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Abstract. We investigate the effects of perturbative 
branching upon the accuracy with which one can 
determine the charge of the underlying QCD quantum 
from the charge structure of a given hadronic jet. 
We show explicitly how at asymptotic Q2 we lose 
all such charge information. We investigate these 
effects at current PETRA energies using the Monte 
Carlo program of Fox and Wolfram; and find that 
a reasonably accurate charge determination is still 
possible at these energies. We suggest the variation of 
the jet charge structure with multiplicity, at a given 
energy, as a sensitive probe of the onset of perturbative 
branching inside jets. 

1. Introduction 

The problem of identifying the charge of the QCD 
quantum that gives rise to a given jet of hadrons is 
clearly important. In two previous papers [1,2] 
we have shown how to construct charge measures 
that are insensitive to charge fluctuations arising 
during the soft hadronisation. In this paper we 
investigate how the accuracy of such charge measures 
is affected by perturbative bremsstrahlung. 

We shall work throughout in the leading logarithm 
approximation (LLA) [31, or close variants there-of, 
both in our analytic calculations and in our numerical 
calculations where we use the jet Monte Carlo pro- 
gram of Fox and Wolfram [-4, 5]. 

First we review the derivation of the charge measure 
of [2] for soft jets, and point out the qualitative 
impact of perturbative branching. We follow this 
with a quantitative picture of quark jets at very high 
Q2. We illustrate all this with a quark jet possessing 
an energy of about 1015 GeV--the grand unification 
(GUTS) scale. We then explicitly demonstrate how at 
truly asymptotic Q2 all charge information (event- 
by-event) is lost. 

Having clarified what happens at very high Q2 

we return to the practical question of what happens 
at PETRA energies. At such intermediate energies 
analytic calculations are unlikely to be reliable, so 
we perform our calculations with the Fox and Wol- 
fram Monte Carlo [4] which contains both (modified) 
LLA perturbative branching and subsequent hadroni- 
sation. We shall find that the perturbative aspect 
is indeed important at PETRA energies; nonetheless 
the reliability of our charge measure is in fact roughly 
as good as was estimated in our previous work [2], 
so that we can expect to be able to infer the quark 
charge reliably in most events. 

2. A Confinement-Safe Charge Measure 

In this section we briefly describe the charge measure 
that was introduced in [1,2]. The reader should 
consult those references for further details [6]. 

Consider a jet of hadrons produced from some 
initial quark, q. We suppose this jet to be dominated 
by the soft hadronisation process so that its properties 
are similar to those of the jets observed in ordinary 
soft hadronic collisions. In particular assume (i) the 
jet possesses short range charge correlations (SRCC); 
(ii) a uniform and finite density of hadrons in rapidity 
(away from the fragmentation region); (iii) a leading 
particle effect; and (iv) small transverse momenta. 

We label the hadrons in the jet by their rapidities. 
In units of rapidity let the charge correlation length 
be I c (which we expect to be about 1 or 2 units). 
Break up the rapidity interval occupied by the jet 
into adjacent sections of length l C as in Fig. 1. Label 
the faces of these sections 1,2 . . . .  , M  as shown, 
and their rapidities by y(1), . . . ,  y(M). Now, consider 
the net charge of the hadrons with y > y(i); call it 
Q(q; i). This net charge will equal the charge of q 
(since by the leading particle effect the quark q 
should lie in one of the fastest hadrons, with y > y(i)) 
plus the charge flowing from the part of the event 
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Fig. 1. The jet of hadrons, plotted against rapidity and transverse 
momentum, is partitioned into boxes whose linear dimension is 
the charge correlation length 1 c. The jet is effectively one-dimensio- 
nal so that its transverse dimension is less than lc. The initial quark 
typically will be in the first box, and the charge flowing across the 
i'th face wilt be some antiquark charge plus some random charge 
fluctuation a(1) as shown 

with y < y(i) into the part of the jet with y > y(i). 
Since the hadrons with y > y(i) have net mesonic 
quantum numbers (disregarding the unlikely case 
that y(i) separates a baryon antibaryon pair) this 
charge flow across y = y (i) will consist of an antiquark 
charge plus some integer valued charge fluctuation 
centred about zero. So we have 

Q(q; i) = q + ( q )  +_ a (1) 

where a is the standard deviation of the zero-centred 
charge fluctuation. Now by SRCC the 00 fluctuations 
across different boundaries i and j are independent, 
so if we average Q (q; i) from i = 1 to M we obtain 

1 M a 
QM(q) = ~i~=10(q; i) = q + (c~) ___f~  (2) 

This is the simplest version of the charge measure 
introduced in [1, 2]. Note that it is designed to be 
applied to a single jet, rather than averaged over many 
events, and note also how the precision of the measure 
increases rapidly with M. q is of course calculable; 
in the case when we only include 5 and d we have 
( q 5  _ 1 6"  

Now in the above we assumed that the incident 
quark always ends up in a hadron with y > y(i) 
for any i. In reality there will be some probability 
for this quark to be slowed down below y = y(i). 
Call this probability Pq(Wi) where ~ W i is the energy 
of the portion of the jet with y > y(i) in a frame where 
y ( i )=0 .  By the leading particle hypothesis Pq(Wi) 
should fall rapidly with increasing W~; and indeed 
an analysis [7] of v and ~ data [8] suggests that at 
moderate Q2, 

1.4 
P q(W~) ~ VV~ (3) 

for W i not too small. It is also possible that a should 
vary with i, in which case we must use a(i) in our 
calculations. We then find that the appropriate 
generalisation of (2) is 

M 
QM(q) = ~ Q(q; i) L1 

r Pq(Wi) ] 
,=, ~2(i) 

"{i=~ [i - Pq(W*)]2"[- 0 J 
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= q + ( ~l) +_ { ~ [ 1 -  Pq(Wi)]2 ~ -1/2 
i= 1 0 ~ (i) J (4) 

Note the way the terms in the above sum are weighted. 
A given term Q(q, i) will contribute the less to the 
charge measure the smaller the probability that it 
contains the initial quark, i.e the larger is P (W.); and 

' q t 

also the larger is the random fluctuation a(i). This 
is just common-sense;in addition the charge measure 
of (4) is designed to be the "best possible" measure 
given our assumptions. 

We now turn to a preliminary discussion of the 
expected effects of perturbative branching upon our 
initial assumptions and the consequent accuracy 
of the charge measure. 
(i) We expect that the SRCC property of the soft 
hadronisation should be unaffected by any prior 
perturbative branching. However, the branching 
process itself violates SRCC: a quark antiquark 
pair produced early on in the branching will, at 
the point prior to hadronisation, be far apart in 
phase space and hence will end up in hadrons far 
apart in phase space. If one hadron is at y (I) and the 
other at y (Y) then we see that the extra error induced 
in the charge measure, (2), is 

I - J  
6 QM (q) ~ ~ x  quark charge (5) 

So if I - J is comparable to M the measure loses all 
precision. 
(ii) Perturbative branching increases the number 
of quarks and gluons that hadronise in a given jet 
and hence will increase the density of hadrons per 
I c interval; call it n(i). We expect 00(0 o c t ,  and we 
see from (4) that the error on the charge measure 
increases as 

6 QM(q) oc n 1/2 (6) 

(iii) Perturbative bremsstrahlung implies that the 
incident quark loses momentum before hadronisation. 
This weakens the leading particle effect in the quark 
jet, reducing the coefficients [-1--Pq(Wi) ] i n  (4), 
with an effect on the error that one can see quantita- 
tively in (4). 
(iv) The transverse momenta in a jet increase with 
increasing perturbative branching. This does not 
directly affect our charge measure, but it will in general 
falsify our claim that this is the "best possible" 
charge measure. 

When a jet grows in the transverse as well as in 
the longitudinal directions, SRCC implies that it 
can be decomposed three dimensionally into boxes 
of length 1r such that charge fluctuations across the 
faces of different boxes are independent whatever 
their orientation. We can still apply our one dimen- 
sional measure to such a jet but it is clear that we 
are then only using a little of the information provided 
by SRCC and should expect that better measures 
will be possible. 
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3. Properties of QCD jets 

In developing a semi-quantitative understanding of 
the way QCD jets develop we shall work within the 
leading log approximation [3] (LLA). While this 
should give us a good insight into how things change 
with Q2, the reader should beware of taking the results 
too literally at the quantitative level. For example 
the rapid multiplicity increase with Q2 shall be one 
of our primary concerns; but the detailed LLA 
prediction [-9] is not expected to be accurate [10]. 
This arises because the average multiplicity has the 
schematic form [-9] 

( n ) ~ exp (ax /~  Q2) 

so that the average x is 

(7) 

( x )  ~ ( n ) -1 ~ exp ( - a x / ~  Q2) (8) 

and hence 

In 2 ( x )  ~ In Q2 (9) 

Thus factors of in Q2 can be outweighed by factors 
of (ln x) 2 and lower order terms are important. This 
will change the parameter a from the LLA result, 
but the form of (7) will probably remain unchanged 
[ 10]. This illustrates our earlier caution. 

We shall use the LLA to tell us how a quark of 
virtuality ~ Q2 turns into a "jet" of quarks and gluons 
of virtuality Q2 ~ 1 GeV 2, which is the lowest Qo 2 
at which we can pretend to have any confidence in 
the LLA. The LLA development of a QCD jet is 
very slow, being primarily governed by the variable 
(N~,y = n6 colours, flavours) 

Y = l l N  - 2 N I I ~  

= 6 l o g / ~ /  (10) 
l l N  - 2Ny Le t~ )] 

where we have taken (as we shall continue to do from 
now on) #2 = Q2 and e~(Q2) = 1, which corresponds 
to A -~ 500 MeV. (We shall for simplicity be careless 
about the fact that N ~ increases with Q2). Of course, 
we are primarily inteSrested in the structure of the 
quark jet in terms of its final observable hadrons, 
rather than in terms of some intermediate partons. 
We shall make the conventional assumption that 
the number of hadrons is roughly proportional to 
the number of partons of virtuality Q~ ~ 1 GeV 2, 
and also that the phase space distribution of these 
hadrons closely follows the distribution of the partons 
which is not an unreasonable assumption in any 
fragmentation/recombination picture of hadronisa- 
tion. 

We will now go through the list of assumptions 
(i)-(iii) that we made in Sect. 2 and see what happens 
in each case as Q2 becomes large. 
(i) Let x (Qo 2) be the fraction of its original momentum 

177 

that the initial "valence" quark possesses when its 
virtuality has been degraded to Q2. If Qz is small 
then x,(Q 2) ~ 1, there is little perturbative branching, 
and the situation is essentially as in the naive parton 
model (to which our charge measure best applies) 
where any eventual slowing down of the quark occurs 
during the hadronisation stage. As Q2 increases the 
LLA predicts that 

(Xv) = e -(16/9)r  ~ [~s (Q2) ]  ~ (11) 

This is a slow decrease (in going from PETRA 
to GUTS energies ( x  v ) decreases by about a factor 
of 4). Moreover the absolute decrease is in itself 
not particularly relevant to us; we are more interested 
in whether the number of hadrons which are faster 
than the hadron containing the valence quark in- 
creases with Q2 or not. We translate this question 
into the corresponding question in terms of the 
quarks and gluons of virtuality Qo 2 ~ 1 GeV z. In 
[3] an expression for the number of such non-valence 
quanta possessing x > x o has been derived for small 
x o in the LLA. In our region of interest it may be 
approximated as 

<n(x > Xo)> 

-4-eZ-S'6~rfl+9 2 x / 2 ~ l  8z1+2017(1-3)}3-z\ (12, 

where 

z = 2x/6Y log 1/x o 

We plot (n(x > ( x v ) ) )  as a function of Yin Fig. 
2. The main points are: 
(a) up to GUTS energies ( n ( x > ( x v ) ) )  varies 
only slowly, and the valence quark is usually the fastest 
parton. (The precise numbers shown for PETRA/LEP 
energies are overestimates because the values of 
(xv)  at these energies are too large to allow the 
reliable use of (12)). 
(b) n(x > (x  v) ) does increase with Q2 and eventually 
becomes very large. Here "eventually" >> GUTS! Of 
course, the separate treatment of QCD only makes 
sense below GUTS energies; so any discussion of 
higher Q2 is not of any direct physical interest. 

While the above tells us that for most events the 
valence quark is the leading parton, it does not tell 
us the width of the xv distribution. In particular what 
is the probability that the valence quark finds itself 
slowed down to x~ ~ 0 just before hadronisation? 
We can find the leading power behaviour of the 
number density dnv/dx ~ near x = 0 by looking at 
the moments of the valence quark momentum 
distribution, G(n, Y), which have the usual LLA 
expression [3] 

~o(n,  Y) = e - A ~  (13) 

where the A n are the appropriate anomalous dimen- 
sions, and noting that the n at which Gv(n , Y) first 
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Fig. 2. The number of secondary partons with virtuahty Q02 ~ 1 
GeV z, and with momentum greater than the average final momen- 
tum of the initial quark, is plotted versus the variable Y (see text). 
Energies corresponding to PETRA, LEP and GUTS are indicated 

diverges as we decrease n reflects the leading power 
behaviour of dnjdx~ near x = 0. We find (leading 
power behaviour only) 

dn~ 
dx 4.~ ~ const. (14) 

or, in terms of longitudinal rapidity, y, 

dn~ ~ e_[Y_yma x [ ( t5)  
dy 

Since we expect [-2, 7] that at the hadronisation stage 
the valence quark will develop a tail at low x~ that 
is at least as large as that given by (15) it is apparent 
that at all energies of any possible physical interest 
the initial quark's relative momentum distribution 
is such as not to seriously reduce the accuracy of our 
charge measure in (2) and (4). 
(ii) Short range charge compensat ion-- the idea 
that if there is a positively charged particle produced 
at some point in phase space in the jet, then the cor- 
responding negative particle will be close in phase 
space, the correlation length being typically 0(1) 
in units of rapidity (or its transverse generalisation), 
is a well established and understood property of the 
jets produced in normal soft hadron-hadron col- 
lisions [-11], and preliminary analyses [12] of quark 
jets confirm this expectation. So, as remarked earlier, 
a breakdown of SRCC at the hadronic level can only 
occur if q0 pairs have managed to become distant 
in phase space prior to the hadronisation: then by 
SRCC the hadrons containing the q and c~ will be 
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about as distant in phase space as were the q, c~ just 
before hadronisation. In a perturbative QCD jet 
this happens with the production of q~ pairs early 
in the branching process (i.e. pairs of a large virtuality). 
The corresponding q,~ with a virtuality Qo 2 ~ 1 
GeV 2 will have a large relative invariant mass 

O(Q/Qo) and will be correspondingly distant in 
phase space. Of course q~ production at a vertex 
characterized by virtuality ~ 02, will be suppressed 
relative to gluon production by a factor of e(Oz). 
However, the large number of vertices more than 
compensates for this. A crude calculation tells us 
that the first q c7 pair will indeed be formed with a 
virtuality Q~ that is 0(Q2), so that the q and ~ will 
find themselves in hadrons that are very far apart 
in phase space. 

Despite the serious breakdown of SRCC implied 
by all this, we now show that our charge measure 
is not much affected by the production of such q q 
pairs, because it turns out that the fractional momenta 
of q, ~ at Q2 ,,~ 1 GeV 2 are similar, and this is what 
is important in our charge measure. 

So suppose that the q ~ pair is produced by a gluon 
of momentum fraction 2 and virtuality ~2. The g ~ q4 
decay probability is not especially peaked, so the 
q and ~ at this stage carry comparable fractions of 
2. By the time the q and ~ have degraded their virtua- 
lity to Q2 ~ 1 GeV 2, they will have average momen- 
tum fractions 

X - ( 1 6 / 9 ) Y  (16) 

where we use (11) with Y= y(~2). Thus although 
M - ~ 0(Q), longitudinally Xq/Xr ~ finite. This is not 

q q  . . . .  

counterlntmtlve: consider a p a r  of massless quarks 
q, q' with opposite transverse momenta p . ,  and with 
longitudinal momenta x P, x'P > p.. Then if their 
invariant mass is Mq~, 
M 2_ 

qq 
= 2 ( (x2p2  + p~)l/2, )cP, p• 2 + pZ)t/2, x'P, -pz )  

/~X ~ X 

(X -Jr x t )  2 2 4p~. 
- x 2  P" > 

(17) 

So as long as the q, ~ longitudinal momenta are much 
bigger than their invariant mass (which is always true, 
at least by logarithms if not by powers of Q) we expect 

X q ~ finite. 
xg 

A better estimate for xq/x., obtained by evaluating 
( (x  2) - ( x q ) 2 )  t/2 and hence the width of the x a 
distribution, turns out to be roughly 

x~  ~ [~s(O:b]- 1/~ (18) 
x~  



C.J. Maxwell and M.J. Teper: Measuring the Charges of QCD Jets 

(assuming x > x-) So the longitudinal rapidity �9 q q "  

interval A y between the q and ~ is typically 

A y ~  in x~ 
Xq 

y((~2) (19) 

which even at the highest energies is comparable to 
the correlation length of the usual short range cor- 
relations. 
(iii) In the standard one-dimensional soft jet the 
density of particles per unit rapidity is more or less 
constant with rapidity and with energy: increasing 
multiplicity comes from the increasing range of 
rapidity available with increasing energy. So the 
charge fluctuations are also constant in rapidity and 

1 
the error in our charge measure improves a s / _ ~  

x / "  
where N is the total multiplicity (see (2)). What 
happens in an asymptotic QCD jet? As we have seen, 
( N )  oce "4jnQ~. Now the total rapidity length oc In 
(22 . Hence for at least some of the rapidity length 
dN 
- - ~  oe as Q2__, oo and as argued in Sect. 2 the 
dy 
corresponding fluctuations also become large: 
~r(y)< d ~ N  ~ .  

~1 ay 
Now, what is useful for picking out the incident 

quark is the portion of the jet slower than the incident 
quark, i.e. possessing x < ( x ) .  What is the particle 
density there? Asymptotically using (11) and (12) we 
see that x ~ ( x  o ) the density of particles is approx- 
imately 

dn(x = (xv})  oc e r (20) 
dy 

and increases with decreasing x. So the error in (4) is 

1 -~ /2  
I ~ 1=~;20.2 ~yi) ] OC (In Q2) e'>~ . (21) 

Thus we see explicitly that as Q2 increases, the 
increasing density of particles eventually renders our 
charge measure useless. Of course, "eventually" may 
not mean much: surely the bighest sensible energy for 
a QCD jet is the GUTS mass scale ~ l0 ts GeV. So 
we now exemplify all the above by calculating our 
charge measure for a typical quark jet of 1015 GeV, 
and we will estimate its error. 

A GUTS Jet 
Consider a quark jet of energy ~ 1015 GeV, originat- 
ing from an off-shell quark of a similar virtuality. 
As we have seen, even at such an energy the initial 
quark is probably the leading parton just before 
hadronisation and the production of q~ pairs has no 
degrading effect on such a longitudinal charge 
measure�9 So the main factor affecting the accuracy 
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Fig. 3. The square root of the number  of partons wath virtuality 
Q02 ~ 1 GeV z per unit  rapidity interval is plotted versus the rapidity 
(y = 0 corresponds to the rapidity of the incident quark) for a quark 
jet where the incident quark has a virtuahty ~ 10 Is GeV This 
also equals the quanti ty tier - see text 

of our charge measure is the density of hadrons. 
Using (12) we calculate the density of partons versus 

dn 
rapiditY, d-~/ As we remarked in Sect. 2 the charge 

fluctuation increases as 

o-(y) = ~x/dvv (22) 

where fl-z is the conversion factor in going partons 
of virtuality ~ Qo 2 = 1 GeV z, to the final hadrons. 
We plot the resulting/3or(y) in Fig. 3. Now, in such 
a situation the best one can do (see Sect�9 2) is to pick 
one charged hadron per unit rapidity, and then the 
value of the charge measure becomes 

( ')  
i= 1 /dY i )  

were previous estimates [2] give o-~ 1. Reading the 
values off Fig. 3 gives us 

o- 1 
Q (q) = q - ~ 4- ~ ~ (24) 

We expect a,/~ ~ 0(1), so very roughly we find that 
applying our charge measure to a quark jet gives us 
the quark "charge" with an error of 

1 

6 Q ~  +_ 2~.14 ~0.7. (25) 

Thus the accuracy of the charge measure is p o o r - -  
no better than one would obtain at the higher DORIS 
energies. 
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Note that if the jet had had a density of particles 
which was constant in rapidity and which was com- 
parable to the density observed at low energies (as 
would be the case for a jet of energy 10 ~5 GeV but 
virtuality 1 GeV) then the error would have been 

1 
6Q ~ +_ ~ + 0.17 (26) 

since the length of the GUTS jet is about 35 rapidity 
units. The difference between (25) and (26) is a direct 
measure of the extent to which perturbative effects 
have degraded the charge information at the highest 
energy at which one can reasonably discuss QCD 
jets. 
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Fig. 4. A jet of hadrons at large QZ where transverse momenta  have 
become large, al though still small compared to the longitudinal 
momenta. The jet is plotted against longitudinal rapidity y, and 

2 transverse rapidity, yx ~ �89 In (m~+ p• and is partit ioned into 
boxes of dimension l C. In contrast to the soft jet in Fig. 1, the jet now 
possesses non-trivial transverse structure 

4. Loss of all Charge Information as Q2 ~ m 

We wish to demonstrate in this section that, quite 
independently of the charge measure employed, the 
charge information on an event by event basis is 
completely lost as Q2 ~ ~ .  

To begin we wish to encapsulate diagrammatically 
the information SRCC provides us about the charge 
structure of a "three" dimensional QCD jet. To do 
this we simply extend to 3 dimensions what we did 
in Fig. 1 for one dimensional soft jets. The QCD jet 
is partitioned into boxes of size l~ : a two dimensional 
section is shown in Fig. 4. The longitudinal variable 
is rapidity, while the transverse variable is its trans- 
verse analogue: in P_L for p• >> masses. SRCC tells 
us that the charge fluctuations across all the faces of 
this structure are independent. (We might be tempted 
to construct a multidimensional generalisation and 
improvement of our one-dimensional measure. How- 
ever, such an effort would be unrewarding because 
we already know that transverse SRCC is broken 
by the perturbative production of q~ pairs). 

So for the first part of the argument consider the 
jet decomposed as in Fig. 4. Assume each box is 
populated with m charged hadrons. We wish to know: 
what is the probability that such a jet with a net charge 
q located somewhere near the front of the jet, would 
look like a neutral jet? Or, in other words, what is 
the probability that a neutral jet possesses a hadronic 
charge structure typical of a charged jet ? 

To see how to answer this question let us first pose 
it in the context of the simpler 1 dimensional model 
in Fig. lb. We characterize the charge structure of the 
jet by the charge fluctuation across the sides of the 
boxes; let a(i) be the fluctuation across the i'th side 
from the right. Let o-nat (i) be a "natural" random value 
of a (i). Suppose then we have a jet of charge q (resid- 
ing in the fastest box) then for it to look like a typical 
neutral jet, whose charge fluctuations will be some 
t y p i c a l  O'nat(i), the actual charge fluctuations of this 
charged jet must all be shifted by q, away from their 
"natural" values: 

a(i) = o-,at(i) - q (27) 

In the particularly simple case where 

q2 >~ (O-2at (i)) (28) 

we clearly will have a suppression factor, S, like 

S = [ P ( a  = q)]n (29) 

where N is the length of the jet (using the charge 
correlation length as a unit) and p(a = q) is the 
probability that a charge fluctuation takes the value 
q numerically. More generally, if we relax the condi- 
tion (28), we expect S to have the form 

S = a N (30) 

where ~ is some number less than one, simply because 
all the charge fluctuations across different sides are 
more or less independent. An interesting special case 
is for 

qZ ~ ( a  ant(i)) (31) 

when, assuming a Gaussian form, 

d N  
- -  oc e -'2/2<'2> (32) 
d a  

we see that 

c~ ~ e - q/'/z~ (33) 

So as (o-2) increases, which typically will happen if 
the particle density increases, the probability for a 
charged jet to look like a neutral jet increases rapidly. 

We will now extend this argument to the case of a 
fat jet as in Fig. 4. The central observation is that the 
neutral jet will look like a charge q jet if we can find 
a string of boxes from the front of the jet to the rear of 
the jet which looks like a (one-dimensional) q jet. 
Let the suppression factor across each of such a one- 
dimensional string be ~, and let L be the length of 
the string, then the total suppression will be 

S = Z ~L (34) 

where 2; represents the sum over all possible paths. 
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When S _> 1 this means that the number of paths is 
so great as to overwhelm the individual suppression 
factor of e L . 
Now the total number of paths will be of the order 

number of paths ~ 5 L (35) 

because at each box we can move out in 5 possible 
directions. So very crudely we can replace (34) by 

S = (5 e)L (36) 

Thus if 5e > 1, the suppression for any individual 
string is overwhelmed by the huge number of possible 
strings, and all charge information is lost. Our argu- 
ment has been very crude, but doing better (e.g. using 
a honeycombed jet with more faces) merely serves to 
strengthen the result. 

For a quark charge, q, we expect e > 1/5 even 
for a soft jet. In a QCD jet since the number of 
boxes ~ (In Q)3 while the total multiplicity 

exp (a x / ~  QE), it is evident that the portion of the 
jet where nearly all of the multiplicity resides will 
have a ~ 1 and will carry no charge information. 

So we have seen that that portion of a QCD jet 
which carries most of the multiplicity carries no 
charge information: this certainly includes the portion 
of the jet with 

X 0 ~< 0(e -6 r )  (37) 

which we can see by asking when the average multi- 
plicity per unit box necessarily starts growing. So 
the longitudinal rapidity range available for any 
charge measure is 

6y ~ In x o ~ const, x Y. (38) 

We have seen that there are 0(e Y) partons faster 
than the initial quark. To maximise our chance of 
picking out the net jet charge we minimise the various 
charge fluctuations by assuming that the initial 
quark and the very fast partons all form separate 
subjets. So we have 0(e Y) subjets each of a usable 
length in longitudinal rapidity that is0(Y) units. 
Can we pick out a charge q that resides in one of 
these jets? Since each of these subjets is essentially 
one-dimensional we apply our charge measure to this 
collection of subjets, and find that the error on the 
measure is typically 

error ~ 0 ~ oo >> q. (39) 
y~oe 

So we claim on the basis of these arguments (which 
could be strengthened by including the effects of 
q~ production) that in a given QCD jet all charge 
information is lost as Q2 _~ oo. 

One should note that this statement only applies 
to a 9iven jet. If for example we were to be provided 
with unlimited numbers of, say, u jets, then however, 
high the virtuality of the initial u quarks, we could 
always use enough jets for our average that the aver- 
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age net charge would give us the u quark charge (with 
the usual modifications of course) to arbitrarily good 
accuracy. It is amusing that the presence of the same 
perturbative showering makes it difficult to conceive 
of a source of quark jets, all of the same type, as 
Q2 ---> OO. 

5. Monte Carlo Studies 

In this section we shall resort to the Fox and Wol- 
fram (FW) [4] computer Monte Carlo simulation 
of QCD jets in order to see quantitatively how drasti- 
cally perturbative jet evolution degrades the accuracy 
of our optimal (for "soft" jets) charge measure QN(j) 
at current PETRA energies [12]. We shall also argue 
that a clear-cut signature of such an underlying 
perturbative cascade mechanism is the strong ex- 
pected correlation between jet multiplicity and lead- 
ing charge structure; this should be visible at present 
energies in contrast to other signature, such as sub- 
jet structure [3], which only become manifest around 
LEP energies. 

To study these issues we have run the FW program 

atx/~ = 30 GeV to produce one hundred e + e- --, two 
jets events; i.e. two-hundred single jet events. We 
do not include e, b flavours because of theoretical 
uncertainties concerning their decays. In general 
we would expect some degradation of all charge 
measures; most noticeably those involving only 
the fastest hadrons. "Data" from some runs at lower 
energies will also be used. 

General Partonic Structure of FW Quark Jets 
In the FW program a highly virtual parton, initially 
off-shell by Q2 < O(s) initiates a branching process. 
The branching is allowed to continue until any given 
parton falls below Qo 2 off-shell, at which point it 
decays no further. Finally a conventional hadronisa- 
tion scheme is applied [4]. In all our work we use 
Qo = 1 GeV. 

The FW model improves upon the naive collinear 
kinematics of the LLA, and this turns out to lead to a 
reduction in the amount of branching as compared 
to the LLA. In Fig. 5 we display the number density 
histogram, d N/dx v, obtained with the F W program at 

= 30 GeV, Qo = 1 GeV. To obtain a similar density 
in the LLA we must employ a higher cut-off of 
Qo ~ 1.7 GeV. We have also run the program 
a t e =  200 GeV, leading to dN/dx~ as in Fig. 6. 
To reproduce this with a LLA spectrum requires a 
cut-off of Qo = 1.3 GeV. So, as we would anticipate, 
the FW program and the LLA approach each other at 
higher energies. 

The results of perturbative showering at x/~ = 30 
GeV may be summarised as follows. (i) As we see in 
Fig. 5 the initial quark is not slowed down very much. 
(ii) The number density of secondary partons, dN/dx, 
is plotted in Fig. 7, and is not large. Its main compo- 
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Fig. 7. Number density of secondary partons at ~/~ = 30 GeV, 
Q~ = 1 GeV 2, Extracted from FW results 

nent is glue: on average ~ 2 per jet. (iii) Secondary q~ 
production is rare, about 0.1 secondary quarks per 
jet, and such qc~ end up on average 2 units of rapidity 
apart in longitudinal phase space. 

So we may expect that at PETRA energies per- 
turbative showering will not have degraded the charge 
information in jets too severely. 

Charge Measure and the FW Results 

We shall now consider how reliably the charge 
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measure QN(J) of (2) serves to distinguish a ' + '  
QCDjet ,  i.e. u, d, ~... from a" - '  QCD jet, a, d, s. As we 
discussed at length in (2) distinguishing between 
u, d, ] is unlikely to be possible using only the charge 
measure, although some indirect means were pro- 
posed. 

We shall examine the confidence level, C(QN(J)), 
with which the criterion QN(J) > O o ' + '  jet, 
Q N ( J ) < O ~ ' - '  jet, allows one to identify u,d,g 
versus a, d, s FW jets. We shall see later that such a 
confidence level, for a criterion which applies to all 
events, can be extracted from 2-jet e + s-  data, where 
one has no prior knowledge of which jet is which. 

We shall be concerned with N = 1 and N = n .  
c 

The former is just equivalent to using the charge of 
the fastest charged hadron to identify the jet and has 
in its favour directness and lack of possible experi- 
mental ambiguity. 

The FW results for our ~ = 30 GeV, Qo = 1 GeV 
PETRA sample of 200 events are C (Q 1 (J) = 0.7 -t- 0.03, 
C(Q,c(J)) = 0.75 • 0.03. From our naive model for 

'soft' jets in (2) we would have estimated 
C(Q 1 (J)) = .67, C(Q,~(J)) = 0.8 taking n c = (no)  = 6. 
The agreement is reasonable. In both cases there is 
seen to be a significant improvement in confidence if 
one uses the full charged multiplicity of the jet as 
opposed to relying on the fastest charge alone. 

Use of the combined 2-jet measure of (2): 
1 

A Q(JI, J2 )  - -  ~ [ N ~  Q N I ( J I )  - NzQNz(J2) ] with the 

criterion J t  = ' + ' ,  J2 = ' - '  if A Q>O, or vice 
versa for A Q < 0, gives C(A Q)= 0.8 _+ 0.04 for FW 
jets. This is to be compared with a confidence of 0.7 if 
one identifies each jet of a 2-jet event using the fastest 
charge when these are opposite, and determines at 
random when the fastest charges are identical. 

Having seen that our charge measure will correctly 
identify jets about 8 times out of 10 at upper PETRA 
energy we now turn to the signature of perturbative 
branching contained in the charge structure. 

6. Correlation Between Multiplicity 
and Charge Structure 

Even at ~ f s =  30 GeV, the internal perturbative 
showering has already had a marked effect on the 
final hadron multiplicity. This can be seen in Fig. 8: 
at ~ = 30 GeV the average multiplicity is twice 
what one obtains from those jets which suffer no 
perturbative branching (because they are produced 
with Q 2 <  Q2).  NOW increased perturbative shower- 
ing<*the valence quark is slower <:~ the charge 
measure works less well. Hence we would expect 
a marked decrease of the reliability of the leading 
particle charge measure with increasing multiplicity 
at a given energy; and, conversely, the observation of 
such an effect at PETRA energies we would claim to 
be a strong signature of internal perturbative shower- 
ing. 
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points are selected e + e- data (see 1-14]). The open points and solid 
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In Fig. 9 we plot the number densities for below and 
above average multiplicities: (dN/dxv)~ and 
(dN/dxv)A~respectively. Note how sharply peaked 
the former is, while the latter is very much like the 
overall number density at LEP energies (see Fig. 6): 
the correlation between hadron multiplicity and 
x~ is very strong. We now evaluate our charge measur- 
es for these two sets of events. We find 

C(Q 1 (J)),a = 0.76 _+ 0.04, C(Q 1 (J))AA = 0.64 _+ 0.04 
and C(Q,c(J)),a = 0.79 + 0.04, C(Q,~(J))~ 
= 0.69 _ 0.04. 

The observation at PETRA of such a strong charge 
structure-multiplicity correlation (one would expect 
only a weak effect with soft jets) would be indicative 
of underlying perturbative, branching. 

7. Extraction of C(Q~ (J)) and the Optimum Measure 

C(QN(J)) is easily extracted from a sample of 2-jet 
events by measuring the average 

P(QN(J)) = - (ON~ (J1)QN2(J2) > 
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where the product is taken for each two-jet event and 

1 QN(J)>O. 
QN( J) = --1 QN( J) < O. 

It is then trivial to show that 

1 + 
c (QN (J)) = g 2 

By measuring the analogue of P for different charge 
measures, for example the Feynman-Field Z-weighted 
charge sum [6], and our own Q:c(J), one can then 
obtain from 2-jet e + e-  data an objective assessment 
of how well these event-by-event measures work 
relative to each other. This is preferable to measuring 

- --  ( Q ( J1)  Q ( J 2 ) )  for the measure itself, which has 
already been done in (12) for the Feynman-Field 
measure, because this average depends on the shape 
of the distribution in the charge measure, as opposed 
to how well it differentiates between jets of different 
underlying charge, which is what we are interested in. 

Using P(Qu(J)) onx/~  = 30 GeV PETRA data the 
FW results would predict: 

P(Q1 (J)) = 0.16 _ 0.05 

P(Q,o(J)) = 0.25_+ 0.06 

P(Q1 (J))A~ = 0.08 _ 0.05 

P(Q1 (J)),~ = 0.27 ___ 0.09 

P(Qn~(J))AA = 0.14 -t- 0.07 

P(Q,c(J))~A = 0.34 _ 0.09 

Here PBA, PAA denote the average over two-jet 
events where both jets have respectively below aver- 
age or above average charged multiplicity. The ex- 
perimental observation of the predicted big difference 
between PAA and P~A would, as explained earlier, be a 
strong indication of the presence of perturbative 
branching in the PETRA jets. 

Of course, for neutrino or antineutrino production, 
where the flavour of the final current quark is fixed 
one can measure the confidence levels directly. 

We finally make some remarks concerning the 
optimum charge measure. It is clear that we can do 
rather better than using QN(J) to decide the under- 
lying charge. QN(J) only depends on the sequence 
of charges ordered in rapidity. For  N charged particles 
there are 2 N such permutations. For  instance N = 2 
has + + ,  - - ,  + - ,  - + as the 4 permutations. By 
studying a large sample of Monte Carlo events one 
could, in principle, determine the probability p(P) 
that the permutation P results from a ' + '  QCD jet, 
1 - p(P) that it results from a '  - '  QCDjet .  Ifp(P) > 1 
then any jet having charge permutation P should be 
identified a s '  + '  or vice-versa for p(P) < I" 

Such a procedure is guaranteed, since it utilizes all 
available information, to work with a better con- 
fidence level than QN(J) which can assign the same 
value of measure to two different permutations. 
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8. Conclusions 
In this paper we have conducted a detailed investiga- 
tion of the effects of perturbative branching upon our 
ability to decide from the charge structure of the 
hadrons in a given QCD jet the charge of the initial 
QCD quantum: in particular within the context of a 
charge measure which we had shown earlier [2] 
to be insensitive to the charge fluctuations incurred 
during the final soft hadronisation. 

Our numerical calculations at the highest currently 
available energies of about 30 GeV were performed 
using the Monte Carlo program of Fox and Wolfram. 
We found that in a typical 2jet event at such an energy 
our charge measure would correctly identify the 
u a (for example) orientation some 80% of the time. 
This is close to our previous, naive estimates in [-2] 
and is a significant improvement on the 70% obtained 
by using only the leading charges in each jet. 

We made some asymptotic analytic estimates. 
In particular we explicitly evaluated our charge 
measure for a jet of virtuality ~ 1015 GeV, and the 
charge identification was found to have become poor 
by this energy (which is the highest of any possible 
physical interest in pure QCD). 

We showed that as QZ __, oe all charge information 
is lost on an event by event basis; not just with our 
charge measure, but with any charge measure. 

Finally we pointed out that the variation of the 
multiplicity at a given energy is strongly correlated 
to the amount of the perturbative showering in a 
given jet, and that this is sensitively reflected in the 
charge structure of the jets. 
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