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Abstract. Starting from the asymptotic dynamics 
of the quark-gluon interac, tion for large distances 
we calculate the first two terms of the divergent phase 
of elastic quark-antiquark scattering. This phase 
in turn allows the determination of the long range 
behavior of the potential. In addition to a Coulomb 
force it turns out to have a :repulsive barrier at large 
distances. 

I. Introduction 

We extend the method of Kulish and Faddeev [1] for 
the calculation of the relativistic Coulomb phase of 
QED to QCD. [2, 3]. This divergent phase reflects 
the infrared singularities be, ing present in perturba- 
tion theory where massless quanta mediate the inter- 
action between fermions. (In non-relativistic quan- 
tum mechanics the divergent phase in the radial 
wave function is proportional to In r, r being the 
distance between the ferrnion and the scattering 
center.) It can be calculated if the evolution operator 
describing the asymptotic, i.e. large time, dynamics 
is known. This operator is explicitly given in terms of 
the asymptotic, i.e. large time, Hamiltonian of the 
system. The large time limit of the Hamiltonian is 
equivalent to a large distance limit, since this Hamilto- 
nian describes fermions moving along a straight line. 
In the extension of the QED calculation we make use 
of Magnus' solution [4] for the equation of motion 
of the operator describing the asymptotic dynamics. 
Magnus' solution has been already exploited by two 

1 On leave of absence from Fachbereich Physik, Universit/it 
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of the authors for the determination of the electro- 
magnetic form factor of the quarks [3]. This solution 
is of exponential form with a series expansion in the 
exponent. Thus we sum up the contributions of an 
infinite number of Feynman graphs to the q ~ elastic 
scattering phase, even if we only calculate a few terms 
in the exponent. In this work we calculate the first 
two terms in the exponent of the Magnus solution, 
i.e. of the QCD phase of elastic q~ scattering. Next 
we develop a method for the calculation of the non- 
relativistic potential following from the non-relativis- 
tic q c~ scattering phase. 

The result we obtain consists of the Cou- 

lomb potential as CF and an additional term 
r 

CF CA a2 In r which produces a repulsive barrier at 
3 n r 

large distances. In this first step in determining the 
QCD phase of q~ scattering we leave out the gluon 
self interactions in order to simplify the calculation. 
The method employed here constitutes a consistent 
treatment of the radiation of gluons off a "classical" 
color current and correctly takes into account the non- 
Abelian character of the color charge. 

2. The Picture of Asymptotic Dynamics in QCD 

The asymptotic dynamics of quark-gluon inter- 
actions in QCD is described by the asymptotic 
limit for large times of the Hamiltonian which is 
given in the interaction picture by 

ffli(t ) = - gK(t) ,  K(t)  = jj](x)A"U(x)d3x (1) 
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The gluon field couples to the asymptotic quark 
(antiquark) current 

where pa is the color charge density, pu 
(antiqnark) four-momentum and co is the correspond- 
ing energy. The particles are moving with the velocity 
v = p/co. 

The color charge density is given in terms of quark/  
antiquark creation and annihilation operators by 

p" (p) = ~', a~ + (p, r)'-ik ak(P, r) + b~ + (p, r)'Vikbk(P, r) 
/,k 2 2 

(3) 
2a,(TL ~ = -  2aT), being the Gel l -Mann matrices in 
color space, r being spin indices. The asymptotic 
current ~ is an operator due to the color it carries 
in contradistinction to the QED case where the 
corresponding current is equivalent to a c-number. 

The transformation of the states ]( > of the inter- 
action picture into the asymptotic (coherent) states 
is given by*. 

[ ( '>  = U + I ( >  (4) 

The unitary operator U is a solution of the evolution 
equation in time t 

d C (t) 
dt  - i g K ( t )  U(t)' (5) 

where g is the bare coupling constant. 
As a consequence of the operator character of the 

current, the commutator of K with itself at different 
times is not a c-number. Therefore the T-product 
solution of (5) cannot be resolved into the simple 
structure of (9) of [1] which is of the form 

UQE D (t) = e m~ e i~m . (6) 

Here qS(t) represents the logarithmically divergent 
Coulomb phase and R describes the emission and 
absorption of photons. 

Instead we have to exploit the much more involved 
solution of Magnus [4] which is also of exponential 
type, however, with an infinite series in the exponent 

U (t) = e ~(0 (7) 

where the exponent fulfills the equation 
co t 

f2 (t) = ig Z fig ~ { K (t'), (2 k (t') } dt' (8) 
k=0 tO 

Here the curly bracket stands for a repeated com- 
mutator of order k in f2 

{K,  ,Ok} _ [ [ . . .  [ [K,  O], f2], ... 3, O] 
{K, O ~ - K (9) 

The coefficients fik are related to the Bernoulli num- 

Coherent states have also been used by Greco and coworkers [5] 
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bers B2m [6] 

flo 1, fl~--* - ( -  1)~-* = ~'f12 =~2 '  fl2m (2m)! B2=; 

(2) m = 2, 3 .... 

The implicit equation (8) can be solved with a power 
the quark series expansion in 9 

Y2(t) = ~, (i9)"A (t) (10) 
n=l  

Comparing coefficients of equal powers in g after 
inserting (10) into (8) we get for the first four A 

t 1 t 
A, (t) : f K (q) d t 1 ;A 2 (t) = ~ Sd t 2 [K (t2), A 1 (t2) ] 

~0 tO 

1 t 
Aa(t ) = -~;dt  3 [K(t3), A2(t3)] 

to 

1 '  
+ i ~ S d t 3  [ [K(t3), A1 (t3)], A 1 (t3)] 

to 

l '  
a4(t) = Sdt  [K(t0, A3 (t0] 

to 
1 t 

+ -s ~dt4[[K(t4) ,  A 1 (t4)], A2 (t4)] 
to 

I t 
-'k "i2 L d t 4 [ I N  (t4) , A 2 (t4) ] '  A1 (t4) ] ( l  1) 

The general expression for A can be given as a 
repeated commutator o fKand  expression Am, m < n. 
Different expressions have been given by Wilcox [7] 
and Bialynicki et al. [8]. 

3. The Divergent QCD Phase of Elastic Quark--Anti- 
quark Scattering and the Calculation of its First 
Two Terms 

The asymptotic quark current, (2), conserves separate- 
ly the numbers of quarks and antiquarks. We can 
therefore study the solution (7) of the evolution 
equation (5) in the sectors of fixed separate quark 
and antiquark numbers. For the investigation of the 
sector of one quark and one antiquark, it is useful 
to define projection operators /-/ik which project 
onto the subspaces of one quark of color i and an 
antiquark of color k and arbitrary numbers of gluons. 
Obviously the projection operators fulfill orthogonal- 
ity relations of the type 

Hij 171kl = ~)ik ~)jt [Iij" 
The projection operator for a 
color singlet is simply given by 

X 3 

(12a) 

quark-antiquark 

(12b) 

In the subspace of one quark and one antiquark the 
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completeness relation for the projection operators 

Z Hik = I qq (12c) 
ik 

holds, where I - is the identity within this subspace. qq 
The separate conservation of quark and antiquark 
number is then expressed in the commutation relation 

[ffI,, I qo ] = 0. (13) 

With these projection operators we define the project- 
ion of the general Hamiltonian (1) onto the spaces 
defined b y / / q  

(gqq)ijk t = Kijkl = Hid K Hkl (14) 

describing the transition from a quark-antiquark 
state with colors k, I to a sta~Le with colors i,j. 

The explicit form of the operator K _  is then �9 . qq 
(summation over repeated indmes understood) 

I Kqr G"(~)~- + G"(q)~- . (15) 

Here 

A a 2a ~.la ~a 
2 - 2 |  ~ - = 1 |  (16) 

are the matrix representations of the color matrices 
in q q space, and 

G~(~) = P~ A~(~), (17) 
(.01 

with p], o)~ being the four-momentum and energy 
/ _ _  \ 

resp. of the quark and ~"= ( t , o - ~ t )  describing the 
k --J. / 

position of the quark at time t. Analogously we have 

pU 
Ga(r]) = ~ 2  A~(q) (18) 

p~, co z being the four-momentum and energy resp. 
/ \ 

of the antiquark and ~/u=l~t, P2 t ]  the position of 
Ik - - ( / ) 2 / i  

the antiquark at time t. 
Instead of (15) we write,, in matrix notation of 

color indices, 

,tf ~a = Ga(~ ik6 Kiju v . ~  jl + G"f f l )6i ,~ (19) 

The evolution operator can also be projected onto 
the quark-antiquark sector 

( U  q~)ijk l "~- U i j k l  = Hij U Hal 

The equation (5) for the evolution operator in time 
can now be reduced to the quark antiquark sector 

d U -  
d ;q = ig Kqq Uqq (20) 
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or, in explicit matrix notation for the color indices, 

d Uijkt 
d t = ig Kijrn n Umn u (21) 

where again summation over repeated indices is 
understood. 

The phase (p(t) of elastic color singlet quark-  
antiquark scattering is defined by 

iq~(t) = ( S, qgll O(t)] qq, S ) ,  (22) 

where 

1 3 
Iqo, s>: i}llq, o,> 
refers to the color singlet state of the quark and anti- 
quark. We have contributions only if all gluon 
operators in O are contracted since no gluon occurs 
in the states. 

In a first step we have calculated the first two terms 
of the phase with the Hamiltonian - gK(t)  of (19): 

i q)(t) -= (ig) z ( S, qcl[ A2 (t)] qc~, S )  

+ (ig)4(S, qgllA4(t)[qgl, S )  (23) 

In the calculation of the right-hand-side of (23) we 
have neglected terms contributing to the renormal- 
ization of physical quantities. This will be investigated 
elsewhere. 

The more explicit expression of the first term of (23) 
is (in Feynman gauge) 

(ig)2 ( S, qF1lAz(t)lqq, S )  

1 t t2 

= ~(ig)2 ~ dt 2 J'dtl ( S, qgt[ [K (t2), K(tl)][qgh S ) 
to to 

1 2 q ~ a ~ a  t tz 
=~(ig)  ~ ( S , q  ~ qq, S ) ~ d t 2 ~ d t  1 

' {d(~2 - ql) + (4 ~ r/)} (24) 

where 

6"bd(~ 2 -- t/1 ) --= [Ga(~2), Gb(r/t)] 

PUlP2 A a A b Pl"P2 - [ u (~2 ) ,  , ( r / ~ ) ]  = i D ( ~  2 - -  ~1)(~ ab 
(D 1 ( 0  2 (d) 1 ( 0  2 

_ i P l "P22e(t2 _ tl)6((~2 _ r/1)2)6ab ' 
2 ~ 1 r  2 

and D(x) is the massless Paul i -Jordan function, 

For the quark-ant iquark system in a color singlet 
state and for very large t, which is necessary for our 
approximation to be valid, we get 
(ig)2(S, qgtlA2(t)lqgl, S )=iasCl~  . Pl"P2 ln t  

.p2) - m" 

(25) 
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92 
with c~ s = ~)-, m the quark mass and CF----4/3 the 

eigenvalue of the quadratic Casimir operator in 
quark color space. 

The second contribution to the phase is, see (23), 

(ig)4 ( S, q?llA4(t)iq?l, S) (26) 

=(i9)" ee - ~ d t , ~ d t ~ d t  2~dt~ 
tO tO tO tO 
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The result for the first two terms is then: 

iq)(t) = iC~sC~ A+ + A_ In t 
A+ - A _  

{ d ( ~ l  - ~ 2 ) d l  (~3 - / ' / 4 )  + d ( ~ l  - ~ 2 ) d l  (1'/3 - ~-4) 

+ d(~l - I'/3) d,  (~2 i #'/4-) - d(~2 - ~3)dl (~1 - ~4) 
1 * t4 t3 t3 

- { d ( Q  - . ~ ) d ~ ( ~  - q , )  + d (~  3 - ~ ) d ~ ( ~  1 - ~ , )  

-~ d (~  3 - / ~ l ) d l  (~2 - / ' ] 4  ) - d ( ~  2 - ~ l ) d l  (~3 - / 7 4  ) 

1 t [4 '3 t4 
+ ( r  r/)} - ~ fdt  4 ~dr 3 ~d~ 2 fd t  1 

to tO tO to 

'{d(~3 -- 82)dl (~4 - -  ~1) + d (~3  - -  ~2)dl (~4 -- ~1) 

-}- d (~3  - -  ~ 4 ) d l  (~2 - -  /11) - -  d ( ~ 2  - -  ~ 4 ) d l  (~3 - -  /11) 

1 t t4 t4 t2 

+ (r t/)} + 2 ~ d t 4  ~dt 3 ~dt 2 ~dt 1 
tO to tO to 

+ d(~3 - n ~ ) d , ( ~  4 - ~ )  - d ( ~  - o 0 d l ( Q  - n~) 

+ ( r  

where 

dt(~, - q )  - P1 "P2 DI(~ i _ ~j) 
0)1(02 

_PlP2  1 P 1 

P denotes the principal value, c a = 3 is the eigenvalue 
of the quadratic Casimir operator in the gluonic 
color space. 
The evaluation of the right-hand-side of (26) yields 
retaining only leading terms for large times, 

~ Call A + + A  ~2 
(i9)* (S, q~llA,(t) lq 71, S) = i~cv~-~2(A + _ A )J 

(A  09~ i '~(A e)2 l ~ a  2 + - - - -  + - - - -  _ 

t - - + 

+ non-leading terms (27) 

where 

2A + N / ( p l ' p 2 )  ~ m 4. m + = Pl "P2 

+i 4 A++A V 

( c~ _ I ~ ( A + ~ ~  
A + co~ J \ e) 1 

"In In 2 t 

- O) 2 - 0) 1 ) + 

+ non-leading terms (28) 

In the next section we shall use the non-relativistic 
limit of(28) in a system where one quark is at rest: 

q ) " r ( ~ n ) = c ~ c ~ m - - - l n P t - ~ c P ~  ~p m rc p m (29) 

+ non-leading terms 

where p is the momentum of the moving quark. 

4. Derivation of  the Asymptotic Potential of  qq 
Scattering from the Phase 

In order to determine the equivalent non-relativistic 
potential in the Schr6dinger picture and in coordinate 
space we proceed in two steps: 

i) We derive a relation between the non-relativistic 
/ - - N  

(Pn.r-(~) and the non-relativistic phase o p e r a t o r  
\ ~ /  

potential V~(t) of elastic qc] scattering in the inter- 
action picture and in momentum space. 
ii) The equation obtained in step i) will be transformed 
into the Schr6dinger picture and into coordinate 
space. 

The first step can be carried out with the help of a re- 
lation in the paper of Magnus [4] which reexpresses 
the two-particle-potential in terms of the elastic q c~ 
scattering phase: 

_, /pA } + . . . .  

=i+ r 

'30  

Since the divergent phase is diagonal in momentum, 
all the commutators of the R H S  vanish. We obtain 
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the following relation between the asymptotic poten- (r' + r") 
tial and the divergent phase �9 (r' - r") + 

V t ( ~ )  : -  (bn.r. ( ~ )  (31) 

This means, knowing the divergent phase operator 
in the Schr6dinger picture and in coordinate space 
we can simply read off the equivalent asymptotic 
potential. 

The transformation of ~b. r. into coordinate space 
yields 

( - ~ ) 3 J  e C) l e- iP 'r"d3p 

1 / m \  3 ~ / m  , < t7 (r -r")) (32) 

Thus we have arrived at a time dependent potential 
in the interaction picture. The final step which still 
has to be carried out is the transformation into the 
Schr6dinger picture. A local potential V(r) is obtained 
in the Schr6dinger picture if the phase (32) divergent 
for large times t is modified by a factor e -i(rnl2t)(r'2-r''2) 

leading to the replacement 

qr (r', r", t) --, e -ICml 2~ 

l [" rn "~ 3 ~. [' m l / , r,,'~j) 
"(2n)312t~- ) ( P t t t  r -  i (33) 

The additional factor has oscillating behavior for 
finite values of t. However, it approaches unity for 
t ~ 0% thus it does not modify the leading behavior 
of the phase for large times. We note, that this non- 
leading modification is also needed in the recon- 
struction of the Coulomb potential from its divergent 
phase in QED. 
The divergent phase in the Schr6dinger picture is then 

~,.r.,s(r, r'") = W -  ' e -~("i2')~''~-'''~ 

1 / r r t \  3 = i ra  , r") ' )W 
( '  - 

/ (m/ 
= ~ jd3r 'd3r"ei("/2~176176 

. ( ~ ) 3 ~  .... ( t ( r t - - r ' ) ) ,  -i<ml2t,<r''-r''',2 ( 3 4 ,  

Under the integral only the mixed terms r.r', r" .r"  
survive in the exponent and we obtain 

�9 ,,, ( m ~3(m'13ei(mlet)(r2-r'"2) 
(]) . . . . .  s(r, r ) = \ ~ ]  t,,7 j ~ I 

where 
I = , 3 . -i(m/t)(r.r'-r".r"') 7 D'l , " j d 3 r d  r e  40 . . . .  ( t ( r - r " ) ) .  

The calculation of the integral I proceeds in the follow- 
ing way 

I = ~d3(r ' -- r")d 3 exp - -  2 

,r r',l) .... (;,r ,",) 
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/Ir' + r'"l\ : (~)6(27[ , )3(27[)3 /2(pn .r . t%-~)(~(3) (r - - r  't') 

Altogether we have for the divergent phase in the 
coordinate space representation 

~b .r.,s(r, r'") = ~bn.r.(lrl)3(3)(r - r'") (35) 

The diagonality of the phase operator and (31) give 
the asymptotic non-relativistic Schr6dinger potential 
as multiplicative operator 

V(Ir[) = - ~bn.r.(lr[). (36) 

5. The Non-Relativistic Long Range Potential from 
the Quark-Gluon Interaction and Concluding 
Remarks 

In Sect. 3 we summed up an infinite number of Feyn- 
man graphs with multiple gluon exchanges in qc~ 
scattering. In the asymptotic limit, i.e. for large 
times one obtains divergent terms proportional to 
~ ( ln  t)" in any finite order of perturbation theory. 
In the infrared limit these divergent terms exponenti- 
ate, which is elegantly obtained by using the Magnus 
solution, (7). This exponentiation leads to the phase 
factor exp i ~0(t), where q)(t) is the generalization of 
the well-known Columb phase in QED [1]. In QED 

m 
this phase is simply proportional to - -  e In t, which 

P 

gives qb(t)~ ~ / ( P t ) a n d  therefore leads immediately 

to the Coulomb p o t e n t i a l - e / r  by means of (36). 
For the quark-antiquark system being in a color 
singlet state the QCD phase qo(t) has an expansion in 
powers of c~ s In t; the first two terms have been cal- 
culated in Sect. 3 and are given in (28). 

The physical interpretation of the phase (p(t) has 
been given in Sect. 4, where we showed that the time 
derivative of the non-relativistic limit of cp(t) defines 
the Schr6dinger potential V(r). We therefore obtain 
from eqs. (36) and (29) the first two terms in an ex- 
pansion of the long range potential for a color singlet 
quark-antiquark pair 

- C ~ CA :~21n(r/r~ ~- (37) 
v ( r ) =  r ' "  

We would like to emphasize that the potential (37) 
is not a standard perturbative result, since it has been 
obtained from an exponentiation of an infinite ladder 
of gluon exchanges�9 

In the derivation of (37) we have omitted all vertex 
corrections to bare gluon exchanges and have not 
included the modified gluon propagators due to the 
gluon self-interactions, although these terms are of 
course present in the Magnus solution (10). (Notice 
that only the three-gluon interaction enters in our 
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calculation. The four-gluon interaction has to be taken 
into account for the first time in a claculation of the 
e2-term). We expect, however, that the corrections 
do not change the eZ-term of the potential, since they 
should merely lead to a redefinition of the coupling 
strength es(C~-~ %(r)), which would replace (37) by 
(r > ro) 

V(r)  = - Cv %(r)- + C F CA cd(r ) In  (r/ro) + . . .  (38) 
r 3 ~ r 

The first term of the potential is identical to the QED 
Coulomb potential (apart from a factor Cv), which 
is attractive also for long distances if the quark- 
antiquark pair is in a color singlet state. The second 
term, however, is a novel feature since it is positive 
for long distances (r > %) and therefore represents 
a repulsive barrier. 

The potential (38) contains two parameters, the 
QCD scale parameter A(via e~(r)) and the distance 
r 0 . Since A is the only dimensional parameter in the 
theory, r 0 has to be proportional to A-  1, ro = Po/A ' Po 
being a dimensionless, as yet undetermined positive 
constant. The physical meaning of r o is clear: r o is 
that quark-antiquark separation where the long 
range potential V(r) matches the asymptotic freedom 
potential VAF(r ) [9] 

~(r) 
V A F ( r  ) = - -  C F -  (39) 

r 

which is valid at short distances. Thus we may inter- 
pret r o as the length scale that determines the short 
distance region, r < r o ~ 1/A. Intuitively one expects 
that the short distance regime for heavy quarks (anti- 
quarks) with mass m involves distances which are of 
the order of the Compton wave length of the quarks, 
and one therefore roughly expects r o _~ 1ira. For 
charmed quarks with m = 1.5 GeV this implies that 
the potential (38) should be reliable for distances 
larger than 0.1 fermi. On the other hand, since the 
quark-gluon Hamiltonian (1) does not allow the 
creation of additional quark-antiquark pairs--an 
effect which has nothing to do with the infrared 
behavior discussed in this paper-- the potential (38) 
has physical meaning only in the infrared regime 
r 0 < r < r 1. Here r 1 is the distance, where the long 
range potential produces a chromoelectric field, 
which is strong enough to create a quark-antiquark 
pair. For a rough estimate of the screening length rl 
one could take the quark-antiquark separation at 
which the repulsive potential barrier exceeds the 
threshold energy for quark-antiquark production, 
V(rl )  = 2m.  

In this paper we described a new method for obtain- 
ing the q O potential from QCD. In a first step we 
calculated the contributions coming from the A 2 
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and A 4 terms in the Magnus solution (10). Of course, 
what is required for a complete solution is a calcula- 
tion of all the other A terms in (10). A first investi- 
gation of the next term in (10), i.e. the A 6 contribution 

~3 In2 r A computation of shows that it behaves as s - -  
r 

the higher terms in (10) is under way and will be 
published after completion. 

Finally let us mention that our potential calculation 
differs from those existing in the literature [9] in the 
important fact, that we are considering movin 9 quarks 
whereas the authors of [9] are dealing with s tat ic  
quarks. Furthermore we differ from those static 
potential calculations by having a repulsive potential 
barrier at long distances instead of a negative at- 
tractive potential. The ~2~ contribution to V(r) in [9] 
can be used for the definition of the running coupling 
strength e~(r), which then turns out to coincide with 
the well-known asymptotic freedom c~(r) at short 
distances. One concludes that the potential of [9] 
describes the short range behavior in contrast to our 
result (38) which is valid in the infrared regime. 
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