence, n = 1, l = 0 and n -- 0, l = 1, since the other cases are then covered by 

skeleton expansions (appendix B). In the first case, 

lim {c(y )oya(lxyxly~)} = O ( x l x l  y~) , (5.11) 
yo0 

we must r emember  (see appendix B) that the functions here are singular if any y goes 
to zero; G(lXyxlyl) is comparable  to a four-point  function of the covariant theory, 
with x0 and xl0 the two suppressed arguments,  and G(X[Xlyl) is comparable  to a 
three-point  (i.e. unamputa ted  mass vertex) function of the covariant theory, with xl0 
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the suppressed argument. In this sense, (5.11) means that the renormalized vertex 
function is gotten from the four-point function by binding two legs together with a 
point-split bare vertex, multiplying by a factor that depends logarithmically on the 
splitting distance (and on g and/z)  only, and letting that distance go to zero. 

In the covariant case, the reason for this factorization is a Wilson short-distance 
expansion [15], which to the order required here can be derived elementarily by 
manipulating algebraically the Bethe-Salpeter equation (see, e.g. [16]). In analogy, 
the reason for the validity of (5.11) is a small-y expansion of the "four-point  
function" on the 1.h.s., the leading term being y times powers of In (tzy). The proof, 
on the basis of the Bethe-Salpeter  equation, will not be given here. We merely note 
that the reason for c(y) being merely logarithmic, in spite of superficial linear 
divergence, is the appearance of the factor y due to the Dirichlet property. 

The other case, 

lim { c (Y)[OYG(ZlxY)-~(x-z)  I dx' OyG(zlx' Y)]} = G(zx]) (5.12) 

is analogous to forming a two-mass-vertices correlation function in the covariant 
theory. Also there, an additive renormalization is required before the remaining 
divergence can be removed multiplicatively. Overlapping divergences are dis- 
entangled by the subtraction (or momentum differentiation, which corresponds to 
multiplication by x i -  zi). Again, the proof, analogous to the one in the covariant 
case, will not be given here. In QED,  an analogous procedure is applied when 
computing a quadratically divergent current correlation function or a photon 
self-energy part or a linearly divergent electron self-energy part. 

5.3. BOUNDARY VALUE OF 

Taking qb to the boundary in (3.8), where it vanishes, requires crossing the 
- Z s A ~ q ~  term, and the canonical commutation relation gives 

Zs1Z3tD(xy) , A ( x ) ,  (5.13) 
y~0 

for e > 0, while, as we saw in subsect. 5.1, for e = 0 this needs to be replaced by 

a (y)~(xy)  , A(x)  (5.14a) 
y~0 

or, explicitly, 

lim {a (y)[8/BJ(xy)] ~ ( A  I1)} = A (x) ~ ( A  I1), 
y~0 

(5.14b~ 

o r  

lim {a(y)G(Zl • • ' zllxyxlyl • • • x,y~)} = ~ll~nO~(X - - Z l ) ,  (5.14c) 
y-~0 
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valid, again, only in the sense of distributions with smooth test functions A and J. We 

can choose 
a(y)  = G(010y) -1 , (5.15) 

which obeys, according to (3.16), 

i x - -~+~(g)~g-y(g)+o ' (g)+r l (g)rn  2 a ( y ) = 0 ,  (5.16) 

and what was said after (5.10) on c(y) applies also to a(y) .  
Eq. (5.14c) is easily interpreted: if / = 1 ,  n = 0 ,  the l.h.s, vanishes due to the 

Dirichlet proper ty  if x • zl. Thus, the r.h.s, if finite, and it is finite by the choice 
(5.15), must be a distribution with support  on x -- z, and by power  counting, this must 
be a 8-function. In all other cases (i.e. unless l = 1, n = 0) power counting does not 
allow a singularity as strong as a 6-function on the r.h.s, of (5. lc) if x coalesces with 
any z, the remaining arguments being understood not to coalesce with these or as 

being integrated over  with smooth test functions. 

5.4. A FORMULA FOR qZ(AIJ) 

By repeating operat ion (5.8b) indefinitely, we can build up tlz(AIJ) from qt(0[J). 

However ,  due to the 8-singularity (2.15) of OyOy,G(Ixyx'y') at x = x' ,  y = y', we must 
in the repetit ion employ a square-integrable smearing function CA(y) that, as A ~ oc, 

approaches 8(y), e.g. 

CA(y) = A l(n !)-1(y/A)" exp ( - y / A ) ,  n/> 1 . (5.17) 

Then 
i - P  P 

OO 

kJ  Jo 

fo Io ' " ' 
1 dy ca(y)c(y)  dy '  cA(y )c(y )OyOy,G(lOyOy ) - - 2  

× I d z A ( z )  2] ~ (01J ) ,  (5.18) 

which is, in the limit A - ,  oo and using (5.11), easily checked to be consistent with 
(5.8b). The subtraction in the exponent  in (5.18) corresponds to the cs term in (3.7), 
and is needed even in the free-field case as remarked  after (2.11). If g'(01J) satisfies 
(3.11) with A = 0, then, due to (5.10), ~ ( A [ J )  also does with A • 0. 

In view of (3.15), we write 

~(01J)  = exp G(J) .  (5.19) 

Then (5.18) becomes,  in symbolic notation 

gt(A IJ) = exp { G(J + cA(?y)-I I A 2[cOyGz'~y,c ]} , (5.20) 



18 K. Symanzik / Renormalizable quantum fieM theory 

where the A-smearing and limit is understood. The subtraction removes the singular 
part if the first term in the exponent  is expanded in A, and effects t~(00[) = 0. Only 
the J, A two-point function is operative in yielding (5.14b) from (5.20). The compact 
formula (5.20) will be useful in the following section. 

6. Schr6dinger equation 

6.1. GENERALITIES 

The Schr6dinger functional ~It(AIJ) is the scalar product <Ale J~> of a state 
specified by the function A at (euclidean) time zero with the state obtained from the 
vacuum by operating on it with sources at various y > 0. (More details will be given in 
sect. 7.) The dependence on the time of specification of A by shifting this time by Ar 
in the negative y-direction is the same as when shifting the sources by Az in the 
positive y-direction, which means replacing J(xy)  by J(xy-At) ,  since the vacuum 
state is translation invariant. The Schr6dinger equation expresses this dependence by 
an operation on the functional dependence on A alone. Infinitesimally, 

I dx OyJ(xy)[6/6J(xy)]~(A[J)= H(A, 6/6A)~F(A[J), (6.1) 

provided J has support at y > 0 only. H(A, 6/6A) is the hamiltonian as a functional 
differential operator.  In particular, (6.1) implies 

H(A, 6a)~(a[o) = 0 ,  (6.2) 

i.e. H(A, 6/6A) has the vacuum energy subtracted. We shall construct H(A, 6/6,4) 
by analyzing the l.h.s, of (6.1) with the help of (5.20). 

6.2. FREE FIELD AND COMBINATORICS 

Disregarding renormalization problems, we can write, according to (2.3) 

~(0[J)  = exp [-P(6/6J)] exp [~JGDJ], (6.3) 

where P(&) is the interaction part of the action. (Not to have derivatives in P(&), & 

should be the unrenormalized field.) Then, from (2.11) 

( a  ]J) = exp [-P(8/6J)] ~°(a ]J),  (6.4a) 

where 

~°(alJ) = exp [~JGDJ -AO,GDJ +~AO,GDO'A] (6.4b) 

with 0n the outer normal derivative -Oy ly=o. Straightforward calculation gives 

OyJ[6/6J] ~(A I J)  = exp [-P(6/~J)]{- ~J(dyGD + GD'Oy,)J 

+Ja~GD3.A -e'(~/81)a~8/SJ}~°(atJ). (6.5) 
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The following equations hold (the dot means integration over the y = 0 plane) 

ayGD + GD0y, = GD0,, " OnGo, (6.6a) 

OyGDO'n-= GDS. " O~GD'O'. , (6.6b) 

c3,,GG'O',, . O',,GDO"='Oi6( ) O i + m Z 6 ( ) .  (6.6c) 

Namely, (6.6a) holds if (6.6b) does since, as a function of the right argument, both 
sides of (6.6a) are solutions of the Poisson equation with the same boundary value, 
due to (2.4), of the normal derivative at y = 0, and vanish at infinity. (6.6b) holds 
since, as a function of the left argument, both sides are solutions of the Poisson 
equation with common boundary value, due to (2.7b), and vanish at infinity. (6.6c) 
follows from (6.6b) due to (2.4b) and (2.7b). Inversely, from (6.6a), (6.6b) follows. 
(6.6a) is actually a special case of the familiar formula for variation of GD by 
boundary variation 

[8/ &r(x ) ]GD(X', x") = GD(X', ' )'On Ixx [anaD(., x"),  (6.6d) 

with x' and x" away from x, for smooth OF with x ~ aF. 
Using (6.6a, b) in (6,5) we have 

0 yJ [8/6J] gt (A [J) = exp [ -P(8 /8J ) ] .  { - ½JGD'O,," O,~GDJ 

+ JGD'On "' • O ,GDa,A-P ' (a / ,V)ay{a /aJ]}q , ° (AIJ ) .  (6.7) 

However,  from (6.4) 

[ 8/ 6A ] ~  (A IJ) = exp [ -  P( 8/ 6J) ] . {-O,GDJ - O,GD'O'nA } ~ ° ( A  IJ) 

and similarly for [82/6A6A]. Using this and (6.6c) in (6.7) and observing that the last 
term in the curly bracket in (6.7) contains a complete differential, allows one to 
obtain from (6.1) 

H ( A ,  8 A ) ~ ( A [ J )  = dz  [-½182/SASA]+1a~Aa,A +½m2A 2 

+ P ( A  ) + ½(d,GD'O,)-const]VF (AJJ) (6.8) 
where 

cons t=  qS(A[J) 1 lira P ( 6 / 6 J ) ( z y ) ~ ( A J J ) .  

Eq. (6.8) is the expected result. We have given this combinatorial (i.e. "graphical") 
derivation since the actual calculations in renormalized perturbation theory, the 
results of which we shall present below, follow the same combinatorial pattern. 

Even in the free unregularized theory, (6.8) is not usable as it stands, as seen from 
the meaningless subtraction term. One needs to introduce point splitting, i.e. with the 
first and (second to) last term as 

lira dz { - ~ [ 8 2 / S A ( z ) 6 A ( z  +A)]+5(O,,GDa~)(z, z +A)} 
A ~  0 
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A local Schr6dinger equation, with local hamiltonian density Yf(A, 6/6,4) instead of 
the hamiltonian H(A,  6/8A), holds for local deformation of a generally non-flat 
surface [cf. (6.6d)]. Calculations for the free theory in two-dimensional fiat space 
with smooth OF are given in appendix E of [17]. 

6.3 .  A N S A T Z  F O R  T H E  I N T E R A C T I N G  T H E O R Y  

In the regularized interacting theory, in view of (3.8), (5.7), and (5.13), eq. (6.8) 
becomes 

f r ! Z Z -2(62/6A6A) H(A,  6/6A)= d z t - z  3 5 

! 7 - 1 , 7  2 , 1 2 , - w - 2 ~  ,--i2 A2 
+ 2 L ,  3 L s O i A O i A * ~ m  L 3  L 2 L 5 Z - t  

+ ~4gl.l, e Z l Z 3 4 Z 4 A  4 + const].  ( 6 . 9 )  

To render this expression meaningful for the transition e ~ 0, we again must use point 
splitting and, with hindsight, add some terms that have no analog in (6.9) since they 
involve A = lal also non-logarithmically: 

H(A,  6/6A) = firn ° f dz [ - l  gz(A)(6Z/SA(z)6A(z + A)) 

+ ½Kz(d)o,aaia + ~ g K 4 ( A ) A  4 + I ~ ( A ) A - 1 A  ( 6 / 6 A )  

1 p + ~K2 (A)A-2A 2 + ~K~(a)a-2(a .  o a )  2 + ½IC~'(,a)m 2aZ 

+ A - ' K ( a )  + m 2/I-2K'(A) + m 4K"(/1)]. (6.10) 

Here  all K-functions are logarithmic functions of A/z, and the form of (6.10) is 
guessed in parallel to the work on renormalized field equations [18]. Comparison of 
(6.10) with (6.9) suggests, in parallel to the relations between (3.8) on one hand and 
(5.10), (5.18) on the other, the renormalization group equations, with 

a o o 
/z ~ - + / 3 ( g )  =A ~-~ +/ / (g)  ~gg --= ~7#, , 

[~Tfl + 2cr(g)]/~2 = 0 ,  (6.11a) 

[(7# -2cr(g)](K2, K~, K~) = 0 ,  (6.1 lb) 

[~7# - 2tr(g) + r/(g)JK'6' = 0 ,  (6.1 l c) 

[(7# - 4tr(g)]K4 = 0 ,  (6.1 ld) 

~7# /~ = 0 ,  (6.11e) 

~7# K = 0 ,  (6.11f) 

left + r/(g)]K'  = 0 ,  (6.11g) 
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[6p + 2n(g)]K"= O. (6.11h) 

The m = 0 equations (i.e., except c, g, h) we shall verify to first order in g. 
We now insert (5.20) and (6.10) into (6.1). With integrals suppressed in the 

notation, and setting m = 0 to simplify computations later on, the result* is 
1 - ~K2cOyCOy'Oxx+A(J + AcOy) 

- -  r 1 - -  2 - K2AcOyGx(J + AcOy)[cOyG2OyC ]+ ~K2A [cOyG2Oy,c ] 

+ ½[cOyGx (J + AcOy)] 2- K.A-1AcayG~ (J + Acay) 

--  K A  2 A - I [ c O y G 2 " ~ y , c  ] - A - 4 K  + OyJGx(J + AcOy) 

4 1 ¢ --2 2 1 o 2 =~KzOiAOIA+lgK4A + ~ K 2  A A +~KzA (~, 'OA)z+O(AlnA),  (6.12) 
4! 

where the last term means equality up to terms that disappear linearly (up to 
logarithms) as A -~ 0. Recalling that in the free-field case, (6.6b) follows from (6.6a) 
and (6.6c) from (6.6b), we shall here first show that (6.12) holds with A = 0, and then 
consider (6.12) successively in increasing powers of A. This corresponds to putting 
J-arguments in the A = 0 equation with a normal derivative successively on the 
boundary in the sense of the A ~ c~ limit (5.17), (5.18). We shall see that the r.h.s, of 
(6.12) hereby accounts for the superficial divergences that arise in this process. 

In passing, we note that if the Schr6dinger equation is generalized to a curved 
boundary as mentioned at the end of subsect. 6.2, the terms with factors A-", n/> 1, 
in the hamiltonian density corresponding to (6.10) get further contributions involv- 
ing the curvature of OF explicitly, cf. (3.5) and (3.7). 

6.4 .  A = 0 E Q U A T I O N  A N D  /(2  D E T E R M I N A T I O N  

We rewrite (6.12) for A = 0: 

[ dx afl'Gx (J) = [ dz {½K2(A)cOyCay,G zz +,x (J) + ½/(2(A)[c c3yGz (j)]2 _ A-4K (A)}, 
i /  

(6.13) 
which is the extension of (6.6a) to the interacting theory. We denote the terms in 
(6.13) from left to right L, R1, R2, and R 3 .  - R 3  is given by R1 for J = 0, whereupon R 1 
diverges quartically as d ~ 0. This yields K from/(2.  Next we decompose Gx(J) in L 
into free-space and surface parts, all J -arguments  being at y > 0. Since the free-space 
part is translation invariant, only the surface part contributes to L. 

For two J-arguments,  (6.13) becomes, with Fourier transform taken with respect 

to the space variables, 

(ay + oy , )G( lpy( -p )y ' )=  g / (a ) [~(2r r )  -a 5 dk e'k'~t~(k(-k)]py(-p)y ') 

+G(-p[py)t~(p[(-p)y')] + O ( a  In A).  (6.14) 

* F u n c t i o n a l  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to  J a t  x = x y  is i n d i c a t e d  b y  a s u b s c r i p t  x to  t he  func t i ona l .  
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The square bracket on the r.h.s, has the form of an unamputated unrenormalized 
vertex, defined by point splitting. The corresponding bare vertex is 0y0y. or, more 
precisely, 

c(y)cA(y)0yC (y')ca(y')0y,]A~ 

according to subsects. 5.2 and 5.4. The l.h.s, of (6.14) is the actual renormalized 
unamputated vertex. Although the superficial divergence of the vertex function is 2 

[see (3.4)],/~2(A) is only logarithmically divergent as A ~ 0: The amputated vertex 
requires the counter terms 

A(A)OyOy, + B(A)(O~ + 0~,) + C(A)p 2 

+ D (A)(0 y + 0y,)p + A - 1 E ' ( A  )(0y + 0y,) + A - 1F(A)p + A -2 G (A), 

however, only the first term of these contributes, due to the Dirichlet condition. 
/~2(A) may, to logarithmic accuracy in A, be defined by the 1.h.s. of (6.14) divided by 
the square bracket on the r.h.s., at some values of p, y, y' or, rather, in Fourier 
variables with respect to y and y' (e.g., p = 0, q = q' = #).  That the/~2(A) so defined is 
(to logarithmic accuracy in A) independent of that choice follows by an argument 
analogous to the one used in subsect. 5.2 to ascertain the independence of c (y) of the 
other variables in (5.11) and (5.12): one forms superficially convergent differences 
and then uses skeleton expansions, which will be the same on both sides of (the 
Fourier transformed) (6.14), upon use of (6.13) and (6.14) to the appropriate lower 
order. 

By Legendre transformation, one shows that in (6.13) one may restrict oneself to 
the amputated 1PI equations in the j 4 ,  j 6  . . . case; the ambiguity in inverting the full 
Dirichlet propagator does not affect (in perturbation theory at least) the higher-point 
functions (cp. appendix B). The 1PI j4  equation has a logarithmic superficial 
divergence, which means that the amputated function requires a counter term 
proportional to a product of 6-functions on the boundary. Such a counter term is, 
however, annihilated when undoing the amputation due to the Dirichlet condition. 
Therefore,  the J ' ~  equation of (6.13) is, recursively, a consequence of the j 2  equation 
due to skeleton expansion (see appendix B), and so are the j6,  j 8  . . . equations. 

The actual computation to order g is easily done using representation (5.5a) of 
subsect. 5.1. One finds from (6.13) 

I(2(A) = 1 -  (16rr 2) ~g In (~tzA)+O(g2), (6.15) 

and verifies the p, y, y' independence. The logarithm in (6.15) stems from the 6' term 

in 

[4yZ+A2] 1 =~/z~ 2p+(i, zy)-Z+aA-lrr6(y) 

+16'(y) In (}tzA)+O(A In A), (6.16) 

with the principle value from (5.6b). The 1 P I J  4 equation to (6.13) is to order g 
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trivial, requires only (5.6a) to order g2, and to order g3 requires (6.14) only to order 

g. Finally, 

K(A)  = (2772) -1 4- (32rr 4) lg( _½4- In 2) + O(g2) . (6.17) 

6.5. A # 0 EQUATIONS 

The equations obtained from (6.13) are identities in their arguments (as A -+ 0), if 
all y > 0 and, of course, also upon differentiating with respect to some y. Putting 
undifferentiated arguments on the boundary gives (unless there is already a 
c (y)0y [y-o argument at the same point) zero on both sides in accordance with (5.14c). 
Putting a c (y)0y argument on the boundary gives, in general position, an A-argument  
as set free by differentiating (6.12) with respect to A. 

However,  that (5.14c) only holds in the sense of distributions has the effect that at 
coincident such A-arguments,  in general &type singularities and their derivatives 
appear, as the only possible singularities with pointlike support. While the coin- 
cidence of two (or more) A-arguments is taken care of by the distribution character 
of (6.12) in A, the coincidence of the extra surface arguments on the r.h.s, with 
A-arguments leads to precisely those pointlike singularities as arise from the 
polynomial terms on the r.h.s, as power counting and invariance considerations 
show, with K2, K4, K'~ and K~ being logarithmic in A. (Note that J has support only at 
y > 0 . )  The /~ terms on the l.h.s., stemming from the A [ 6 / S A ]  term in (6.10), 
subtract d --> 0 divergences arising upon application of [6/6,4 ( z )Kz(A)6 /SA (z + 4)]  
to expressions (1/3!) ~ A A A G ( . . .  Ixy) by acting on a corresponding ~ A G ( .  Ixy) in 
qt(AIJ). The A [ 6 / 6 A ]  term does not spoil the symmetry (as a functional differential 
operator) of H (A, 6/6.4) since this operator  is defined with the limit A -+ 0 performed 
first. 

Again, with the help of (6.16) the order-g calculations are straightforward. The JA  
equation from (6.12) again yields (6.15) and in addition 

/~(A) = --(3277)-1g + O(g2), (6.18) 

and the A A  equation yields 

K2(A) = 1 + (16772) lg In (~A#)+ O(g2). (6.19) 

To order g, K~ and K~ are zero. All these results verify the PDEs (6.11) to order g. 

7. Completeness and unitarity 

7.1. FREE FIELD 

The free-field Schr/Sdinger functional for a Dirichlet region F is, according to 
(2.11), 

tO°(A ]J) = const exp [~A c3.,GD'O'.A - A O,,GDJ + ½JGDJ] . 
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Let F be divided by a surface OF into two subregions _F1 and /2,  such that 
0/-'1,2 = 0/~1,2 +" 0/". Let fi, denote the common boundary value of d~ on 0F. Denote  the 
restrictions of A to OF1.2 by fi, 1,z, and the restrictions of J to F1.2 by J1.2. Then from 
composition formulae for Green functions, which are easy to derive, in obvious 
notation, 

const ] ~ A q  t° ,  (Alfi,[J~)qt°2 (A2*IJ2) = ~°(AIJ) (7.1) 

follows, the ft,-integral being the obvious gaussian one. This formula is a 
consequence of the Markov property of the gaussian random field involved. Upon 
letting F be the infinite space, and choosing OF flat, a Wick rotation from the 
euclidean to the minkowskian frame can be performed, and (7.1) becomes 
equivalent to the ordinary completeness relation for the free-particle Fock space. 

Note that if OF is infinite, the integral (7.1) will have a volume divergence which 
reflects Haag's theorem [19]. This can be handled by introducing a space cutoff in 
such a case, and extracting from the integral a, in the limit divergent, J1.2 independent 
factor absorbed in the constant on the 1.h.s. We will in the following tacitly 
understand this device to be employed where necessary. 

7.2. INTERACTING FIELDS 

If Pauli-Villars regularization is introduced, (7.1) can be extended* to fields in 
local non-derivative polynomial interaction, whereby if N regulator fields are used 
or, more directly, derivatives up to the N +  1st occur in the kinetic part, the @fi~ 
integration must be replaced by one over fi~ and the first N normal derivatives [20]. 
We are interested in the renormalized theory, however, where cutoffs are removed. 
Since hereby, A undergoes only multiplicative renormalization, we expect that (7.1) 
can be upheld for the interacting theory. F o r / "  again the infinite space and 8Fflat, 
(7.1) then becomes 

const f @A~(AlJ)~(AlJ ' )=((exp  f .lqO+ I , (7.2) 

where the r.h.s, is the generating functional of the ordinary covariant Schwinger 

functions, where 

_ / J ' ( x ( - y ) ) ,  y < 0 ,  
a~(xY)- / J ( x y ) ,  y > 0 ,  

qS(xy) = e'Y"q0(x0) e -y"  , 

( )+ denotes y-ordering (increasing y from right to left), and H is the Hamilton 
operator  of the Schr6dinger equation. The verification of (7.2) to first order in g 
proceeds in parallel to the computation in appendix D. 

* The functional-integration concept used in the proof [20] is the one of Friedrichs and Shapiro [21]. 
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By letting y ~ zy and analytic continuation from real z to z = i, one obtains from 
~ ( A I J )  the minkowskian Schr6dinger wave functional, in terms of the Volterra 
expansion in A and J if (3.15) is used. Then (7.2) becomes 

const I ~ A q t ( A I J ) y ~ , ~ ( A I j ' ) y ~ i t = ( ( e x p [ i S  qbj])+) (7.3) 

with J as before (writing t in place of y), and @(xt) = e"nqb(x0) e -itH, ( )+ being now 
the usual time ordering. Eq. (7.3) expresses the completeness of the states with 
diagonal A. Similarly, 

const I @A at t (alJ)y~i t lP(AlJ ' )y- , . - i t= ( ( exp  [i  So  @J])+(exp [ - i  I o  qbj '])  ) ,  

(7.4) 
where ( ) _  denotes anti-time ordering and 

J (x t )  = J(xy)ly ~, $' (x t )  = J'(xy)ly ~. 

If J = J '  the r.h.s, of (7.4) is independent of J, and (7.4) expresses that 
(exp [ - i  ~o @J]) has unit norm. Eqs. (7.3) and (7.4) can be verified to first order in 
g in the same way as (7.2). 

With the help of the usual asymptotic conditions, one can from ~F(A ]J)y~±i, obtain 
matrix elements ~(Alin-state)  and ~(Alout-state) ,  and (7.4) becomes the 
completeness relation of the diagonal states in Minkowski space. 

7.3. COMPUTATION OF EXPECTATION VALUES 

Eq. (5.13) has the consequence that, in regularized form, (7.2) leads to 

const I ~ A q s ( A I J ) F ( Z s Z 3 1 A ) ~ ( A I J ' ) = ( (  F(c19) exp I clbj)+) , (7.5) 

where F ( ~ )  is, e.g. a polynomial in time-zero smeared fields, such that the r.h.s, is 
finite. Since Z s Z 3 1  diverges upon regularization removal (already to first order in g) 
this factor must be absorbed, similarly as such factors were absorbed by point- 
splitting and split-dependent factors in the transition from (6.9) to (6.10). Here, the 
necessary splitting is easily seen to be one in time: 

ZsZ31A(z)  t l t (AIJ )  ~ lim [ f i / 6 J ( z y ) ] ~ ( A l J )  
y ~ 0  

= ~(mIJ )  pm 
n = 0  1=0  

x f d z l  " " dzt  f dx l  dy l  " " dxn d y J ( x l )  " " J ( x , , ) a ( z l )  " " a ( z t )  
d J 

X G(Z l  " " " ZllXlyl • • " XnynZy),  (7.6) 
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using (3.15), where this relation is meant in the sense of a replacement on the l.h.s, of 
(7.5). Higher powers of  ZsZ31A must be replaced by the expression obtained by 
repeated application of the functional differentiation in (7.6) in the obvious way, 
whereby s o m e  ZsZ31A may be generated by acting on qt(A[J) and the others by 
acting on q~(AlJ'). We verify (7.5) with the replacement (7.6) to first order in g in 
appendix D. 

Note that the limit y ",a0 in (7.6) cannot be taken under the integral sign in (7.5), 
since this would formally yield qt (AIj) l ima  (y)-XA(z) -- co according to (5.14c). Eq. 
(5.14c) implies, however, that the replacement (7.6) in (7.5) introduces an infinite 
series in A and J, the coefficients of which become the smaller the smaller y is, apart 
from the term linear in A which approaches a 6-function with diverging coefficient. 
In a "non-asymptotical ly-free" theory, where ultraviolet logarithms are not under 
control, they must, if they appear, be cancelled identically (and in perturbation 
theory, they always must), which makes it unlikely that then the fairly complicated 
limit prescription given here can be replaced by a simpler one at this stage. In an 
"asymptotically f ree"  theory, however, under the usual assumptions one can "sum 
the logarithms up",  and then the factors ZsZ31 in (7.5) could presumably be 
removed in a simpler manner than by the replacement (7.6). 

8. Discussion 

8.1. O T H E R  MODELS 

The techniques of this paper are applicable to any renormalizable bosonic theory, 
according to the following prescription (in the free or dimensionally regularized 
theory): (i) Choose a first-order formulation of the field equation (i.e., in the scalar 
case, the Kemmer  [22] representation). (ii) Find that local linear transformation of 
the field components that corresponds to time reversal. (It is not necessary that the 
interaction part allows time reversal as an invariance, provided it involves no time 
derivatives. This will always be so in a renormalizable theory in four dimensions.) 
The field components that change sign under time reversal are called Neumann ones, 
the others Dirichlet ones. (iii) Construct that integral over (three) space that, if 
commuted with the field components,  causes them to be transformed into the time 
reversed ones. Hereby,  place the Dirichlet components on one layer and the 
Neumann components on an infinitesimally (in time) neighbouring one. (iv) This 
integral, inserted in the lagrangian at some time, implements Dir ichlet /Neumann 
boundary conditions at that time. [We shall demonstrate steps (i)-(iv) in appendix E 

• 1 in the spln-~ case.] (v) In order to implement inhomogeneous Dirichlet conditions, 
distribute the Neumann components over space, multiplied by the Dirichlet- 
component  valued source function [analogous to A in (2.5)] and let the space integral 
approach the time-reversal one from the Dirichlet side as in subsects. 3.2 and 5.4. (vi) 
Go from the minkowskian to the euclidean frame and, if desired, replace the plane 
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surface by a curved one in the obvious way. Since the operator  density on the surface 

has mass dimension three, power counting of superficial divergences is essentially the 
same as described in subsect. 3.2. While, under interaction, the terms already present 
on the surface will need logarithmically divergent factors; there may also arise new 
ones as counter  terms. (The possible counter terms are restricted by the invariance 
not broken by the surface interaction.) 

In gauge theory, the natural gauge to choose is the obvious (time) axial one. In the 
SchrSdinger equation, in order  to preserve invariance under t ime-independent  
gauge transformations,  it may be useful to introduce ordered exponentials similar to 
those considered by Brandt  [23] in the construction of point-split renormalized field 

equations in QED.  However ,  the effect of such exponentials can also be obtained 
[23] from polynomial  terms, in the limit A ~ 0. 

Computable  la rge-momenta  behaviour ("asymptotic f reedom")  allows one to 
obtain the "precise"  small-y behaviour of the analog of the functions a (y) and c (y) 
of sect. 5. The leading factor is a, in general broken,  power of In/xy. Knowledge of 
this kind may allow one in these theories to replace the complicated limit procedure 
of subsect 7.3 by a simpler one as remarked there. 

In a fermion theory, the only new feature is that the "Dir ichle t -component  
valued" source function is an ant icommuting function, as is the ordinary space (time) 
source function. Therefore,  the Green functions analogous to the ones in (3.15) are 
antisymmetric rather  than symmetric in the two groups of arguments,  whereby the 
components  located on the boundary are Neumann  ones. That  the Dirichlet 
components  of the fermion field take the anticommuting source function as boun- 
dary "va lue"  is expressed by the validity of the analog of (5.14c). The point-split 
Schr6dinger opera tor  involves, of course, the fermionic (Dirichlet) source field and 
functional derivatives with respect to it, but the corresponding c -number  equations 

are analogous to (6.6) in the free-field case, and to (6.14) etc. in the interacting one. 
For clarity, we verify the construction of the Dir ichlet -Neumann surface interaction 

• 1 for the spm-~ case in appendix E. There  is an arbitrariness in which components  are 
called Dirichlet and which Neumann  ones. This requires, in view of the discussion at 
the end of subsect. 3.2, to show that homogeneous  and inhomogeneous boundary 
conditions can be upheld under interaction. 

In appendix E, we find in the Majorana theory the boundary terms 

B~ = f d x g ( x ,  +O)~(y °-4- iy5)~b(x, - 0 )  (8.1) 
J 

to decouple positive from negative times and to induce the boundary conditions 

(1 + iy°ys) t~(x ,  +0) = 0 = f ( x ,  +0)(1 + i y °ys )  . (8.2) 

In analogy to the first two terms on the r.h.s, of (3.5), the possible rotationally 
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invariant counter terms on the x ° = +0 side are proportional to 

f dxt~(x, +O)p~b(x, +0), 

with 

(8.3a) 

19 = 1, 3, °, 75, 3'°3'5 • (8.3b) 

Of these, 30 and 3'5 do not contribute due to (8.2). 
Consider now the 3'5 transformation 

t# ~ iv5tP, ~ ~ t~i3'5 (8.4) 

and a space reflection (i = 1, 2 or 3) 

~0 -, vi-/5~o, ~-~ ~3,i3,5, (8.5) 

and assume that the (here alone relevant) massless theory with interaction is 
invariant under these two transformations, supplemented by appropriate trans- 
formations of the other fields. Under  (8.4), B+ ~--~B_ such that the precise form of 
possible counter  terms must be 

ALor = +c I dx~(x, +O)~b(x, +0) + d I dx~(x, +0)3"°3"5~(x, +0) ,  (8.6) 

with c and d logarithmically divergent, and the sign going with the sign in (8.1). 
Similarly, (8.5) allows only the form 

AL~r =c' I dxd~(x, +0)tb(x, + 0 ) + d '  I dxd~(x, +0)3"°3"5~0(x, +0) .  (8.7) 

Eqs. (8.6) and (8.7) allow only c = c'= d = d ' =  0. Thus, there is no counter term 
possible playing the role of the cl term in (3.5), as discussed at the end of subsect 3.2. 
This shows the possibility of upholding homogeneous boundary conditions, under 
the stated assumption on the interaction, covering QED,  Yukawa-type theories and 
QCD. Inhomogeneous "Dirichlet"  conditions are implemented by adding to the 
action 

I dxd~(x, i3"5)r/(x), (8.8) +0)1(3'°+ 

which, in the free case, yields 

(1 + i3"°3"5)~b(x, +0) = (1 + i3"°3"5)r/(x), 

t~(x, +0)(1 + i3"°3"5) = ~(x)(1 + i3'°3"5). 

It immediately follows that, with interaction, the only rotationally covariant counter 
term in addition to (8.8), linear in r/ and the "Neumann"  components of ~0, is a 
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multiple of (8.8) such that, as in the scalar case, the "Dirichlet"  components undergo 
only multiplicative renormalization. By the same argument as used in subsect. 5.2, a 
corresponding statement holds then for the behaviour of the "Neumann"  
components,  as functional derivatives, upon approach to the boundary. 

There  are models that are not renormalizable in perturbation theory but in other 
expansions, notably the O(N) non-linear o--model in less than four dimensions is in a 
1/N expansion [24]. We expect that, following the prescription outlined before, 
homogeneous and inhomogeneous Dirichlet conditions (for the fundamental field) 
can be obtained, and renormalized in a 1 / N  expansion. 

8.2. INTERACTION REPRESENTATION 

Expanding ~ ( A  I J),  as a functional of A, in terms of hermite functionals, which are 
the qr°(A[J) of (6.4b) (e.g. for one-time sources J, and which are well known [1] to 
form a complete orthonormalizable system in Fock space) yields the euclidean 
analog of the interaction representation. This is seen most easily from (7.1) or its 
special case, for flat 0F, (7.2). If ~(AIJ') is replaced by !F°(AIJ'), in the resulting 
euclidean functional integral on the r.h.s, the coupling constant is set zero in that part 
of four-space, such that there "free propagation" takes place. 

The divergences that arise are the infrared ones (if OFis infinite) already mentioned 
in subsect. 7.1, and the ultraviolet ones pointed out by Stiickelberg [2] (see also [25]). 
Their  nature was clarified by Bogoliubov and Shirkov [3]: If the coupling constant is 
space-time dependent,  renormalization requires, beyond the counter terms in (3.2), 
where g is to be replaced by g(x), also the terms U(g(x))clg(x)a,g(x)O,cIg(x) and 
V(g(x))~(x)Za~,g(x)O~,g(x), with U and V logarithmically divergent (e.g. in dimen- 
sional regularization, power series in e 1). The first counter term becomes ambi- 
guous and the second one meaningless for g(x) a step function, and neither counter 
term is provided for in the original definition of the interaction representation. 

A similar conclusion is obtained from a discussion of the UV divergences arising in 
the integration in (6.2) with ~ (A[J ' )  replaced by ~°(AlJ ' ) :  The only (linearly) 
superficially divergent surface diagrams not yet subtracted have two J, or two J ' ,  or 
one J and one J '  argument. The original definition of the interaction representation 
has no compensating terms for these, and these divergences are not related to the 
ones removed by Z5 in the Schr6dinger representation. That in the Dirichlet case, the 
Dirichlet property suppresses divergences brought about by the sharp boundary we 
showed in appendix C. 

8.3. APPLICATIONS 

We do not expect the results of this paper to have interesting applications in the 
conventional renormalizable theories, e.g. QED or QCD. Rather, our starting point 
was the lagrangian formulation of string theory [4] as an approximate model of 



30 K. Symanzik / Renormalizable quantum field theory 

Wilson loop behaviour [26]. The expectation of the Wilson loop is approximated by 
the Schr6dinger functional of a four-component  field, in non-renormalizable self- 
interaction, with continuous boundary values x,, (s) prescribed on the circumference 
of a two-dimensional domain. In this approximation, the QCD string tension is 
obtained [17, 11] from the Casimir potential* for two parallel lines. 

We found in sect. 4 that the Casimir effect is finite (at least in perturbation 
expansion) provided the theory in the half-space is made finite (in that expansion) by 
appropriately chosen counter  terms. The difficulty here is that, although one can 
make any polynomial theory "finite" in perturbation expansion by counter terms [3, 
27], this expansion is most likely meaningless for a non-renormalizable theory since 
strong arguments have been given [28] that a non-renormalizable theory has, it it 
makes sense at all, in its correct perturbation expansion also terms involving the 
logarithm of the coupling constant. 

A systematic construction of such " improved"  perturbation expansion succeeds so 
far only in cases where it can be derived from an alternative expansion with stable 
power counting, e.g. from the 1 / N  expansion in the non-linear o--model in less than 
four dimensions [24]. Of course, with such well-behaved expansion at hand, one will 
attempt to apply the considerations of this paper directly, since, e.g. the mentioned 
1 / N  expansion is again one in terms of graphs. Therefore,  the prerequisite for an 
application of the methods of this paper to the string lagrangians and similar models 
for extended structures is to find expansions in which these models become renor- 
malizable in infinite space. So far, attempts by the author to find such expansions for 
the Nambu and Eguchi lagrangians [4] have failed. 

9. Conclusions 

We have shown that, in every renormalizable theory, (a) the Schr6dinger 
representation exists, (b) in this representation, a Schr6dinger equation (with point 
splitting as already needed in the free theory) holds, (c) the field operator  that is being 
diagonalized is not the renormalized (nor the unrenormalized) one, but differs from it 
by a factor that diverges logarithmically if the distance from the boundary (which, if 
non-zero, acts like a cutoff) goes to zero, (d) this last feature requires a limit process 
to be employed in the calculation of expectation values, (e) the Casimir effect, for 
disjoint surfaces, is computable to all orders in renormalized perturbation theory. 

For simplicity, we gave details only for the ~4 4 theory, but we explained the 
principles of the extension to other models, in particular, also those with fermions. 
Our reasoning was heuristic at times, and explicit calculations were given only for the 
first (already non-trivial), and in one case second order in the perturbation expan- 
sion. The author is convinced, however, that the conclusions hold to all orders. 

Our motivation was the intended application to string lagrangian models of the 
Wilson loop. Unfortunately,  this application requires one first to find a renormaliz- 
* The connection with the Casimir effect was pointed out to the authors of [17] by Y. Nambu. 
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able expansion for such models in infinite space, which has not yet been done. 
Meanwhile,  we recall that Dirac regret ted [29] the lack of a Schr6dinger equation in 
quantum electrodynamics.  

The author is indebted to M. Liischer and T.T. Wu for discussions. 

Note added in proof 

After  submitting this paper  for publication, the author learnt about related work 
on critical phenomena  in the n-vector  model in 4 - e  dimensional semi-infinite 
space. Hereby,  our homogeneous  Dirichlet boundary condition in massless &4 , (or 
(~2)2 ~) theory corresponds to the "ordinary transition", and our (in zeroth order) 
homogeneous  Neumann  boundary condition to the "special transition". The most 
recent papers are: on the ordinary transition, ref. [32] (the second paper  of Diehl and 
Dietrich being the most systematic paper  so far); on the special transition, ref. [33]. 
These papers give, respectively, calculations, and results, to second order, i.e. two 
loops and, in contrast to our approach,  all use only the half-space. The author is 
indebted to E. Br6zin for having pointed out this relationship, and to H.W. Diehl and 
S. Dietrich for a discussion. Further references (cf. [8]) on realistic boundary 
conditions to render finite the Casimir effect for single surfaces are refs. [34]. For 
other recent papers on the Casimir effect see refs. [35]. 

Appendix A 

A F A M I L Y  O F  B O U N D A R Y  C O N D I T I O N S  

The gaussian integral (2.3) is evaluated using the 45 field equation, which becomes 
a linear integral equation for the correlation function. Hereby  we must distinguish 
whether,  seen f rom F, an argument  goes to OF first, like 45, or second, like 0n45, and 
we denote this order by a subscript to a vertical bar which means putting that 

argument  on OF: I1 means approach from F '  and 12 approach f rom F. It is instructive 
to give to the boundary interaction in (2.2) the general coefficient c rather than 1. 
Denoting by G the free-space Green  function 

G ( x  - x') = (2rr) -v f dVp eiO(~-x')(p 2 + m 2) 1 

1 - u / 2  r ,  zl 
= ~ "  ~ t ~ u - 1 ) ] x - x ' ]  ~+2, i f m  = 0 ,  (A.1) 

and by Gc the correlation function with c # O, we find 

G~ = G + cG'O.t " ~IG~ + cGl " 2]O.G~, (A.2) 
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where the dot means integration over OF. Herefrom 

2[Gc = [G +c2]a0n[1" l lac +c[GI"  2[o.a~, 

,IG~ = IG + c,IG'O~I2 . ,IG~ + c l G I .  2lo.G~ , 

and similarly 

210.Go =IO.G+c[O~GO.I. 1]G~+c2]O.GI1.2Io.G~, 
IIO.Gc=[O~G+cIO.G?.]. 1]G~+clIO.G[2.2]o.Gc 

due to 

21GI, -- 11612, 

We now note the discontinuity relation 

2[O.GO.I I=IIO~G~.]2 .  

(A.3a) 

(A.3b) 

(A.4a) 

(A.4b) 

(A.5a) 

(A.7b) 

These homogeneous jump relations, where the right argument may be in F or F ' ,  
completely characterize the effect of the surface interaction. With the help of Green 's  
formula, (A.7a, b) lead back to (A.2). 

To solve (A.2), we insert (A.7a) and obtain 

a c = a + ( 1 - c )  lcG'Onl. 2 [ a c + c a  I • 2]c3,~Gc. 

If both arguments are in F, Green's  formula gives 

Gc = G - G ' O n l  . 2lGc + G b  " 210.G~. 

Herefrom and from (A.8) 

Gc = G + ( 2 c  - c 2 ) a [  • 2[o.ac , 

Gc = G +(1 - c ) - 2 c ( 2 - c ) G ' O , [  • 2INc. 

(A.8) 

(A.9) 

(A.10a) 

(1.10b) 

and from (A.4a, b) 

(1-c)2[OnGc=llO.Gc.  

, Io.GI2 = ~=~1 + O . G ,  (A.5b) 
2 

where 1 is the 6-function on OF, and OnG, defined by this equation, is an integral 
kernel on OF well known in potential theory [30], of the form 

O,G = -¼~-~/2F(~u)R-~lx  - x'[ ~+2 + less singular terms,  (1.6) 

where R -1 is the signed curvature of OF along x - x'. O,G vanishes on flat portions of 
OF, and for smooth compact OF, O,G k is a Fredholm kernel if u ~< 2k. Using (A.5b) in 
(A.3a, b) gives 

2]Gc = (1 -C) l lGc ,  (A.7a) 
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The solution of (A.10a), using (A.5b), is 

(FF): Gc = G + 2f(c )G I • [1 - 2 f ( c ) 0 ~ ]  -1 .  Io.G , 

where 

33 

(A.11) 

t ic)  = [1 + (1 - c)2]-1[1 - (1 - c)2]. (A.12) 

Similarly, (A. 10b) yields the transpose of (A. 11), which verifies the symmetry of Gc 
[which also follows from known properties of the functions on the r.h.s, of (A.11)]. 

In potential theory, the convergence of the iteration solution of the inverse in 
(A.11) is proven for If(c)]< 1. G1 is in (FF) the Dirichlet function and G : ~  the 
Neumann function, as follows from (A.7). 

For the left argument in F ' ,  the right argument in F, (A.9) is replaced by 

O= G-G'O. I  " 2IGc + G[ " 21GG 

= Gc-G'O,[" ,]Gc+G]" ,[GGc. 

Herefrom, and from (A.7), we obtain the two forms 

( r ' r ) :  Gc = ( 1 - c ) { G  + 2f(c )GO~l " [1 - 2f(c )G'O,] -1.  [G} 

= ( l - c )  l {G+2f (c )G["  [ 1 - 2 f ( c ) O ~ ]  -1" lonG} (A.13) 

which show that in this case, Gc = 0 if and only if c = 1 or c = +oe. 
Finally, with both arguments in F ' ,  one derives in a similar way 

(F'F ') :  Gc = G + 2 f ( c ) G [ .  [1 -2f (c)0~G] 1. [O,G, (A.14) 

which, upon comparison with (A.11) and noting the direction of the normal, shows 
that effectively a change of sign of t ic)  occurred, i.e. c--)c '= c / ( c - 1 )  as also 
obtainable directly from (A.2) and (A.7). Thus, G1 is, in (F'F'), the Neumann and 
G ~  the Dirichlet function. This proves (2.3). 

Interchanging in (2.2) the two layers, i.e. posing the qS-layer inside the 0~q~ one, 
yields the correlation function G'c which obeys 

G'c = a c / ( l + c )  . (A.15) 

Thus, the order of the two layers does matter. 
From (A. 1 1) one easily derives by differentiation 

(FF): (O/Oc)Gc = 2(1 - c ) - l a c [ 2  • 2[O.Gc  

= ( l - c ) I [ G ~ [ 2 . 2 I G G c + G c ' O ,  I2.2IG~], (A.16) 

which due to (A.7a) agrees with the general formula obtained from (2.3), 

(O/Oc)Gc = G o 0 . 1 2  • IlG~ + GcIl" 21GGc. 

It is obvious that from (A.2) on, c could be taken to be a function of the point on OF. 
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All these boundary  conditions have in common that they can be implemented by a 
bilinear interaction local on Of', with dimensionless coefficient. 

Appendix B 

PERTURBATION EXPANSION 

The derivation of the action density (3.8), which provides all the possibly n e e d e d  
counter  terms, also prescribes how to compute.  

First, we set A = 0. For a graph, one notes the 1PI parts as usual. Keeping full 
Dirichlet, Neumann,  or zero lines [cf. (2.3)] for the connecting links and external 
legs, one decomposes  the other propagators  into free-space parts and surface parts as 
described in subsect. 3.1. This yields free-space and surface 1PI parts. One must now 
revoke the one-part icle reducibility in any chain of E = 2 subgraphs, if the two 

subgraphs at the ends are surface ones. For interpretation of this prescription one 
visualizes in these cases aF  (i.e. the plane y = 0) as analogous to one line of a 
covariant qb44 graph: if two E = 2 surface graphs are connected by one (possibly 
covariantly corrected) line "and by the surface",  they are connected one-particle 
irreducibly. Thus, a chain of E = 2 surface graphs, each one 1PI in the usual sense, 
must be computed like a covariant four-point  vertex function that is the same 
number  of times two-particle reducible in some channel. This means that subtrac- 
tions for each possible sub-four-point  vertex must be made in order to treat the 
overlapping divergences correctly. (One possible way to do this is by suitably 
arranged subtractions on a Bethe-Salpeter  equation; see, e.g. [16].) In the present 
case, in each step the divergence is linear rather than logarithmic which requires one 
to make two subtractions rather than one. 

Consider, e.g. an unsubtracted two-point  surface vertex F([xyx'y'), 1PI in the 
usual sense. Its Fourier transform /~( Iky( -k)y ' )  is, in general, if e = 0 ,  not a 
distribution in y or y ' ;  however,  

lim [['~>o(Iky(-k)y')-A(e)(8(y)8'(y')+8'(y)8(y'))]=-Fren(lky(-k)y') (B.1) 
e ~ O  

is, with the subtraction provided by a part  of Z 4 -  1 in (3.8). If two Dirichlet or two 
Neumann  lines are attached to the expression in the square bracket,  with the other 
argument  of that line strictly positive, the subtraction term is annihilated. This means 
that in this case, the renormalized unamputa ted  two-point  function is insensitive to 
the subtraction convention for the amputated function, which determines the finite 
part  of A(e) .  

Let ['sub(Ikq(--k)q') be the Fourier transform of the square bracket  in (B. 1) with 
respect to y and y'. If, with (2.18) 

(2rr)-2 I dq" I dq"'F~ub([kq(-k)q")G(k, q"q"')l~'~ub(Ikq"(--k)q') 
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is formed,  as e "~ 0 its singular part  has the form - iA'(e)(cl  + q'), and if it is removed,  

the limit e ~ 0  exists. More generally, one subtracts from integrals of this kind the 
Taylor  expansion to first order in k, q, q'  at k = q  = q ' =  0, and adds ic(q +q') with 
some c to satisfy the renormalization condition. The unamputa ted  two-point 
function on the Dirichlet side (cf. below) is independent  of the choice of that 
condition. 

Skeleton expansions of 1PI E~>4 graphs are obtained as follows. One first 
identifies 1PI E ~< 4 subgraphs as usual. The one-particle links between these are 
again left as Dirichlet, Neumann,  or zero propagators.  The other propagators  
are decomposed into free-space and surface parts, and 1PI E = 2  surface 
subgraphs are identified as described before. E = 4 surface subgraphs are then 
further decomposed until the original graph is obtained as a sum of graphs with 1PI 

~> 0 subgraphs connected by Dirichlet, Neumann,  or zero propagators.  For these 
subgraphs the appropriate  subtractions must be made. 

A consequence of this construction is: while the convolution inverse of the full 
two-point  function is not unique since the Dirichlet propagator  vanishes on the 
boundary,  the amputa ted  4-point,  6-point, etc. functions can be defined (in pertur-  
bation theory) directly in terms of graphs contributing to them. This we make use of 
in sect. 6. 

Consider now A ~  0 in (3.8), which gives rise to one-leg surface vertices. If one leg 
of a two-point  function is attached to such an A-ver tex ,  the graph is a surface one, 
apart  f rom the other-end propagator  and a possible free-space propagator  correction 
there. The surface graph must be computed as in the covariant theory an ordinary 
(e.g. mass) vertex is, with all possible subtractions [cf. (3.6)] to linearly divergent 
subgraphs, of which the subvertex is a prominent  one. The subtraction convention 
for this subgraph does matter ,  and possible choices would be [O/Oq]I'(Ikq)]q 0.1kl ~, = 
i or minimal Z5 as in (3.13). The relation between Green functions with and without 
A-a rguments  is discussed in subsect. 5.2. 

In the description so far, both the Dirichlet and the Neumann  regions were used. If 
the graphs from all splittings of the lines into free-space and surface ones are added 
up, the two regions again decouple. The line separation was needed only to show the 
sufficiency for finiteness of the counter terms in (3.8). The actual computat ion can, 
conveniently in ky space, be carried out using either the Dirichlet or the Neumann 
side alone, with the latter possessing no A-vertices.  On the Dirichlet side, power 
counting shows that the Dirichlet condition is satisfied for each unamputa ted  
two-point  function, and this renders all unamputa ted  Green functions (and also all 
vacuum graphs, see subsect. 4.3) insensitive to the subtraction prescription that fixes 
Z 4 - 1 .  In fact, in computing these functions, the subtraction terms in (3.5) are 
inoperative due to preservation of the Dirichlet condition in every step. To illustrate 
the role of the Dirichlet condition we discuss in appendix C the computat ion to 
second order of the two-point  function in some detail. 

The circumstances on the Neumann  side are described at the end of subsect. 3.2. 
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Appendix C 

TWO-POINT FUNCTION AND DIRICHLET CONDITION 

The graphs for the two-point  function to second order are shown in fig. 1. In the 
one-ver tex loops in B and C, only the surface propagator ,  with result proport ional  to 

ZI Zl Z2 

I 1 1 / / / 1 1 1 / / 1 1 / / I  I I I I / / 1 1 1 /  / 1 1 / 1 / 1 1 1 1 1 1  

A B C 

Fig. 1. Second-order contributions to the two-point function. Lines are Dirichlet Green functions. 

Z -2+~, is tO be used since the free-space one is absorbed in the covariant mass 
renormalization.  The two-point  graph in B, which transmits k = 0, needs the 
ordinary free-space subtraction. The general two-point  loop, with factor 2 z included, 

is 

1 -4+e e I eik" ~'Tr ~ dx  X{[X2"~-(Z1-- Z2) 21 l+e/2--[X2 q'-(Zt Jr Z2)2]-l+e/2} 2 

=(32zr  2) l{e-klzl-~21p, ,Izl-z21 1 

_ ( k z l z z ) - l ( e - k l  zl-~:l-  e-k~x+z2)) + (Zl + Z2) -1 e -k~z~+~) 

+ 2t~(Zl-  z2)[e-l+ln 2 +  1 +½1n 7r + ~0(1)]} + O(e ) ,  (C.1) 

where P~, denotes the two-sided principal value, 

e , [ z [ - '  = [t~ (tz [zl) -~ +2(A - 1)-X6(z)]x=l, (C.2) 

denoted by/z(/zlz[)  -1 by Gelfand and Shilov [14]. The part  proport ional  to e l is 
absorbed by the usual covariant coupling constant renormalization. The integration 
in B, with k = 0, yields a term proport ional  to Zl  2 and one to Zl  z In (zz/z) due to the 
principal value in (C.1). The remaining Zl integration is possible since, for yl > zl,  

y2 > Za, the external-leg Dirichlet functions give rise to a factor z~. 
Graph  C yields a sum of nine double integrals corresponding to the possible t ime 

orderings, all of them unproblematic.  
A contains the free-space propagator  part  

12-6"/r-6+3e/2662e I dJI7 eik 'x[x2 q- (Z1 -- Z2)2] -3+3e/2 

= ~u 2er(3  - ~ ) - ' r ( ~  - ,  )2-77r  ~ - 9 / 2  

x [Izl - z21-3+z~ - ~kZ(1 - 2e)-11zl - zz1-1+2~ + non-sing.] .  
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Use herein of (C.2) and [14] 

P . l z l  -~ -- E~.~(u Iz I) - '  ÷ (,~ - 3 ) - ~ a " ( z ) ] , , _ ~ ,  ( c . 3 )  

gives the e ",~0 singular part 

(3 • 21°rr4e)-l[6"(z1 - z2) - kZS(zl - z2)], (C.4) 

which is absorbed by the covariant amplitude renormalization using (3.10). (The 
remaining finite part is euclidean invariant, which verifies explicitly to this order the 
absence of a renormalization of the speed of light, cf. subsect. 3.1). The term in A 
with two free-space propagators and one surface propagator involves the loop (C. 1), 
the 1/e  term of which is again absorbed by covariant coupling constant renor- 
malization. 

Collecting the finite parts we find, after some calculation, 

F.P. of A = (3 • 297r4)- lp .[e  ka(A-3(1 + kd) 

- 12A 1(s2--A2)-~ +48k-l(s2-A2)-2)-(A~--~s)] 

= e , ( 3  • 29"h'4)-1 (S - -  A ) 3 { A - 3 s - 3 ( S  "~- A ) - 2 ( $ 2  q-  5 s  A - ~ - A  2)  

1 . 2 ~ - 1  - l /  -~K za s t s+A)-2+O(k4)} ,  (C.5) 

where A = I z l -  z2] and s = zl + z2. P ,  prescribes the two-sided principal value with 
respect to A of (C.2), (C.3). (C.5) gives in A for y~/> 0, y2/> 0 a well defined integral, 
due to the factor zaz2 from the two Dirichlet lines if yl > Zl, y2 > z2: 

c(3 CO 

1 Io Io ~k dzx dz2 [e-klYl-z'l--e-k(Y'+zl)][e-kl'2-z~l--e-k('2+z2)]P, Izl--Z21-3 

co 

1 f_ dp(k 2 +p2)-2p2[1 n (I p[/z-1) _ ~O(3)](e,pyl _ e-kY~)(e-~py2 _ e-ky~), (2~r) 
co 

(C.6) 
where we used the Fourier representation of the principal value [14] and 

oo 

½k 1 fo dz[e-kly-zl--e-k(Y+z)] eipz = (k2 +p2)-l(eipy --e-kY)" 

The p-integral in (C.6) is absolutely convergent, and vanishes if yl',~0 or y2N0. In 
higher orders in perturbation theory, there appears in (C.6) P~,[(ln IZ l -z2[ )" lza -  
z21-3] which also gives a well-defined integral. Also the formula 

co oo 

IO dZizlei%Zl fo dz2z2eiq2z2Pulz1-z2l-3 

= {-20(3)  + In [/x-2(ql + i0)(q2 + i0)]} 

• - 3 .  1 .  x(qa+qz+tO) tq~q2+~t(q~+q2+iO) -1 (C.7) 

is instructive; for convergence again the factor zlz2 is needed. 
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In the interaction representation,  as discussed in subsect. 8.2, the integral (C.6) 
appears  but with the second terms in the square brackets missing since only the 
interaction, not also the kinetic part  is switched off at the boundary (see also [25]). 
Then, that the principal value is integrable only with a C 2 test function leads to a 
divergence. 

Appendix D 

C O M P L E T E N E S S  C H E C K  T O FIRST O R D E R  

We write the Schr6dinger functional (5.20) as 

~ ( a  [J) = exp [-1AKA - AO,GJ + 1jGDJ + P(A ) + o ( a  I J )  + R (Y)], (D.1) 

where the first three terms on the right are the zero-order  ones [cf. (6.4b)] and the 
(connected) Q(A[J) shall have no term depending only on A or on J. For brevity, 
however,  we will set J = 0, i.e. consider in (7.5) the vacuum expectation values, since 
the calculation with J = 0 offers no new feature. To first order, 

P(A) = _ l g  f dx[(aO,,GD)(X)]4 

1 2 -1 f fO °° +~g(32rr ) dx dy'[(AO,GD)(xy')]Z#ZP+(Izy')-2, (D.2) 

according to (5.5b). 
By gaussian integration, we find 

const I ~AF(A)~(AIO)~(A[O) 

= const' F(8/SB) exp [2P(6/6B)] exp [¼BK-IB]]B=o 

= exp [S(~K-a[6/SA])-S(0)]exp (¼[6/SA]K-I[8/6A])F(A)[a=o, (D.3) 

where we introduced 

exp (118/SA]K-l[6/6A]) exp [2P(A +B)]IA=0 =: exp $ ( B ) .  (D.4) 

Like P, O and R, S is connected due to the linked-cluster theorem. In (D.3), exp S(0) 
is the infrared (by Haag 's  theorem) and ultraviolet divergent factor absorbed (see 
subsect. 7.1) in the constant in (7.2) and (D.3). 

We choose F(A) = A(zl)A(z2), which suffices to display all difficulties. The correct 
1 -~ =~FTIk[-1. two-point  vacuum expectation value to first order is the free one, ~K,2 

From (D.3), however,  we find a divergent result, formally (or, under regularization) 
proport ional  to K~-21, since it involves the last term in (5.5b) minus the same integral 
with the principal-value sign omitted. This second term stems from the first term on 
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the r.h.s, of (D.2) and the evaluation 

113/3A]K I[6/~A]I[(AO,,GD)(xy)2][A=O 

¼(27r) 3 1 dk k -1 e -2ky = (327r2y2) -1 . (D.5) 

This remaining divergence is in accord with (7.5), where Z5 diverges to first order; 

see (3.13). 
The prescription of subsect. 7.3 gives, for approach of both operators in F(A) to 

y = 0 from the same side, 

F(ZsZ51A) --, F(A, ylYz) 

={_(AOnaD)(zay1)_g(327r2) 1 I dx fo°°dy'(ao,,aD)(xy')aD(xy',zxya) 

X/z 2P+(/.ty')-2 + ~g I dxf?dy'[(AO,,GD)(xy')]3OD(xy',zayl)} 

x {same expression with zl ~ z2, yl -> Y2} 

+GD(ZlYl, Z2Ya)+g I dx f~  dy'{(32"rr2y '2) 1 

- ~[(AGGD)(xy')]2GD(xy ', zlyl)GD(Xy', z2Y2)}, (D.6) 

where only the terms up to first order in g are to be kept, and (5.5a) has been used. At 
fixed function A, the limit yl Na0, Y2 Na0 does not exist on the r.h.s, of (D.6), the factor 
Z~2Z 2 missing. The A- independent  terms, however, vanish in this limit. 

Working out (D.3), with insertion of (D.6) and (D.2), term by term is trivial, the 
characteristic integration being again (D.5). Divergences do appear, however, in the 
y' integrations in separate terms. They are made unambiguous by dimensional 
regularization, whereby it is advantageous to replace the principal values on the r.h.s. 
of (D.6) by (4.6b). Then, all divergences are found to cancel, and the sum of finite 
terms to order  g vanishes linearly, as ya ",a0, y2",a0, as it should. 

The same result is obtained if in (7.5), A(zI) and A(zz) are shifted into different 
factors qt(A[0) in the sense (7.6). Some fewer terms then appear, but otherwise the 
calculations are identical to the ones just described. 

Appendix E 

DIRICHLET CONDITIONS FOR THE MAJORANA FIELD 

The prescription given in subsect. 8.1 is simplest to illustrate for the spin-~ 
Majorana field, wherefrom the transition to the Dirac field is obvious Th e  Majorana 
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lagrangian with surface term is 

L = lioof "O~,tb - ~mO/3gt + i6 (x 0)//11,,~v///2 , (E. 1 a) 

where, with two independent  sets 0-. and r. of Pauli matrices, we may choose 

0 1 2 3 
O/ ~ 1 , Of ~ 0"37" 1 , Of ~ o r 3 T 3  ~ Ot ~ 0"  1 , 

/3 = 0-2, ~b = ~b + . (E. lb)  

In (E.la) ,  X is an as yet unspecified matrix, and subscripts 1 and 2 indicate approach 
to the t ime-zero plane from positive and negative times, respectively. 

From the field equations the integral equations for the Feynman Green functions 
follow: 

G G O _ G O . x 2 G +  o x 
= G . X 1 G  = G ° -  G 1 . X G  ° + G2 .X ' rG  ° , (E.2) 

where 

G O = - i [ ( m  - i0)/3 - i a " O , ]  -1 , (E.3) 

and the dot indicates integration on the t ime-zero plane. The integral operators  on 
the boundary 

1G2 ° =: P+,  -2G1  ° =: P_ (E.4a) 

obey 

P+.P+ = P+ , P - . P -  = p _  , 

P+.P_  = P_ .P+ = 0 ,  P+ + P _  = 1 . 

Going in (E.3) to the boundary and using (E.4) yields 

(1 - - x T ) a G  = (1 -- x ) z G ,  GI(1 - X )  = G2(1 - -xT) .  

This allows us to rewrite (E.2) as 

G = G -  G ° . 2 G +  G ° . a G  = G - G a . G ° + G 2 . G  ° ,  

and herefrom 

(E.4b) 

(E.5) 

(E.6) 

G = G ° + G ° . X . G  ° , X=11G2-11G1-22G2+22G1 (E.7) 

easily follows. The subscript 11 indicates that the argument  goes to the boundary 
f rom the 1 direction but later than the ones denoted by 1 or 2. The consequences of 
(E.2) or (E.7), 

l l G 1  - 1 G I I  = "1 = - 2 2 G 2  + 2 G 2 2  , 

are also consequences of the canonical ant icommutat ion relations. We set 

X = S + A ,  S = S  x ,  A = - A  x .  (E.8) 
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With the notation P + -  P_ = O, (E.5) is, using (E.7), equivalent to 

(1 - $ 1  + A Q ) . X  = - 2 A 1  = X . 0  - $ 1  + Q A  ) . (E.9) 

Consistency requires 

[S, A]  = 0 = [X, xT] ,  (E.10) 

which, apparently,  is the condition that the symmetry  proper ty  of the Green 

function, expressed by the simultaneous validity of the two integral equations in 
(E.2), is not in contradiction to the lagrangian (E. la)  which, in general, is not 
hermitian. The solution of (E. 10) A -- 0 yields X = 0 for generic S, and by continuity 
also if S has eigenvalue 1. This corresponds to the surface term in (E. la)  being 

ineffective. 
For the Green  function to vanish if the two arguments are on opposite sides of the 

boundary,  

1G2 = 0 = 2G1 (E.1 la)  

is necessary, which with (E.7) becomes 

P+.X.P+ = - P + ,  P_ .X .P_  = P_ . (E. 1 lb)  

That  (E.1 lb)  is also sufficient follows from the frequency proper ty  

>oGO.p_ <oGO.p+ o o = = P+.IG>o = P- .zG<0 = 0 . 

If S = 0, every A with A 2= 1 (which excludes real A) and such that A + O is 
invertible for all momen ta  leads to a solution X = - 2 ( A  + O) -1 of (E.9), (E.11b). 
This excludes all rotationally non-invariant  A, 

2 Z a 2 = l ,  A = ( a l y l + a 2 y 2 + a 3 y 3 ) y ° y s ,  a l + a 2 +  

and excludes among the rotationally invariant ones, 

A = a y ° + b y s + c i y ° y s ,  a 2 + b 2 + c 2 = l ,  (E.12) 

if m > 0 those with 

(1 - b Z ) - l ( - a  + ibc) ~ [1, +oo), 

and if m = 0, those with b = + 1. 
For all these solutions with S = 0, in (E. la) the "1"  and the "2"  components  in the 

surface term do not ant icommute  among themselves. Comparison with (1.2) suggests 
choosing X such that the two groups of components  do ant icommute among 
themselves. This requires 

T T 
x x = 0 = x x  • (E.13) 

Then necessarily S = ~ and X = ½(1 + A )  with A the matrices just described, which 
yields the same X as before. X and G become simple only for, in (E.12), c = +1, 
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a = b = 0 which yields our final choice 

X = ½(1 + i y °ys ) .  (E.14) 

Hereby,  the time reversal matrix 

A t  = +iy°y5 = :1::0-3'r2 , 

obeys 
A t P +  = P - A t ,  A t P -  = P + A t  

and yields X = - A t -  O .  The surface term in (E. 1 a) has now the propert ies described 

in subsect. 8.1. The  boundary  conditions (E.5) become 

(1 " 4 - O ' 3 7 2 ) 1 0 > 0  = 0 = >0Gl(1:1: o'3~'2), 

( l  :g 0 - 3 r 2 ) 2 G < 0  = 0 = <oG2(1 + 0-3T2) • (E. 15) 

The decoupling of positive from negative times is possible since L from (E. la)  is (for 

no choice of A)  hermitian. 
For a simple characterization of Dirichlet and Neumann  components  one would, 

in view of (E.5), have to go to a representat ion where X is diagonal. This is not 
possible in a Majorana  representat ion since this contradicts X = A  or X = ½(1 + A )  
with A = - A  T, A 2 = 1. However ,  if the computat ion of this appendix is performed 

with a surface interaction on the timelike plane ~ ' ~ = 1  ni xi = 0, with the condition of 
decoupling of the two sides for all times, the matrix 0-3r2 = iy°ys  in (E.13) becomes 

replaced by* 
i 

/q,i"/ ']/5 = - - n l T 3  "Jr" n 2 T l  - -  / ' [ 3 0 - 2 T 2  , 

which can be made diagonal in a Majorana  representation.  The lagrangian is 

hermitian in this case. 
For x ° > 0 ,  x ° ' > 0 ,  the decoupling solutions (E.12) or (E.15) are 

G=½(l+o'3"re)[(mB ' ' - t a  oi)Go + ia°OoGN] 

+½(l~o-3r2)[(mB " ' -- ta Oi)GN + ia°OoGo] 

= ½(1 + iy°rs.)[(rn + i r % ) G o  + iy°a0GN]B 

+ ½(1 ~: iy°ys)[(m + i'y ~ Oi)GN + i'y°OoGo]B-1 (E. 16a) 

and (note 00Go =--GN0o, 0oGN --GD0~) 

GNtOoOt ]~(1:1: tOiOt )--  0-3 T2) G = [ G o ( m f l  + " "  i .*,  o 1 

GotOoa ]~(1 =t: +[GN(m/3 3¢-10i0l )-- 0 - 3 T 2 )  

tOiy ) -- G N t 0 O ' y  ]~(1 + ty 75)/3 = [ G D ( m - - " '  i . ' ,  0 1 • o - t  

• ~ i . ~ t  0 1 + [GN(m --tOiy ) -- GDtboy ]3(1 :r ir°rs)/3 -1 . (E.16b) 

• T h a t  a t  a t i m e l i k e  p l ane  the  b o u n d a r y  condit ions-(1 ± ni3,~ys)~b = 0 are  mean ing fu l  has  b e e n  no ted  by 
W u  [31] on the  basis  of d i f ferent  cons idera t ions .  
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Here,  

G~ = (2rr) 3 f dk(2k0)-I  eik~,, ,,')[e-ik,,IxO-x°'lq:e-iko(x°*x")], 

with k0 -- (k 2 + m2) 1/2 the Minkowski-space  versions of (2.14). Note  that the first line 
of (E.16a) does  not equal the first line of (E.16b). 

If rn = 0, the upper-sign solution for G is transformed into the lower-sign one  by 
f t . / -+  i o ' l r Z t ~  = iys4,. This means that there is, concerning U V  behaviour, no qualitative 
distinction between the Dirichlet region and the Neumann one  since the sign of the 
fermion mass term is then not essential. To call that region the "Dirichlet" one in 
which, by a boundary source that has no effect on the other region (step 5) in subsect. 
8.1, inhomogeneous  "Dirichlet" boundary conditions are imposed, is therefore, for 

• 1 the spln-~ field, merely a convention• 
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