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A realistic phenomenological  model combining par ton /OCD ideas with lower energy SU(6) 
constraints is proposed for the shape and evolution of the leading spin-dependent  structure function 
G~Ptx, 02) in polarized electroproduction. Close's broken-SU(6)  ansatz is used to relate appropri- 
ately detined polarized quark-parton distribution densities to unpolarized ones at the matching 
momentum scale O 2 = Oo. The differences between spin and helicity distribution densities as well 
as the complications due to perturbative QCD and parton kx (with related target-mass) effects 
are taken into account. Evolution to higher I>10 GeV 2) values of Q2 (where target-mass effects 
can be neglectedl yields experimentally testable numerical predictions that are presented through 
various plots. The value of O .  is self-consistently determined to be about 0.5 GeV. 

1. Introduction 

D e e p  inelastic spin-dependent ep (or/xp) scattering has received a fair amount  
of theoretical attention [1] in the past. But a realistic phenomenologica l  pre- 
diction of the form (i.e. the dependence  on both x and Q2, the two standard deep 
inelastic variables) of the leading structure function GeP(x, Q2) has been lacking 
so far. It has, however,  become a timely task to make such a prediction in view of 
polarized target experiments currently in progress at SLAC and C E R N  [2]. The 
aim of the present paper is try to perform this task on the basis of ideas reported 
by us [3] in a previous communicat ion.  

We propose a p a r t o n / Q C D  type of a model  to give the leading description of 
spin effects in this process. Our basic approach is to introduce requisite polarized 
quark-parton distribution densities which can be related to corresponding unpolar- 
ized ones  at the matching m o m e n t u m  scale (explained below) Q2 -_ Q~ by Close's 
broken-SU(6)  ansatz [4]. We further employ a generalized covariant parton 
formulation [5] which can successfully incorporate Q C D  plus parton transverse 
momentum (k.r) and the related target-mass (M) effects. A mechanism is thereby 
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automatically generated which modifies the naive relations of Close [4] in a calcu- 
lable way. Evolution to much higher values of Q2(>>M2) is then carried out by 
standard renormalization-group methods [6]. Using a popular and successful para- 
meterization for the unpolarized quark distribution densities, we thus obtain the 
values of G~P(x, Q2) in the interval 0<x<~ 1 and for Q2 ranging from 10 GeV 2 
upwards. 

The description of the nucleon is central to a theoretical treatment of any type 
of ~'N scattering. Over the years, two different descriptions have emerged. One, 
motivated by the creditable performance of low-energy SU(6) phenomenology, 
views a nucleon as a composite of just three constituent quarks. The other, inspired 
by the highly successful deep inelastic parton picture, regards it (in the infinite 
momentum frame) as made of three valence quarks plus a sea of quarks and 
antiquarks and gluons. These two descriptions are supposedly related by Melosh- 
like transformations [7]. Nevertheless, one knows the following from experience. 
The first description works in the low Q2 region and begins to fail as Q2 increases. 
The second, on the other hand, is known to be more appropriate for somewhat 
higher momentum transfers squared and cannot be extrapolated down to the very 
low Q2 domain. This difference notwithstanding, it has been proposed [8] that the 
two descriptions can be matched at a process-independent scale [9] Q2 = Qg. The 
latter is presumably related to the dimensional parameter  A in quantum chromo- 
dynamics, but the explicit relation is expected to be controlled by non-perturbative 
effects and is unknown. We take up this idea in combining Close's broken-SU(6) 
ansatz with the parton description at Q2 = Qg. 

The employment of SU(6) symmetry to relate the polarized and unpolarized 
structure functions in ep scattering has been an old and much used idea from the 
starting days of deep inelastic physics (a review and references may be found in 
Close's book [1]). However,  many have been the pitfalls in this approach. For 
instance, the attribution of an exact SU(6)-symmetric 56-plet wave function to the 

e n  e p  ~z_ 2 • nucleon leads to the experimentally unacceptable result F2 (x)/F2 (x) ~ 3, indepen- 
dent of x, for the neutron to proton ratio of the standard unpolarized scale function 
F2. Close [4] tackled this problem by resorting to broken-SU(6). Motivated by 
dynamical considerations such as the Melosh transformation [7], he allowed 
arbitrary strengths of the isovector and isoscalar diquark configurations (spectators 
relative to the participator quark) instead of taking them symmetrically, as done 
in the $6-plet. This procedure avoids the above unacceptable result and yet yields 
non-trivial relations between polarized and unpolarized quark-parton distributions. 
Nevertheless, there arises an additional problem as explained below. 

In the parton picture of polarized deep inelastic eN scattering, the spin function 
GeN(x) is linearly related to the helicity distribution densities of quarks in the 
nucleon. If one uses the naive version of Close's [4] relations to link these to 
unpolarized quark distribution densities and (legitimately) ignores the polarization 
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of the qC:l sea, a simple form for GCN(x) obtains. This form must, however,  be 

incorrect; in combination with the Bjorken sum-rule ~ dx Ge~-"~(x)= ~gA/gv, it 
implies the bad SU(6) value, 3, for the ratio of the axial and vector weak couplings 
of the nucleon. Sea polarization cannot cure this, since it leaves G ~qp-n~ unaffected. 
There  have been ad hoc attempts [10] to overcome this difficulty by imposing a 
universal "dilution factor" on Close's relations and also phenomenology [ 11] along 
this line. However ,  we shall not pursue that approach since it is quite arbitrary. 

Our resolution [3] of the above difficulty has been through a proper  recognition 
of the importance of the primordial transverse momenta  of the quark partons. 
Their  role in breaking the SU(6) symmetry (and hence in diluting the value of 
gA/gv from 5 tO about  ¼) is well-known in non-relativistic quark models [12]. The 
point that we make is that in the parton model f ramework also, their presence 
naturally generates the dilution of gA/gV if Close's ansatz is used (at the matching 
momen tum scale O 2= Q~) on the spin rather than helicity distribution densities. 
These two densities differ via parton transverse momenta .  One can show [3] in the 
covariant parton model formulation [5] how these differences explicitly modify the 
naive version of Closets relation at O 2 = Q~. However,  since Q~o is expected to be 
not very different from the average transverse momen tum squared k-I- of quarks, 
the effects of the latter have to be completely taken into account without expanding 

Ik2WO2 in powers of \ vz/  0 as was done earlier [3]. 
We develop a formalism which not only accomplishes the above goal but also 

takes into account the non-leading Q C D  effects. Parton kv effects can be easily 
handled in the covariant parton model [5]. To tackle these effects we introduce 
modified quark parton distribution densities which are simply related to Q C D  
moments  and impose the Close ansatz [4] on them. In terms of these modified 
distributions, the Bjorken sum rule can be rewritten as a clean relation that is valid 
for all Q2 and is unaffected by QCD.  The use of this relation at O~ leads to a 
self-consistent determination of Q0 ~ 0.5 GeV,  given g n / g v  and parametrizat ions 
of unpolarized quark distributions as inputs. Once our theory is developed at 
Q2 = Q~, the evolution to higher Q2 (>>M 2) is done using the standard renormaliz- 

ation group procedure [6] and leads to testable predictions on the shape of 
GeP(x, Q2) at sufficiently high values of Q2 and for 0 < x  <~ 1. 

The plan of the rest of the paper  is as follows. Sect. 2 is devoted to a short 
recapitulation of relations between GeP(x, Q2) and the usual polarized quark distri- 
bution densities. In sect. 3 the modified distribution densities are introduced to 
incorporate quantum chromodynamic effects properly and the Close ansatz is 
implemented on them at Q2 = Q~. Sect. 4 contains a t reatment  of parton kT with 
related target mass effects at  Q2  _- Q~ in terms of a covariant E-scaling formalism. 
In sect. 5 we evolve via the renormalization group to higher values of QE(>>M2). 
Sect. 6 is addressed to the numerical aspects of this work relevant to current 
experiments  and presents our conclusions. 
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2. Usual polarized quark densities 

Consider deep inelastic ep scattering with the proton polarized parallel (i'1') or 
antiparallel (1'$) to the helicity of the incoming electron. Let _Q2 be the square 
of the four-momentum transfer between projectile and target and let x and y be 
the standard Bjorken and inelasticity variables, respectively. The leading spin- 
dependence of the process, in the Bjorken limit ( 0 2  00, x fixed) is now described 
by the spin function G~(x, Q2) through the formula 

d2cr t! d20. ,-t 87ra 2 

d x d y  d x d y = Q  T-(2-y)G~p(x'  
O2). (2.1) 

Here G~P(x, Q2)=(2x)  ~MQ2GI(x, Q2) in terms of the structure function G~, 
defined in ref. [1 ] and terms involving positive powers of M2/Q2 have been dropped. 

In the parton picture, ignoring terms with 2 2 rnq/Q (mq=current  mass of quark 
partons), one is led to the following expression for the spin function: 

GeP(x, Q 2 ) =  i q~ e 2 I d2kTAqh(x' 02,  k2 ) ,  (2.2a) 

Aqh(x, O 2, k-~ )=-q+(x, O z, k ~ ) -  q_(x, O 2, k ~ ) . (2.2b) 

In eqs. (2.2) eq is the charge (in units of e) of the quark of flavour q, k-r is the 
transverse momentum of the participator quark with a longitudinal fraction x of 
the momentum of the proton - envisaged as moving fast along the direction z (say) 
- and q.. _(x, O z, kZT) are the corresponding parton distribution densities of positive, 
negative helicity quarks. We can call Aqh(x, Q2, k 2) the differential helicity distribu- 
tion density. A theory of this function is essentially a theory of G ~. 

It is also possible to introduce spin distribution densities q~(x, Q2, k2T) Of quarks 
with up, down spin along the z-direction. One may further define a differential 
spin-distribution density 

Aq~(x, Q2, k ~.)~- qt(x, Q2, k 2 )_q~(x, Q2, k 2 ) . (32.3) 

The two differential densities Aq h and Aq ~ can be related by use of rotational 
invariance. If kL and Ikl are respectively the longitudinal and the total momentum 
of the quark parton, it follows that 

kl s dqh(x, Q2, k-~ ) = -~[ Aq (x, Q2, k-~ ) . (2.4) 

A derivation of eq. (2.4) is given in the appendix. 

3. Modified quark distribution densities and the Close ansatz 

The polarized quark distribution densities of sect. 2 are simply related to the 
spin function. However, they are problematic in discussing QCD effects and in 



A.S. Joshipura, P. Roy / Polarized electroproduction 369 

combining those with the usual flavour symmetry constraints on proton. Q C D  
complications are best discussed in terms of moments  of scale functions. We shall 
broadly follow the notation of Kodaira  et al. [13]. The nth moment  of the valence 
part (v) of G ~P(x, Q2), 

1 
AMV(02)__= I ( ,,-t ep dxx G~ (x, 0 2 ) ,  (3.1) 

) 

has the form 

with 

l 2 q,v 2 AM*,, (Q 2) = 2 ..~ eqAMn ( 0 ) ,  
q~ 

2 q v  2 eqAM,," ( 0 ) =  q'~ 2 ,, 2 2 a,, ( I t )E ,q . , , (O / I t  , g ) ,  

(3.2a) 

(3.2b) 

~ ~ . r : / / ~ , o ~  _ v . ( g ) ]  
E~q.,,(O ~It 'g)=Elq'v(1'g'(O2))exp L- a g - ~ ] ,  (3.3) 

d~(p. 2) 

where a,q, '* (It2) comes [13] from the polarized proton matrix element of a completely 
symmetric spin-n twist-2 non-singlet operator* R~'41~."" renormalized at O 2= It2. 
Etq.v(O 2 , "  g) is related to the coefficient function accompanying R"'"'""~Q,,, in the 
opera tor  product expansion relevant for GYP(x, ca ) .  3,, is the anomalous scale 
dimension of R~'d]~. ~'° and it governs [14] the 02  evolution of the valence part  of 
GeP(x, Q2). Finally ~2(02) = g2[1 + (7g2/161r 2) In (02 / I t 2 ) ]  i for six quark flavours 

and/3 (~) is the usual renormalization group function. 
A comparison of eqs. (2.2), (3.1) and (3.2) leads to the relations 

1 
AMq.v (0 2 ) I( dxx,,-lff 2 h = d kTAq,,(X, O 2, k2),  (3.4a) 

) 

1 

2 I n - I  I eq dxx d2kTAq~(x, 02, k 2.) 
} 

(It2) exp [ -  j~(, ~) , q . ~ ( g ( 0 2 ) )  (3.4b) ~ a n 

Eqs. (3.4) makes clear what is problematic with the usual quark-pa t ton  distribution 
density of sect. 2. In the lowest order ~ = 0 case, E~'q.~ = 1 and an, '~ is a number  so 
that everything is fine. With chromodynamic interactions present,  however,  Aq~ 
depends on E~'q.~ (1, ~(02)) via eqs. (3.4). But we seek a parton distribution density 
which, although Q 2 dependent ,  is controlled by the wave function (and hence 
opera tor  matrix element) of the proton and not by a coefficient function such as 
E]'q.~ ; the latter appears  in the operator  product expansion of two electromagnetic 

* We use the index q~ instead of i as in ref. [13]. The parameter ~ is given in terms of the standard 
[6] QCD scale parameter A by/.t = A exp (8~r2/7g 2) for six quark flavours. 
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currents and has nothing to do with the proton. Only such a density would be a 
natural quantity on which to impose a symmetry of the proton wave function, such 
as broken SU(6), at the matching momentum scale Qo. To this end, we introduce 
modified quark-parton distribution densities ~(x ,  Q2, k 2) and A4h=~+--~_ 
defined by 

eq ) d x x " - ' j d  k-rAqv(x, O2, k~.)=a~'V(i.t2)ex p t j~(2) g ~----~j . (3.5) 

It is clear from a comparison with eqs. (3.4) that these densities are independent 
of E~'q.v(1, ~(Q2)). 

Apart from the lack of dependence on E~q.v(1, ~(Q2)), these modified parton 
densities possess an additional advantage. The statement of the Bjorken sum rule 
in terms of them is rather simple to all orders in the QCD coupling. It is now 
well-known [13] that this sum rule, written in terms of G~P-") (x ), is modified to 
O ( g 2 ) .  I n  particular, 

' 1 1 2(02) ) I) dxG~(P m ( x ' 0 2 ) = 6  ~,A.( 1 . . .  -- - ~ - O ( g 4 )  

However,  the sum rule ultimately originates from the physical fact that, for n = 1, 
R~'q.~ is eq 2 times the q-contribution to the ordinary weak axial current so that [13] 

y~(~) = 0 ,  (3.6a) 

Y. [(a'~)P- (a~)~] =7 XgA/gv • (3.6b) 
q 

Eqs. (3.6) are independent of ~,; the dependence on the latter creeps into the 
modified Bjorken sum rule through E~'q.v(1, ~). On the other hand, our A ~  are 
free of the same. Thus the corresponding statement in terms of the A ~  would be 
~-independent. 

More specifically, defining 

f 
1 , v 2 t ~ ( 0 2 )  ' Y n ( g ) "  

=--gadeq ( / z ) e x p  [ -  J~(~) d~ fl-~-~-J , (3.7) 

we have 

AA;/~ "v (Q 2) - A3~/'~ 'v (Q 2) = gA/gv (3.8) 

for all 02 and to all orders in ~. Eq. (3.8) will be of considerable importance to us 
in sect. 6 in the self-consistent determination of the matching momentum scale Q0. 
We merely note here that eq. (3.7) may be rewritten with Q0 as a reference value. 
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Thus 

where 

AA;/~.~ (O2)= A~t~.~ (og) exp [ -  :~o~,, og f l - -~-] ,  (3.9a) 

"q ,v  2 1 a 2) [ f ~'°~) ,-3'-(.q)] 
AM,  ( O 0 ) = ~  - ,(/x exp [ - J ~ ( 2 )  ag--~--~]. (3.9b) 

e q  

The modified quark distribution densities can be easily related to the usual ones 
introduced in sect. 2. By definition, 

AM,.V (O~)  = aA/~ .v  2 , (Q)Elq .v(1 ,  ~(Q2)). (3.10) 

Introduce a function Hq'~(x, Q2) such that 

1 L dxx"-IHq'~(x, Q 2 ) - E ~ q . v ( 1 ,  ~ ( Q 2 ) )  . ( 3 . 1 1 )  

From eqs. (3.4a), (3.7) and (3.10) and the convolution property of Mellin transforms 

it follows that 

1 

" Ix ( ; )  Aq,(x,  O 2 , k%) dYHq., x Q2 -h = , dq v (y, O2, k2) .  (3.12) 
Y 

Analogously, for the quark spin distribution densities we have 

1 

The A ~  of eq. (3.13) are the appropriate modified densities on which we shall use 
the Close ansatz [4]. However,  we also have to introduce modified unpolarized 
densities q,(x, Q2, k~) to which these will be related. Thus we have 

p ~(O2) , _ \~  

M~., (Q2) dx x "-1 d2kT q~(x, Q2, k 2) ~., 2 _ _  . --= = C ,  (Oo) exp - J~(og~ /3(~) J 

(3.14) 

In eq. (3.14) C~ "~ are the unpolarized operator  matrix-elements corresponding to 
a"2 ~ and 3', are the same anomalous dimensions as in the polarized case [13]. 

There is one more point to be made before implenting Close's ansatz. We shall 
work in the approximation where the polarization of the quark-antiquark pairs 
and the gluonic sea can be neglected in comparison with that of valence 
quarks. This approximation can be justified. Contributions from antiquarks (i.e. 

dEkT (t~+ +~_)) and gluons to the structure of the nucleon can be regarded as 
approximately zero at the matching scale Q2 since at this scale, a nucleon is known 
to behave as an effective system with three valence quarks. Positivity of the polarized 
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antiquark (q=) and of the corresponding gluonic distributions then allows us to 
justify the above approximation at Q2=  QZo. The evolution of this initially small 
sea polarization is governed by the singlet sector of the Altarelli-Parisi equations 
[ 14] namely, 

dt 2~- zlSh(y, l) Apqq + 2fAG(y,  t) APqG , (3.15a) 

dAG(x, t )  a(t) fx'dyy[ ( y )  ( y ) ] ,  (3.15b) ,dt = 2zr ASh(y, t) Apc;q +AG(y,  t) APc, G x 

where /tS"(x, t)----Yqfd2kTAqh(x, O 2, k?r) and summation is over all the quark 

flavours; other quantities are as defined in ref. [14]. The sea polarization at deep 
inelastic values of O 2 can be obtained numerically from eqs. (3.15) if the Close 
ansatz and the assumption of the negligible sea polarization are used as boundary 
conditions at O z =  O~. A sea polarization, thus generated, is, however, expected 
[11] to be small at all Q 2 in view of the fact that the relevant polarized Altarelli- 
Parisi functions APG.q(Z ) and APG.G(Z ) -- unlike their unpolarized counterparts - 
do not go to cc as z--*0. This expectation is confirmed numerically in ref. [11]. It 
was found that If d2kT aqhl << If d2kT aq~"l over any range of x and for Q2 values 
that are of interest to us. Note that this does not contradict the claim in ref. [15] 
that the ctq sea is substantially polarized, i.e. that If d2kT Aqhl/[~ dZkr ftl is sizeable 
for large x. The point is that the qq sea itself is negligible except at x near zero 
where polarization effects are small since the diffractive contribution conserves 
helicity. Thus we can ignore the net qq sea contribution to the r.h.s, of eq. (2.2a) 
without any further ado. 

The spin function can now be rewritten as 

ep 4 .--~ ep  t 1 ep  Gv (x, 0 2) = ~t.,,.~x, 0 2) O2),  + 9Gd,v(x, (3.16a) 

ep 1 f h Gq,v(X ' (~)1) = 2 dZkT Aq,, (x, Q2, k2T) . (3 .16b)  

In .view of eq. (3.12), we can now write 

I , , 'd) 'Hq"(  x ) Gq.v(y, O 2 ) (3.17a) 
O2)= T " ,-;' ° 2  "°" ' 

"°0 = I f  "" Gq.v (x, O 2) d2kT Aq,,(x, 0 2, k?r) . (3.17b) 

In our notation the correct relations among the valence quark distribution densities 
following from Close's broken-SU(6) ansatz [4] at 0 2 = 0 2 are 

aa~(x, 0 2, k ~r)= ~,,(x, 0 2, k ~.)-~d,,(x, O 2, k ~r) , (3.18a) 
"s  

Ad.(x, O~, k ~.) = -~d .  (x, 02, k ?r) . (3.18b) 
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Thus eqs. (2.4), (3.17b) and (3.18) imply the relations 
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Gu.v(x, O2)=½ f 2 kL - "~o d kT-~l [uv(x, Q~, k 2 )-~dv(x, Q2, k-~)], 

Gq,.(x, O 2 )=½ d2k-r [ - '  ° ~d~(x, 02, k-I-)]. 

(3.19a) 

(3.19b) 

We see how the kL/lk] factor in the kx integration changes the naive version of 

Close's relations. 
Eq. (3.8), which is the equivalent of the Bjorken sum rule, may also be rewritten 

at Q2=  Q2. Eqs. (2.4), (3.7), (3.8), (3.18) and the vanishing contribution of the 

sea-quarks to the p-n combination imply 

I d x f  2 kl ' d k-r ( ~ [ ~ ( x ,  O 2, k2)-½dv(x, 02, k~)] = gA "gv (3.20) 

In the naive version the factor kL/]k[ is missing and instead of tJ~, d~ one has the 
usual Uv, dv so that the l.h.s, of eq. (3.20) reduces in that case to the bad SU(6) 

value .~ by flavour normalization. 

4. Patton k-r and related target-mass effects at Q2 = Qo 2 

Our eventual goal is to predict GeP(x, Q2) in a region of fairly high Q2 (> 10 GeV 2 
say). Effects due to primordial parton transverse momenta and the target mass (the 
two are, in fact, related) might be neglected there since O((k~.)/Q 2) terms would 
be quite small. However,  at Q2 = Q2o, Ge~(x, Q2) is related to O((k~.)/Q~) terms 
arising due to the presence of kt./Ikl in eq. (3.19). Since Q0 is expected [9] to be 
less than 1 GeV, such terms must be considered. This we do by following the 
covariant formulation of the parton picture due to Barbieri et al. [5]. 

In this formalism, the quark interacting with the photon is put on the mass-shell. 
This leads to the emergence of the right [16] subasymptotic scaling variable 
~5 =2x[1  +(1 +4M2x2/Q2)I/2] -1. Moreover,  (k%)/Q2 is related [17] to the only 

available parameter  M2/Q~. Consequently, the transverse momentum effects on 
Ciose's ansatz manifest themselves as the target mass effects. The main feature of 
this formulation, which is of interest to us, is the following: for all parton distribution 
densities the separate dependence on x and k~- is to be combined into a single 
dependence on the covariantly constructed variable p = 2k • pM 2, where p is the 
four-momentum of the proton. Thus, in particular, fly(x, O 2, k~-)= uv(o, O 2) and 
ddx, O 2, k%)= dv(p, Q2). Moreover,  19 is bounded by unity (since the spectator 
system is timelike with ( p - k ) 2 > 0 )  and varies [5] in the range ~:~<19<1. con- 
sequently, the kT integration in the usual infinite-momentum-frame calculations is 
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related to a 0-integration by 

I d2kT ~[f(x,  k 2 ) = x(2x - /~)-lzrM2 f l dp f(p) (4.1) 

for any suitable function f. 
From the above discussion it follows that eqs. (3.19) can be rewritten as 

~ e p  m G,.~ (x, Qo 2) x 
2(2x - ~:o) 

[&t )~ (¢o ,  0o2) : * -~oD~(~:o, Qo2)], (4.2a) 

where 

X 1 ^ 

(~,],% (x, O 2) = 2(2x -s%) [ -  ~:°D~(sc()' O2)], (4.2b) 

Co = 2x[  1 + ( 1  + - - - ~ o 2  ) 4 M 2 x  2, 1/2.1j 

(4.3a) 
1 

lfr~(~°' 02°) = zrM2 r do t~(p, 02),  

1 

/)~(~:0, Q2) = ~rM 2 f do d~(p, Q02). (4.3b) J~ o 

Eqs. (4.2) and (4.3) are our final statements on the Close ansatz [4] with partons 
kT and related target-mass effects taken fully into account. We further note that 
the statement corresponding to the Bjorken sum-rule eq. (3.20) at fixed Q2 = Qg 
can now be rewritten as 

So ldx  (1 4M2X2/o2)l/2[U,,(~o, 02) -'̂ 3D~(~o, O~,)] =--.gA (4.4) 
+ gv 

5. Evolution to higher Q2 

e p  Eq. (3.9a) relates moments of Gq.v(x, Q2) at two different scales Q2 and Q2, 
respectively. This equation can be inverted in a standard manner [6]. Convolution 
properties of the Mellin transforms, when combined with eqs. (3.7), (3.9) and 
(3.17b), lead to the following relation: 

"°P Ix' 7dY T( x o2~ . o p  o~.v(x,  o2 )  = \-;,~ja,.v(y, oh,  (5.1) 

where we introduced the function T(x, Q2/Q2) defined as follows: 

i OVO )- exp r 
I, L - d~(oS) - ~ - )  J (5.2) 
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"cp Q2. Eq. (5.1) describes the evolution of the function Gq.v from Q2 to The use of 
eq. (3.17) with the function H as defined by eq. (3.11) now leads to the relation 

Gq'~(x' 02)= y ~. z y, O 2 T '-~o (~q'°v(Z' 02°)" (5.3) 

Eqs. (5.3), (4.2) and (3.16a) together constitute our central result. The H and T 
functions can be extracted via eqs. (3.11) and (5.2) from the knowledge [6, 13] of 
Elq.v(l, ~(Q2)), T,,(g) and fl(~). Thus, given the parametrizations of U~ and/)~, one 
could obtain G~P(x, Q:) from eq. (5.3). We do this in the next section. 

By virtue of eqs. (3.8) and (3.17b), it follows that the function ¢~CP(x, Q2)= 
' "~" indepen- 4,~0 , ,o2x ± l,d.~v (x, Q2) and the corresponding G (x, Q2) obey the Q2 

dent unmodified Bjorken sum rule 

1 
I dx G~O-~"(x, Q2) = (5.4) " ~gA/gV. 

) 

Next, we have from eq. (5.3) that 

1 1 1 1 

I I I Io Gq, , , (x ,  O 2) = d t  Hq '~ ( t ,  O 2) ds T(s, 0 2 / 0 8 )  
) ) ) 

1 
I "ep 

I 

~ep dx Gq.v (x, O 2) 

(5.5) 

where in the last step eqs. (3.11) and (5.2) [with n = 1, and y~ = 0] have been used. 
However, it is known [13] that, to second order in ~, 

E]q.v(1 g(Q2))= 1 ~2(Q2) 4-O(g 4) (5.6) 
' 4,n.2 

is flavour independent. Eqs. (5.4), (5.5) and (3.16a) lead to the result 

I ~ a gA[1 g2(O2) F O(~,4)] . (5.7) 
, dx G~-e"(x, Q2) = 6 gv 4~r 2 

Thus our expression for G(x, Q2) obeys the correct modified [13] Bjorken sum 
rule to O(~2). 

6. N u m e r o l o g y  and discussion 

We shall use the theoretical model developed in earlier sections to make numerical 
predictions on the spin structure function GCP(x, Q2). Our numerical work will take 
only the lowest order QCD into account, although the formalism developed above 
is quite general. The mass-dependent quark distributions/~v(s¢0, Q~) and Uv(s¢0, Q~) 
which enter our final eq. (5.3) through GqPv of eqs. (4.2) are obtained from the 
parametrizations of Buras et al. [18] which make use of the experimental data 



376 A.S. Joshipura, P. Roy / Polarized electroproduction 

around 0 2 -  1.8 (GeV) 2 and fix the Q C D  scale A 2 = 0.09 (GeV) 2. The use of such 

parametrizations,  determined from lowest order QCD,  may not be strictly justified 
around O0 - 0.5 GeV. However,  we have chosen not to use some dynamical models 
such as the bag model or the harmonic oscillator model [8, 9] and introduce more 
parameters.  Instead, in the spirit that this is the first detailed p a r t o n / Q C D  type of 
a model for GCP(x, 02), we have preferred to extrapolate lowest order  QCD to its 
extreme. All our results should thus be taken modulo (rather significant) higher 
order corrections in the effective Q C D  coupling g,(O2). 

The value of O~ which is obtained from a numerical evaluation of the Bjorken 
sum rule [eq. (4.4)] is 0.26 (GeV) 2. The major  dilution of gA/gv (compared to the 
SU(6) value .~) comes from the factor (1 + 4 M 2 x 2 / Q 2 )  '/2 in the denominator  of eq. 

(4.4). The value of gA/gv is not particularly sensitive to the dependence of the 
distributions /-)v(~o, Q~),/9~(~%, Q~) on the nucleon mass M. The use of the corre- 
sponding x-distribution leads to a slightly lower value (namely 0.25 GeV 2) for Q02. 
In what follows we adopt this value of Qo and the parametrizat ions of valence 
quark distributions in terms of the x-variable. This value of Qc~ implies (for all Q2) 

1 

dx d-krAu~(x ,  0 2 , k~.)= 1.01 , (6.1) 
| 

1 

I0 dxl /6.2) 
These are significantly diluted in comparison with the corresponding integrals for 
the spin densities which coincide with the broken SU(6) values (respectively ~ and 
--~) following from Close's original ansatz [4]. 

The solid line in fig. 1 is our prediction for the shape of xGCP(x, 0 2) at 0 2 = 
4 (GeV) 2. Also shown (dashed line) is the prediction that one obtains if parton k-r 
is completely neglected. Evidently, the dilution due to transverse momen tum ettects 

0.08 

0 0 6  

0.0/. 

xG"P (X~Qo~) 

O.Ooo t.O 

' ' I ' ' ' I ' ' ' I ' ' ' I " ' ' 

/ %% 
s % 

s %% P %%% 

02 0./,. 0.6 0.8 
x 

Fig. 1. xG'"(x, 0 2) as function of x for (92 = 4 GeV 2. The dashed curve is for the corresponding quantity 
with k~ ignored. 
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(a) 0.06 ' ' ' 1 ' ' ' i ' ' ' I ' ' ' I ' ' ' 
O2:10 GeV 2 

,,~,,,~.,~ - - -  Q2:SO GeV 2 

o.ol, F ~ --- o':moc,,v' 

xG~(x,O z) , , ,  

0.02 " ~ N ~ .  

, 1 I , i , l t i • ~'"~ 0"00.0 ' 02 0.4. 0.6 0.8 ' 1.0 
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_ _  02:50GeV 2 
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X 

Fig. 2. (a) xGCp(x, 0 2) as funct ion  of x for Q2 = 10 G e V  2 (full curve),  O2 = 50 G e V  2 (dashed  curve) 

and  02 = 100 G e V  2 (do t ted  curve),  respect ively .  (b) As  (a) but  wi th  k-i- ignored .  

is quite significant. This figure has been given only to demonstra te  this effect rather 
than for comparison with experiment  since our theory is not so reliable at such a 
low value of Q2. However,  the order of magnitude between the solid and the 

dashed lines does not change much with Q2 even up to 100 GeV 2. The point is 
2 2 

that the effects due to parton transverse momenta  are largely controlled by kT/Qo 
(rather than by k~-/Q 2) in a Q2 insensitive way. Fig. 2a displays our predictions 
for xGeP(x, Q2) at three different values of Q2 = 10, 50 and 100 GeV 2, respectively. 

(Fig. 2b shows the same plots but with parton-kT effects neglected). One sees the 
well-known scaling violation pattern,  i.e. the decrease (increase) of the structure 
function for large (small) x as Q2 goes up, familiar from the study of the unpolarized 
non-singlet structure functions. This qualitative similarity in the two cases arises 
from the fact that the scale breaking in both cases is governed by the same anomalous 
dimensions. The same pattern is also apparent  in fig. 3 which displays the variation 
(with Q2) of the integral ~dxGeP(x, Q2), over small bins x2-xl in x. These 

quantities are expected to be measured [2] in forthcoming C E R N  experiments on 
polarized UP scattering and would provide a testing ground for the model proposed 
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Fig. 3. The integrals ~ ~01 dx GeP(x, O 2) as functions of O 2 for z = 0.1 to 0.6 in intervals of 0.1. 

here. One important feature in all these figures is the rather weak (~2 dependence 
of the plotted quantities. In view of this, the experimental extraction of the 
x-dependence or shape of G ~ would be easier compared to the study of its (~2 
evolution. 

In conclusion, we have shown that the low-energy description of the nucleon 
suggested by Close [4] yields a theoretically consistent picture of polarized deep 
inelastic scattering provided the transverse momenta of the quarks are properly 
taken into account. Although the average transverse momenta of the quarks are 
not large compared to the usual deep inelastic values of x/Q -~ [17], they produce 
significant effects at the matching momentum scale (Q0) where the low-energy 
description of the nucleon is supposed to match with its parton picture necessary 
for the deep inelastic domain. This is a consequence of the fact that (k~-) is not 
very small compared to Q02. The dynamical higher twist effects (i.e. those arising 
from the presence of operators with twists >2  in the operator  product expansion 
of currents) are completely neglected in this analysis, although our retention of the 
target mass does account for the kinematical higher twist effects at Qo 2. The former 
effects could significantly affect our ansatz (at Q2) in the x - 1 region even if they 
are unimportant [19] at higher Q2. Moreover,  as x ~ 1, there will be additional 
higher twist effects arising from the kinematically implied [20] off-shell nature of 
the quarks. We have neglected these effects in the spirit of the covariant parton 
model of Barbieri et al. [5]. Similarly, for x very close to zero, higher order QCD 
effects may change our results. Nevertheless, we feel that our model has a good 
chance of being valid over a substantial range of x in between the end values. At 
least, it can provide a starting point for the comparison of the forthcoming muon 
data with theory. 
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Appendix 

RELATION BETWEEN SPIN AND HELICITY DISTRIBUTION DENSITY 

Descr ibe the helicity states of a qua rk -pa r ton  by I+). On  the o ther  hand, let its 

spin-states - spinning along the longitudinal (relative to the proton)  z-direct ion - 
be designated M', ~). The  two types of states are related by the polar  rotat ion 

(azimuthal complicat ions being inessential): 

[+) = cos ½0H') + sin ½0l+), 

I - )  = - s i n  ~01'[') + cos ½01+), 
(A.I) 

where cos 0 = kt./Ikl. Eq. (A.1) tells us that  the probabil i ty of finding a positive 
helicity quark  within the p ro ton  is cos 2 ½O times that  of  finding a spin-up quark  

plus sin 2 ½O times the same for finding a sp in-down quark,  and similarly for a quark  
of negative helicity. Thus  we have 

q+(x, O 2, k~-) ~ = c o s  ~Oqr(x, Q2, k2.)+sin 2 1 gOq,(x, O 2, k ?r ) , 

q (x, O 2, k%) = sin 2 ½0q,t(x, O 2, k~) + c o s  2 ~Oq~(x, Q2, k?r) " 
(A.2) 

F rom eqs. (A.2) follows the relation 

Aqh(x, O 2, k~-) = Aq~(x, O 2, k 2) cos 0,  (A.3) 

which leads to eq. (2.4). We note  fur ther  f rom eq. (A.2) that  

q(x, O 2 , k 2) =q+(x, O 2 , k~.)+q_(x,  O 2 , k ~ ) = q r ( x ,  Q2, k2)+q~(x ,  O 2 ' k 2 ) ,  

as expected.  A n  integrated version of eq. (A.3) also follows f rom the covariant  
par ton  model  approach  [3]. 
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