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A version of euclidean lattice QCD obtained by introducing the fermions using Susskind's 
method is described and certain properties discussed. A U(I) axial current having the correct axial 
anomaly in the continuum limit is identified. We find A m~,/Ae.suss = 28.78 for SU(3) with 4 
flavors. 

1. Introduction 

Lattice gauge theories are thought to provide a convenient regularization of QCD 
in which non-perturbative phenomena can be systematically studied. Results of 
recent Monte Carlo studies by Creutz [1] (which have been checked by many 
authors) are consistent with the properties of asymptotic freedom and confinement 
of static quarks. 

The next important step is to analyse the effects of the introduction of dynamic 
quarks. Various proposals for Monte Carlo calculations for actions with fermions 
have already been presented [2]. The results for models in 1 dimension are rather 
encouraging but improvements are probably necessary for a feasible programme on 
a sufficiently large lattice in 4 dimensions. 

The question then arises as to which is an optimal lattice action to use. The most 
naive fermion lattice action (obtained by a naive discretization of the continuum 
Dirac action) leads in the continuum limit in 4 dimensions to a 16-fold degeneracy. 
Even for initial studies of Monte Carlo calculations this is unsuitable because 
asymptotic freedom is lost for the SU(2) color group and almost lost for SU(3). 
Wilson's modification [3] of the naive fermion action cures this problem. Wiison's 
action leads to the expected continuum limit [4, 5] at least in renormalized perturba- 
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tion theory. Moreover, Karsten and Smit [5] have shown that the correct U(I) 
anomaly is reproduced and there are also indications from Kawamoto's work [6] that 
chiral symmetry is realized in the Nambu-Goldstone mode in the continuum limit of 
Wilson's formulation. 

Thus, one may expect that Wilson's action will ultimately prove to be the best for 
a realistic study of quantum chromodynamics. However, a zero physical mass is not 
natural to the theory and the bare mass has to be carefully adjusted to extract 
physically relevant information. At least for initial Monte Carlo studies one would 
prefer to have an action that has as few parameters to be varied as possible, 
especially when one is interested in studying the approach to the continuum limit. 

Susskind [7] has proposed a method of putting fermions on a lattice in such a way 
that no mass counter-terms are needed for zero bare quark masses, which might 
therefore be more suitable for initial Monte Carlo calculations [8]. All of the studies 
of Susskind's method (known to the present authors) have been made in the 
hamiltonian formalism. It is the purpose of the present paper to present 
the formulation on a euclidean lattice in a systematic way and to discuss some of the 
properties of the resulting theory. 

The Susskind formulation on a euclidean lattice is discussed in sect. 2. The action 
is the naive one on which constraints are imposed as discussed in the hamiltonian 
formalism by Chodos and Healy [9]. Such an approach makes the formulation 
especially transparent and is more amenable to theoretical analysis than the original 
1-component formulation of Susskind. By a naive extension of the approach of 
Chodos and Healy to the euclidean lattice theory the degeneracy is reduced to 
nf -- 2 ~/2 in v dimensions, double that in the continuum time formalism. However, in 
a euclidean formulation fermion fields X and ~ are independent fields and by 
making them live on alternate sites the degeneracy is reduced to 2 ~/2- 1. 

In sect. 3 the relationship between the correlation functions of the naive theory 
and Susskind actions is analysed via the weak coupling expansion. The Susskind 
theory has a hidden cubic symmetry which allows all divergences in fermion 
self-energy to be absorbed by a rescaling of the fermion fields. It is argued that the 
expected continuum limit results, at least if X and ~ live on all sites. Complications 
for X and ~ on alternate sites are pointed out but not completely analysed in this 
paper. In sect. 4 we obtain the transfer matrix for both cases. This exhibits a 
doubling of the fermion species with respect to the hamiltonian formalism for the 
first system and no such doubling for the other. 

In sect. 5 a U(1) current with the correct U(1) anomaly (appropriate to 2 ~ flavors 
all with same axial charge) is identified even in the naive theory. This current 
involves ~ and ~ at non-nearest-neighbor lattice sites and has the same classical 
continuum limit as the naive U(I) current. However, since the fermion propagator 
has many poles, currents with different point splittings can give different phases to 
different fermion species. Indeed in the naive current, the axial charges add up to 
zero [5] whereas in the new current they add up to n f. 
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In sect. 6 the ratio of the Susskind lattice A-parameter, AL.suss, to the continuum 
A-parameter, Ami n (in the minimum subtraction scheme), is calculated. This ratio is 
relevant when making phenomenological estimates using Monte Carlo [1] or strong 
coupling [ 10, 11] methods. 

Sect. 7 contains a short discussion of our conclusions. 

2. Euclidean lattice formulation of Susskind fermions 

We work on a y-dimensional euclidean hypercubic lattice (~ = 2 or 4). The lattice 
spacing is a, and the lattice points are labelled with xt, = nt, a, nt, = O, -~ 1, ± 2 .... ;It = 
1,2 .. . . .  v. a ,  = vector along the It direction of length a. Fermions are represented by 
Grassmann spinor variables ~k(x), ( (x) .  The Fourier transformed variables 

~ , ( k )  = a ~ , e - ' k x ~ ( x ) ,  
x 

~ ( k ) = a V ~ e ' k x ~  ( x ) ,  (2.1) 
x 

are periodic in each It direction with period 2~r/a. Thus momenta of the independent 
fields are restricted to an interval of length 2~r/a which can be chosen as 

D = (k;  - 'zr ~kt ,  <Tr } a a ,Vit . (2.2) 

Introducing the notation 

we have 

fk= fk e d'k (2.3) 
D 

- -  - i k x  ( x ) - ~ e  @ (k) .  (2.4) 

The naive action for free fermions on the lattice, obtained from the continuum 
action by mere replacement of the derivative operator by the difference operator is 

(2.5) 
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where 3'~, are euclidean Dirac matrices 

{y~,, y, } = 2 3~,~, 

y~+ =y~,. (2.6) 

In terms of Fourier transformed variables the action is 

So(~p ) = - fk ~ (k )S(k )- '~ (k ) (2.7) 

with propagator 

S(k) = ,Y, aSmk,a+rn (2.8) 

In the limit a --, 0 the propagator splits up into separate pieces, one for each of the 2 ~ 
subregions of D, and hence the naive action describes 2" free fermions in this limit. 
The idea of Susskind [7] to reduce this degeneracy is to reduce the number of 
allowed spinor components at each lattice site to one. To discuss these points 
systematically it is useful to pause and make some further definitions. 

First we divide the region D into 2 ~ sectors in the following way. Let G be the set 
of ordered sets of different indices (including the empty set q~) 

G =  { g ; g =  ( ~ , , , 2  . . . . .  ~ts), I~<#. </~2"'" ~<v}. (2.9) 

Then for g E G define ~'s' the vector with components 

rr for/~ ~ g ,  
(~rg)~, = a '  (2.10) 

0, for t~ ~ g, 

and we decompose D according to 

D =  [,..J D s, (2.11) 
gGG 

with 

Ds=(k;k=(k~ ,  +rrg)mod 2rr, } 

{ ,, } D , =  k;-~-~a~<k~,<~a,V/~ . (2.12) 
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Further it turns out convenient to give G the structure of an abelian group by 
introducing the product (g, g' ~ G) 

g g ' = g " E G ,  

I~Eg" = t t E g U g ' ,  Izq~gng', (2.13) 

and it follows that 

~rs + ~r~. = ~rgg, m o d ( - ~ ) .  (2.14) 

Now for g ~ G we define new fields, 

?IS( k ) = cMg~/ ( k + Irs), 

~ S ( k ) = ? ~  (k + ~rg) Ms + , (2.15) 

where c is a normalization constant to be chosen later, and M s matrices defined by 

Mg -=M~,,M~, 2 • ..M~,, g e G ,  (2.16) 

with 

where 

M r -- iTs"l'u, (2.17) 

{)'5,)',) = 0 ,  Y5 + =)'5, ),~ = 1. (2.18) 

The important properties of the matrices Mg are 

(i) M~- Mg = I, 

(ii) M~- T#Mg -- e'".','~.. (2.19) 

Obviously, only the fields ?tg(k) with k E D, are independent; fields with momenta 
in other regions are related: 

Og( k + 7rg,) = Mg Mg~g,?lgg'( k ). (2.20) 

It is now easy to see the degeneracy, for using the definition (2.15) and the properties 
(2.19) the action can be written, 

So(q~)___lc I-z y~ f OS(k)S(k)-,gTg(k), (2.21) 
gc( ;  k,~ 
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where S(k) has the behavior of the propagator for a single ferrnion in the region of 
integration. Here, 

£, g= £ EDg (2~r) ~" d~k (2.22) 

Each qg(k) represents an independent fermion species (which we shall call flavors) 
in the classical limit a ~ 0. 

Now the naive action So(~) is invariant under the set ,q of 2 ~ discrete transforma- 
tions 

t~( X ) ..-* eiX% Mghb( x ) ,  

(x)  -~ eiX",~ ( x ) M f  , (2.23a) 

or in momentum space 

~ (/,)-, Mfi (k +,,~), 

¢ (,)-,q7 (, +,,AM; . (2.23b) 

These (so-called doubling transformations) are simply (up to a sign) a permutation 
of the flavors: 

(2.24) 

where eg, s = -+ 1 is given by 

g , , g ,  = ~,, ,M,,,. (2.25) 

The method of Susskind [7] to reduce the degeneracy amounts to a maximal 
diagonalization of the set .~. This has been discussed in the hamiltonian formulation 
by Chodos and Healy [9]. One chooses a maximal subgroup H c G such that 

[Mh, Ms,] = 0, V h , h ' E H .  (2.26) 

Any such H has 2 ~/2 elements. It is then consistent to impose the constraints (i.e. 
restrict the Grassmann "measure") Vh E H: 

e"~,~t~(~) =~(~), 

e ' ~ " ~  (x)/Qh = ~  (x ) ,  (2.27) 
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where 

ff'lh = Mh/)~ h = Mh + , (2.28) 

with ~'h some set of eigenvalues of the M h satisfying 

~ h h h  , = e h , h , ~ h h ,  , Vh, h' E H. (2.29) 

We see then conditions (2.27) are equivalent to 

Pxi(X) = i ( x ) ,  (2.30) 

where Px is a projector onto a 1-dimensional subspace 

| . ^ 

Px = 2~/2 ~ e'X"hMh, 
h E H  

pd _= px, trP x = 1. (2.31) 

In other words if(x) is reduced to a form hating only one independent Grassmann 
variable X(X) per site: 

i,~(x) = e , ( x ) x ( x ) ,  

~ ( x )  = e~ (x)y((x) ,  (2.32) 

where e(x) is a c-number spinor satisfying (2.30) and e ( x + 2 a ~ ) = e ( x )  and 
normalization e ÷ (x )e (x )= 1. The action is now reduced to the Susskind form 

S,;(x) = So( eX) 

) , 

(2.33) 

with 

C~(x) =e ~ (x)y~e(x + a~). (2.34) 

In the appendix we give C~(x) for a particular choice of H, {~h } and realization of 
the Dirac matrices. This may be of use for application in Monte Carlo programmes, 
but for weak coupling and other considerations it is generally more convenient to 
calculate in a representation independent manner. 
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The action S~(X) now describes only 2 "/2 free fermions in the continuum limit 
a -,  0 since not all the ~tS(k) are now independent. Indeed for h E H 

O h( k ) = c ,hO*( k ), (2.35) 
with the phase cg, h given by 

^ + 

cs,h=MshMhMg . (2.36) 

The independent fields can be chosen as ~ k ) w i t h f E  F, where F is a subgroup of 
G such that 

G = H F  (2.37) 

and the constrained action becomes (setting c = 2 v/4) 

S ~ = -  Y~ f ~ / ( k ) S ( k ) - ' ~ l / ( k ) .  (2.38) 
/~v" k,¢ 

The introduction of gauge fields is now straightforward. The naive lattice action is 

- U~,- (x  - a~,)¢(x - a~,)) + m e  (x)~,(x)] (2.39) 

with S(U) some suitable lattice action for the pure gauge part involving matrices 
U,(x) belonging to the fundamental representation of the gauge group, associated 
with the directed link from x to x + a~,. The Susskind formulation [7] then amounts 
to constraining the Grassmann "measure" precisely as for the free case described 
above. 

The fermion degeneracy of the theory described so far is still a factor twice as 
large as in the hamiltonian formulation. In fact we can reduce the degeneracy in the 
euclidean formalism by half by restricting ~(x)  to live on sites with Y.~,n~, even (we 
will refer to these as even sites), and ~(x)  on sites with Y.~,n~, odd (odd sites), then 

¢ (k) --- - ¢  

¢(k)= (k (2.40) 
where (qr~)~ = ,r/a for every ~. The constraints (2.27) and the formalism described 
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thereafter can be applied as before. The action is as in (2.39) with 

(x) (x)p+(x), 

where 
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(2.41) 

U~,( x ) = expiagA,,( x ), 

A . ( x )  = '  ' ' ~hA,(x) ,  (for gauge group S U ( N ) ) ,  

[~', ~J] = 2/fuk)~ k, tr ~'~J = 28 , J  (3.1) 

we may make an expansion in powers of g. A gauge-fixing term is necessary and a 
ghost field is introduced as usual [4]. The difference from the naive Feynman rules is 
only in the fermion propagator. In any calculation, only the projected components 
P_ (x)~k(x) and ~/(y)P+ (y) enter and the free propagator is 

( p _ ( x ) q ~ ( x ) ~ / ( y ) p + ( y ) ) = P _ ( x ) S ( x - y ) P + ( y ) ,  (3.2) 

where S(x) is the naive propagator, 

, ] '  
• "k [ ~ iy~'a sin k~,a (3.3) 

Because of the presence of projection operators as in (3.2), translation invariance is 
not evident. As an illustrative example we will consider one piece of the fermion 

3. Nature of the counterterms 

In this section we will compare the structure of the amplitudes for the action with 
constraints with that for the naive action, i.e. one with a naive discretization in the 
fermion sector. For this it is convenient first to consider a weak coupling expansion 
in the coordinate space. Introducing the exponential parametrization 

P_(x)  = ½(I ± ( -  1)~-""")Px. (2.42) 

Only 2 "/2-- 1 of the fields Ot(k) with k E D, are now independent. Note that the mass 
term ~(x)q4x) vanishes identically with the extra constraint (2.40). Other mass 
terms which can be constructed are automatically momentum dependent before 
taking the classical continuum limit a --, 0. 
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loop correction to the gauge boson propagator (fig. la): 

D , ~ ( x , y ) = - ( i a g )  2 ~, D , o ( x - z ) t r P + ( z ) Y  o 
x p , w o  

× P_ (z + ap)S(z  + .~ - w)p+ (W)VoP (w + ao) 

X S ( w + a o  - z ) D o . ( W - y ) .  

We note the identities 

P ,  (x)y~, =7~,P~(x+a~,) ,  

P_ ( x ) S ( x - y )  = S ( x - y ) P +  ( y ) ,  

p:._(x) :p:(x).  

To see (3.5b), 

P 

(3.4) 

(3.5a) 

(3.5b) 

(3.5c) 

)-1 
( x ) S ( x  - y )  = 2-v/2-  '(1 - e i~,x ) 2 Mhe'hx£ eik(x " y) ~ i'6,a - l sin k~,a 

h 

= 2-~ /2- '  ~ fkeik(x-Y)[ ~iT~ ,a - ' s in (k  + ~'h)~,a] - '  

× Mhei"h~(l + e ' ,Y) ,  

and after a shift k ---. k + w h, 

= f eik(x ' y'( ~,iy~a " ' s ink~,a)- 'S2-" /2Mhe"hY½(1 + e ' ,Y) .  
"k h 

Using the identities (3.5), we may bring together all the projection operators in eq. 
(3.4). We get 

/ ~ ( x ,  y )  = - ( i a g ) :  2 D~,o(x - z)trP+ (x)  
Zp,WO 

X y o S ( z + a  p - w ) % S ( w + a , ,  - z ) D o ~ ( w - y  ). (3.6) 

x ' z ~ w  y 
(a) 

Q 
(b) 

Fig. 1. Diagrams for l-loop fermionlc contribution to gluon propagator. 
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After a relabelling we have 

D..(x,y)=-(iag) 2 E D.o(x-Y-z)trP*(z+Y) 
go, wo 

× "toS( z + a o - W )YoS( W + a a - z )Dov( W ) . 

Because of the explicit y dependence in P+,  translation invariance is not evident. 
For analysing this situation we will first consider the case in which ~k and ~ live on 
all sites [eq. (2.30)]. The present case shows some new features which will be 
mentioned later. When the constraint of eq. (2.40) is absent, the only change in eq. 
(3.6) is to replace P+_(x) by Px of eq. (2.30). With this change we will consider the 
self-energy part of eq. (3.6) in momentum space: 

Hpo(l , / ' )  = _ (iag)2fk t r2-" /2~Mhyo 
I k2 h 

×S(k,)VoS(kz)f e x p i { ( - l + T r  h + k , - k z ) z  
2,W 

+ ( - - k  I + k  2 +l')w+klo + k 2 o  } 

---fk t r2-V/2~Mhy°S(k2 + l ' )?°S(k2) 
2 h 

X exp i(k2, , + ( k  2 --t- I ' ) o ) ~ ( l '  - I q- ?rh). (3.7) 

Again momentum conservation / ' =  l is not apparent. However, with k 2 = k + ~rg 
where k E D,  we get 

H p o ( l , l ' ) = - ( i a g ) 2 £  t r 2 - ~ / 2 ~ M s M h M ~  
, e~ g 

× 7pS(k + l ' )%S(k  )expi(ko + (k + / ' ) p )  

× 8 ( 1 ' - - l + ~ r h ) ,  (3.8) 

where we have used the identity (2.19). Since 

EMgMhM~- = 2vSh~, (3.9) 
g 



216 

we finally get 
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- ' I 
l-Ipo(l, l ) = - (lag)22 "/2 tr yoS( k + I') 

k,e;, 

XYoS(k )expi(ko + (k + l ') ,)3(l '-  l), (3.1o) 

which explicitly shows momentum conservation. Note that the only difference with 
respect to the naive Feynman rules is to restrict the range of fermion loop 
momentum to D o after all momentum conservation &functions are integrated out, 
and to multiply the result by 2 "/2, the number of "flavors", 

We will now go back to the original case of q~ and q7 on every other site. Eq. (3.6) 
becomes 

Du,(x,y)---(iag) 2 ~ Duo(x-z) 
z O , w o  

X½(l+(-l)~:)Uoo(Z-w)Do,(w-y).  (3.11) 

Note that the constraint that ~ lives only on even sites has entered into this 
expression. As a consequence there is indeed no translation invariance at the level of 
one lattice spacing. In momentum space eq. (3.11) becomes 

~u,(1, r) = D.(Z)½(SII- r) + ~(:- r + ~))~o°(r)Do,(r). (3.12) 

Thus because of vacuum polarization corrections, the gluon can change its momen- 
tum in steps of ~r~. This is to be expected since ~(k)  and ~(k + ~'~) can propagate 
into one another [eq. (2.40)], so that Au(l ) mixes with Au(l+ ~r~). We may form linear 
combinations which do not mix. These have the propagators 

}j2] -~a2 i,- +- cos2a/pl +1-I2(1) 3~,~+(gaugeterms). (3.13) 

For small l, the behavior is not appreciably altered from the usual case. 
We will now consider the example of a second order correction to the fermion 

propagator (fig. 2) 

S(x-y)=½(iag) 2 ~ P  (x )S(x -z )e+(z )  
z , w  

x ~ue_ (z + ~)S(z + ~ - w)?+ (w)y,?_ (w + a,) 

X S(w + a, -y)?+ (y)D, ,(z-  w). (3.14) 
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X-Z ~ W y  

Fig. 2. A d i ag ram con t r ibu t ing  to the second-order  correct ion to the fermion propagator .  
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We may again move the projection operators together. We get the naive amplitude 

sandwiched between P_(x) and P+(y). Thus the corrections to the propagating 
fermion components  are exactly the same as in the naive theory. We will write the 

self-energy Y2(p) in momentum space with an integration over the range D o only: 

2(p) =½(iag)Z~., f k y~MgS(k)M~%D~(k+Irg +p). 
g ,e~ 

(3.15) 

We may regard D~,,(k +p + ~rg) for g v L q~ as the propagator for a new gauge boson 

which causes the flavor transition f--,  gf. Since 

D[,.(k+~rs) 8~,.(~.4a -2" 2 kpa,. ' ~ SIN 

P 

+ 4a - 2 ~ 8(~r0~,~,/aCOS2 kpa 
,o 

- I  

+ gauge-fixing terms, (3.16) 

such gauge bosons have a (mass) z =  4a-2Y~o8(,,0o.~/~ which diverges in the con- 
tinuum limit. Now all momenta of both fermions and gauge bosons lie in D o. For 
g E H there is no flavor transition, but nevertheless we may regard the exchanged 
gauge boson as new. 

We may now generalize our results to arbitrary diagrams. We may assign a loop 
momentum to each fermion loop. Then in the case q, and ~ live on all sites the effect 
of projection operators in fermion loops is to simply restrict the loop momentum to 

D o and to give a multiplicative factor n r, the number of "flavors". In case f lives 
only on even sites, gluons when interacting with fermions end on even sites. As a 
result in any process involving fermion loops, gluon momentum is conserved only 
modulo ~'~. However, in the continuum limit such transitions are very weak and we 
expect that even with the divergences encountered in renormalized perturbation 
theory, usual continuum limit results. However, we will not pursue this problem 
here. 

In case of open fermion lines, the projection operators can be moved to the ends 
and the naive Feynman rules are valid. The connection between the full fermion 
propagators of the one component  formalism and the constraint formalism is 

(X(X)~((y)) = (e,,(x)~,,(x)f~(y)e~(y)) 

= e,,(x)S'a(x - y )e~(y ) ,  (3.17) 
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which becomes in momentum space (for the massless case) 

S '(  p, p ')  =fq%( p, q)(y,),Be~(q, p')q,S'(q2). (3.18) 

Here %( p, q) is a sum of &functions. Similar relations are valid for other correlation 
functions involving fermions. Note that the coefficients of q~ in eq. (3.18) are 
direction dependent. Hence we need a separate argument to show that all diver- 
gences (as a ~ 0) in (3.18) can be absorbed by a single rescaling of the fermion fields. 
However, our arguments for the constrained formalism imply that the self-energy 
and vertex corrections are independent of the choice of the groups H and F. Thus 
the quantum corrections for all actions in the one-component formalism are same, 
independent of our choice of e(x). In particular consider the naive fermion action 
with equal couplings along the different axes, viz. 

S = ½a3y,, q, (x)'r~,(gg(x + a~,) - ~ ( x  - a~,)) + gauge interactions. (3.19) 
x/.t 

This has the invariance under an interchange of axes, viz. 

X~ --)Xv,  X v "-) - - X ~ ,  

,~(x)-~ ~/T (1 + ~y,)~(x), 

~ (x )  --, ¢ ~  (x )  (I - ")'d)'~). (3.20) 

This suffices to imply that Z2~ , defined via [see eq. (3.18)] 

S'~a(p) = • Z2~(y~) ~ap~ + O ( p 2 )  (3.21) 

are same for all /~. If we impose constraints on the action (3.19), this feature 
therefore persists so that a single rescaling of the fermion field in the one-component 
formalism suffices to remove the divergences in the fermion self-energy. Thus all 
one-fermion-component actions of Susskind have the same renormalization con- 
stants and a hidden cubic symmetry. 

We will now argue that to any order in renormalized perturbation theory there are 
no unwanted counterterms. 

First consider the case rn = 0 in (2.39). Then the action has a discrete symmetry, 

, ; ( x )  - .  i ' r s~(x  + ~), 

q7 (~) -~ q7 (x + ~) i~ ,  

G(x)-~ G(x+}),  t e z ,  (3.22) 
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Fig. 3. A flavor-changing process that is strictly forbidden. 
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where - is the set of vectors, 

(3.23) 

This transformation corresponds in momentum space to 

~I/( k ) ---, eik~i'Ys~t/( k ), Vf, (3.24) 

and leaves the constraint equations (2.27) unchanged because 

M~ 75Ms = e ' ~ ' t  5, Vg E G,  ~ E --. (3.25) 

The important consequence of this discrete symmetry is that mass counterterms will 
be absent in any order. 

A counterterm of the form ~f(k)F~tl'(k) ( f ~ f ' )  (fig. 3) is absent because 
momentum conservation forces the external legs to have the same momentum k 

whereas q/( k )= M/Mf, + q/'( k + ~rff,) [see (2.20)]. However, flavor-changing vertices 
like in fig. 4 will be non-vanishing for a non-zero lattice spacing. Even if the 
incoming momenta  k, are all in the region D,  of the momentum space, the total 
momentum can lie outside it. However, in the continuum limit the incoming 
momenta  are all infinitesimally close to the origin of D,  and their sum will never lie 
outside it. There are also non-zero contributions [7] to the effective vertices in fig. 5. 
However, in this case at least one gluon momentum is of order ~r/a and hence such 
vertices are not relevant for the continuum limit. There could be danger when such 
vertices appear as an internal part  of a larger diagram (fig. 6). In fig. 6a at least one 

U 
u d 

t l  t l  

Fig. 4. A flavor-changing process that is allowed for a finite lattice spacing but is not relevant for the 
continuum theory. 
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d 

kl 

Fig. 5. A flavor-changing process accompanied by the emission of one or more gluons carrying a 
momentum of order Ir/a. 

d u d u 

(a) (b) 

Fig. 6. (a) An anomalous flavor-changing diagram that vanishes in the continuum limit in a straightfor- 
ward manner. (b) An anomalous flavor-changing diagram that vamshes once the usual subtractions for 

the primitively divergent subdiagrams are made. 

of the gluon propagators will be a2(4Y,~sinZ(½k,a)) l = O ( a 2 ) ,  and hence the 

contribution vanishes as a --, 0. The case of fig. 6b involving primitively divergent 
vertices is more tricky but the arguments of ref. [4] imply that once the usual 

subtractions are made, all such diagrams vanish in the continuum limit to every 
order in renormalized perturbation theory. Susskind [7] has also argued that because 
of asymptotic freedom, such induced vertices have no contribution as a --. 0 even in a 

non-perturbative context. 
Finally we note that the theory is invariant under permutation of the flavors. This 

discrete invariance is transformed to an SU(4) invariance in the continuum limit. 

4. The transfer matrix 

In this section we establish the relation between the lagrangian approach de- 
scribed in sect. 2 with the hamiltonian formulation of Susskind [7]. To do this one 
has to construct the quantum mechanical space of states for the euclidean lattice 
theory and extract a hamiltonian by exhibiting the form of the transfer matrix. This 
has been thoroughly treated by Creutz [12] and Ltischer [13] for the case of Wilson's 
action [3]. Here we just point out the technical differences that arise because of the 
different way of introducing the fermions; in particular, in this section, we ignore 
gauge fields since their inclusion involves no new features with respect to the work in 
refs. [12, 13]. We first obtain the transfer matrix for the case in which the 
one-component fermions X(x) and ~ (x )  both live on all sites and show how a 
doubling of the fermion species with respect to the continuous time formulation 
occurs. Next we will obtain the transfer matrix for the case where X,X live on 
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alternate sites and show that there is no extra doubling and that the transfer matrix 
in this case is positive. 

We follow closely the work of Ltischer [13] and work on a finite lattice with 
specified boundary conditions. We first collect a few basic formulae summarized in 
the appendix of ref. [13]. Consider a system of fermion operators ~ ,  a~+ ... . .  a , ,  an* 
satisfying canonical anticommutation relations 

{ak, 4/+ } = ~ l ,  

{ak, a,)  = { a ; ,  a,' ) = o. 

The corresponding Fock space F is spanned by vectors 

I k l , .  k j ) = a + . . . a  + , • . k, ~, 10> 

(4.1) 

~ =  : A(t~ + ,d ) : - - ,  0 (a  + , a )  = A ( a  + , a ) e  y-'a'-a', (4.4) 

where : : denotes the usual normal ordering. In particular, it follows that 

# = e~,.,a, + a,/~, .._, O(a +,  a)  = e L-a' '  (e"),/,,, (4.5) 

and if /~---B(& +) and t~= C(t~) are operators that depend only on t~ ÷ and ~, 
respectively, then for any t~ 

BlOC ~ B(  a + )O( a +,  a )C(  a ). (4.6) 

The tactic is now to rewrite the fermion functional integral in the form 

z = f d a .  + da , . . ,  d a ?  d a l r ( a  + , a , ) e  ~.a"+-' 

T + . . . .  2 X ( a , _ , , a , _ , ) . . . T ( a ~ ,  a , ) e  , (4.7) 

To every operator t~ acting on F one associates an element #(a ÷ , a) of a Grassmann 
algebra generated by elements a l, al + .-. a , ,  a + by the following rule: 

which implies 

O(a + , a )  = 1___~ a + a + 
i ! j !  k ~ " "  k, {kl".kj} 

{h...t,} 

• a k , O a l ,  l, 1 0 ) %  . at , ,  × < o 1 ~ . . "  " + . . . ~  .. (4.3) 

,~, I0> --- o, Vk .  (4.2) 
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where a i may stand for all elements a(x) at some fixed "euclidean time" x,; then the 
operator T with Grassmann equivalent T(a ~, a) is identified as the transfer matrix. 
Note that (4.7) differs from the analogous expression in ref. [13] by a relabelling of 
the indices. Liascher identifies the exponential terms sandwiched between the T 's  
with the mass terms in the Wilson action; whereas we will identify them with terms 
coupling the neighboring sites along the u axis. For massless theories we are forced 
to do so. 

In the following we set u = 4 and lattice spacing a = 1. We first consider the 
Susskind action with the naive discretization along the 4-direction (2.33) and X, 
live on all sites. 

By a redefinition 

½yc(x,x,)C4(x,~,) =xL(x), (4.8) 

where x labels the space coordinates only we get 

s :  E E (x(x)~4+,x + (~)~,+ x ÷ (~L,- ,x(x) , ,  

+ E ( x '  (~ + e, ) ,C, ' * (~)X(X) , ,  
i 

+x- (~ L,c/(~)x(x + e,L,)} • (4.9) 

Here C:(x)=Ci(x)C4(x ) and we have presumed the reality of C4(x ) and its 
independence with respect to the x 4 coordinate. This is true in the representation eq. 
(A.16) of the appendix. Otherwise our formulae are slightly altered. (To be precise, 
the definitions of the auxiliary fermion fields are different.) We will ignore the 
constant factors multiplying the functional integral due to the transformation (4.8). 

Comparing with eq. (4.7) and identifying x4 with n in that equation, we see that it 
is impossible to write the functional integral in that form unless we introduce a 
doubling of the Grassmann elements. The reason is clear: we have both Xx4 + nXx+~ 
and X~-,+lXx, terms and the exponential cannot fit them both simultaneously. 
Introducing a set of auxiliary fields ~ and ¢p+ however, we get 

T(X + cp+ ; X, ~o) = exp E (X + (x + e , )Cf f (x )x (x)  
x 

+ x ÷ ( ~ ) c , ( ~ ) x ( ~  + e,)) I I 8 ( ~ ( ~ )  - x ÷ (~)) 
x 

x 8(,¢ (~ ) - x (~ ) )  
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= expE  ½(X + (x + e,)C[*(x)cp + ( x )  + X + ( x )C / ( x ) cp  + ( x  + e,)) 
X 

x I I  a ( ,~ (~)  - x + (~ ) )8 ( ,p  + (~ )  - x ( ~ ) )  
X 

Xexp~½(~(x+e,)C,'*(x)x(x)+~(x)C[(x)x(x+ei)). (4.10) 
X 

An integration over ~ and ~+ using the &function immediately reproduces the 
original functional integral. Now T has the form of eq. (4.6) and hence its form in 
the Fock space is immediately written down. Indeed using (4.4) and noting the 
Grassmann delta function is just given by 

~(,p+ - x ) ~ ( ~ -  x +) = (~+ - x ) ( ~ -  x +), (4.11) 

we obtain 

t ~ ^ -{- + T=exp~,½(2+(x+ei)Ci  (x)cp ( x ) + ~  (x)C[(x)~p+(x+G)) 
X 

x I- I:  ( , V  (x )  - ~: (x)) ( ,~ (~ )  - ~: + ( x ) ) :  
X 

XexpE½(~(x+e,)C[*(x)i(x)+~(x)C[(x)~((x+e,) ). (4.12) 
X 

This is explicitly hermitian but not positive definite. In fact each normal product 
operator has the eigenvectors 

¢+(~)1o), ~+(~)1o), v'~(l--¢+~+)lO>, (4.13) 

with eigenvalues (1, - 1, ~- I), respectively, which are not all positive. However, 7 ~2 is 
positive and this suffices to define the hamiltonian for the system: H =  
- - ( 2 a ) - l l n 7  ~2. In fact since X propagates to ~ and back to X after two lattice 
spacings, ~2 is the natural transfer matrix for the system. 

We now consider the case with X and ~ on alternate sites. Making the transforma- 
tion as in eq. (4.8) and labelling both X and X + by ~(x),  we get the action 

s =  E ~ ( ~ ) x , + , ~ ( ~ L , +  E ( ~ ( ~ G , A , ( ~ )  
X 4 , X  X 4 , X , i  

XeP(x+e,)2x,~+q~(X)zx.,+,Bi(x)ep(x+ei)2x,,+,), (4.14) 
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A,(x)  = Ci(x)Pe(x ) + C,(x + e,)Po(x ), 

B, (x)  = C,(x)Po(x ) + C,(x + e,)Pe(x) .  (4.15) 

For obtaining the transfer matrix we will identify the exponential term in (4.7) with 
~p(x)x,+?p(X)x" with x 4 = even. The rest will be of the form Hx T(~2~,,cp2~ _t). We 
get 

r(x ,~k)  = e x p E x ( x ) A , ( x ) x ( x  + e i) 
X 

× e x p ~ x ( x ) ~ b ( x ) e x p ~ k ( x ) B , ( x ) ~ ( x + e , ) .  (4.16) 
X X 

This is again of the form of eq. (4.6). Since expx(x)qJ(x) becomes ! in Fock space, 
we get 

T(~+ ,¢p) = e x p ~  (~+ ( x ) A , ( x ) ~  + (x + e,))exp Y. (¢~ (x)B,(x)Cp (x + e,)). 
X X 

(4.17) 

We may now interchange ff and q~+ for x = odd. (This is a canonical transformation 
for fermions.) We then get a form which is explicitly fermion number conserving. 
Note that T is hermitian and moreover positive definite. In the naive limit of a zero 
lattice spacing in the 4-direction we may identify the hamiltonian with the sum of 
the exponents in eq. (4.17). We then get the naive hamiltonian corresponding to the 
action (4.14) which is exactly that of Susskind [7]. There is no doubling of the 
fermion species due to discretization of time. 

5. The U(I) chiral anomaly 

In this section we will identify an axial current for the naive and Susskind 
modified theories that reproduces the correct U(1) axial anomaly. The current 
involves a particular point splitting and the method we use to show the anomaly is 
analogous to the external field method used by Jackiw and Johnson [14]. We first 
consider the naive theory. Karsten and Smit [5] have shown that the axial current 

Jff.)5( x ) : ½i[ ~ ( x + a~,)U~, + (x)y~y, lk(x) + h.c.] (5.1) 

associated with the infinitesimal chiral transformation 

( x )  = (x ) iv , ,  (5.2) 
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is exactly conserved in the continuum limit. The absence of an anomaly can be 
traced back to the property that under the transformations (5.2) half of the 0 s 
transform with one sign and the other half with the opposite sign so that their 
contributions to the would-be anomaly cancel. 

An infinitesimal transformation diagonal in the flavors under which all the 0g 
behave alike is given by (/2 E E) 

, ¢ ( x )  = ,iv, q,(x + 

(5.3) 

To extend (5.3) to a local chiral transformation that preserves gauge invariance we 
take 

= 4 x ) i v , ¢ ( x ,  z), 

8~ (x)  = e ( x ) ~  (x, ~-)iYs, 

8U~(x) = O, (5.4) 

where 

1 • U ( x , ~ ) e / ( x + ~ ) ,  d/(x, ~') = 2-- 7 ~-" (5.5) 

and U(x, ~) = U + (x + ~, - ~ )  is the product of U's  along a path of length va from 
x to x + ~ (one may also average over different paths but this is not necessary for our 
purpose). Note that although the transformations (5.4) do not exponentiate simply 
to form a group, there will be an associated current. It is convenient to write the 
action in the form 

S = S ( U )  - a ~ E ~ ( x ' ) S - t ( x ' , x ) + ( x ) ,  
X',X 

(5.6) 

with 

t S--I(xt ,  x)  ~- -~Q'yta(O~(x )~x, x_a~ - U~+ (X)~x, x+a~) + r~x,,x ( 5 . 7 )  

writing f ,  = usual Grassmann integral over q,, ~, and noting that the Grassmann 
"measure" is invariant to first order in e under the transformations (5.4), we obtain 
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from these transformations the identity, for any observable O, 

0 =Ies/- 
[ x" 

+ ~ (x, Z)iTsS - ' (x,  x')¢(x'))O 

( 
Defining the axial current (up to renormalization) 

(5.8) 

J..5(x) = ½i(~ (x + a~,,-)U~ + (x ) ' f . y s¢ (x )  

+{ (x)V.(x)r.r,¢(~ + a.,x)), 

we can write (5.8) as 

(5.9) 

(5.1o) 

with pseudoscalar density 

3(x) = ½i({ (x)r,¢(~, z)  + { (z, z)r,¢(~)). (5.11) 

and (after a little rearrangement) the additional term 

with 

~ ( x )  = ( ~ , ( x )  + a 2 ( z ) )  + h.c, 

I I 
t ~ t t x ) -  2a 2" E E ~  (x)iy~ys{U~(x)U(x+a~.}) 

(5.12) 

- U(x, ~)U~(x + ~))tk(x + a~ + ~), (5 .13 )  

1 I 
~ 2 ( x ) -  2a 2" 

x ;~,~,5¢(x + ~ + a . )  - [ x  - .  x - f ] ) .  (5.14) 

We wish to calculate fceS~,(x), i = 1.2, in the continuum limit. Both contributions 
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involve the propagator (in an external field), 

= -tril.~sS.b(x + a. + ~, x) (5.15) 

= - tri~,.'/5 [8.bS 0 -SoV.bS o + . . .  ] (x  + a .  + l~ ,x) ,  

where 

Z,k = ( e  S, 
.% 

- 1  1 So(x,x' ) = E ~a'gO(Sx,.x_,,p-Sx,,~,+,,,) + mSx,.x, (5.16) 
o 

V~,b(x',x ) = Y~ ~aT, ( [U, (x  ') - l ] ~ x , x _ , - [ U ,  + ( x ) -  116x, ~+a,)Qb. (5.17) 
Is 

First we consider the contribution from ~ I. The term in the curly brackets in (5.13) 
is O(a2); more precisely (~ = ~/a), 

V~(x)V(x +aa .~) -  V(x,~)Va(x + ~)=ia2g~oF~o(x) +O(a3), (5.18) 

where (in the continuum limit) 

F,,:a~,A,-O,A~, +ig[A~,,A,]. (5.19) 

Thus only the term of order a - 1 in (5.15) contributes. In v = 2 dimensions, only the 
first term in the perturbation expansion yields such a contribution: 

2i *,~ d2k sin k, 
~(X,.,*)abv= 2= 7~..v~abf_. (2~r)2 Eosin2ko exp i (k .  + ~ k ) + 0 ( I )  

, r+,,/2 d2k cosk.(1 +~.)sin2k~ 
= - a  + o (1 ) ,  2e~'Sobnr~'J_,~/2 (2rr) 2 Y..sin2 ko 

(5.20) 

where here and in the following n f = 2" until stated otherwise. Using the identity 

± ~ ~ = ~ , ,  (5.21) 
2"~ _-- 
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we see for u = 2 

I ~ ~ o ~ ( X , ~ , ~ ) a b - -  
~E-" 

2 
a e~'pSabnfC2 + O ( 1 ) ,  

where C, are integrals 

fir~2 d~k sin2klcos2k2 ...cos2k~ 
C. = J-,~/2 (21r---~" " 2 ,,/2 (Y.o sin ko) 

(5.22) 

(5.23) 

Thus for v = 2 and gauge group U(I) we have 

z;  ' l eS6e,( x ) = - i n , g e ,  oF~oC z + O( a ). 
. 11  4, ~=2 

(5.24) 

For the case p = 4, the first term in the perturbation expansion (5.15) is identically 
zero due to the Dirac tracing. The second and third terms in (5.15) yield terms of 
order a - i. For example the second term yields (for general u) 

with 

triy~ys(SoV~bSo)(X + a~+~,x)=nfg~ foe'PXA..b(p)K~.(p,s), (5.25) 

K~,,(p,~)-- tr ySy.fk,qoe'k(~" +t)S(k )y,S(k - p )cos[(k - ½p)a,]. 

Thus, for u = 4 dimensions, 

K~,,( p, ~ ) = -4ia - I E e.,~xPx 

cos kAin (k~ + k~)sin k ~cos kx d4k 
x ), )2 

~,/2 

- . / 2  (2rr (Y.o sin 2 ko 

(5.26) 

(5.27) 

Using (5.21) we have then 

~ ~otri~'ys(SoV~bSo)(X + a~ + ~, x) = -4a -ln,gC4 ~ fi, px~xA~(x) + O(1). 

(5.28) 
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The third term in the perturbative expansion combines with the second to yield 

~, ~,S(x, tx ,~)  = - in tg2C4e , , x ,Fx , ( x )+O( l ) .  (5.29) 
~E-- ~=4 

From (5.18) and (5.29) now follows for SU(N) gauge group 

z~-'£eS~,(x),-4 - infg2C4e~px'trF~pFx'(x) + O(a).  (5.30) 

Now we turn to d~2: 

1 
z ~  ' f eS~z( x ) - 2-+, 

(5.31) 

In the case v = 2 the second term in the perturbative expansion (5.25) yields a term 
of order a°; indeed, 

Noting 

E = -2i ,,c2 + 0(0).  (5.32) 

~p~o ~, S(x ,  it, ~) = O(1), (5.33) 

we see combining (5.31)-(5.33) and (5.22), (5.25) for v = 2, 

Z~- ' f eSd~2(x ) = O(a ). (5.34) 

For e =  4 dimensions we note the third and fourth terms in the perturbation 
expansion (5.21) contribute O(1) to give 

~,, ~p~ t rS (x , l x ,~ )=2in fg2Ca~e~pxv t rFx~A~(x )+O(a) .  (5.35) 
/~E'---- p, tthv 

Noting again (5.33) we see that (5.34) also holds for v = 4 and hence d~t(x) provides 
the only contribution in the continuum limit. It gives the correct anomaly since the 



230 tt.  S. Sharatchandra et al. / Susskind fermions 

integrals C~ defined in (5.23) can be evaluated analytically 

C -_ _ lim ( -'~/2 d~k 2 3 ( c°sk l s ink ,  ) 
t - O " - , r / 2  (2 ' / r )  - - - ' - ' - 7 0 ( k 2 - e 2 ) c O S 2 k 2 " ' ' c O S  k V - ~ l  " 2 -v/2 

(Y~o sin ko) 

t [ 9 
= 2 lim f d, - lk 8( t  2 - . . . . . . . . . .  k 2 )cos~/e2 _ k 2 sin VE 2 - -  k 2 F l i c o s .  k i 

~ 0 ~  (2qr) ~ (y. isin2ki+(sin~/~-k2)2)~/2 

d ' - I k  I 
= 2 f - ~ - j - ; 0 ( 1  - k2)~/1- k 2 = . (5.36) 

(4~') ' /2F((v + 2)/2)  

Thus, the chiral anomaly in the continuum limit is 

in t 
-- ~--~gt~,Fo,(x ), v = 2, U(I) theory, 

Z ;  ' f eS6~(x) = i (5.37) 
-16~r-----~ntg2e~,ootrF~Fpo(X), 

v = 4 ,  SU(N) theory. 

In Susskind's modified theory with 2 ~/2 flavors the same analysis goes through since 
the transformation (5.4) is consistent with the constraints (2.30). The only modifica- 
tion in the analysis is that the projector P~ has to be introduced in the appropriate 
places. Thus we consider instead of (5.15) 

S ' (x,  ~, ~) = Z x ~ fxeSq, b(x)iy~75~(x + a~ + ~) 

= -trPxi3,~ysSoh(x + a~ + ~, x) .  (5.38) 

The analysis from (5.15) onwards goes through as before (using repeatedly the 
identity (3.9)), with the only modification that nf has to be set equal 2 "/2 instead of 
2 v" 

The analysis of the axial currents in the theory with 2 ,/2-1 flavors is more 
complicated and we have not yet considered this case in sufficient detail. 

6. Calculation of A=i./ALsus~ 

In this section we restrict consideration to v -- 4 dimensions. The continuum limit 
of the lattice theory is expected to be obtained by taking the lattice spacing a --, 0 
and the bare coupling g--, 0 such that the renormalization group invariant mass 
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parameter, 

AL,suss = a- 'e -  '/2flog2( flog2 )-#'/213] (1 + O ( g 2 ) ) ,  (6.1) 

tends to a finite non-zero limit. Here fl0, fll are the universal first two coefficients of 
the Callan-Symanzik fl-function, in particular 

1 
f l o -  (4~)2 ( ~ N  - ~T(R)n , ) ,  (6.2) 

where T ( R ) =  ½ for fermions in the fundamental representation of SU(N).  The 
calculation of A L for n f = 0 depends on the lattice action used for the pure gauge 
part. We take the Wilson action 

1 
S ( U ) = g - 5  E tr(U~(x)U,(x+a)U,+(x+a,)U,+(x) - 1 ) .  (6.3) 

The calculation of Amin/AL for this action has been first performed by Hasenfratz 
and Hasenfratz [15] and repeated by Dashen and Gross [16] using the background 
field method. Using the latter method the extension to the case n f ~ 0 requires only 
the determination of the l-loop contributions of the fermions to the gluon self 
energy, shown in fig. 1. 

For the naive action one obtains for fig. la, 

(a) f tr V~( k, k + p p, 1-I~,~(p)=-T(R)nfg 2 )S(k+p)V~(k+ k)S(k) ,  (6.4) 
k,~ 

and for fig. l b 

-T(R)n ,g2 f  trV~(k,k)S(k) 
k,¢, 

(6.5) 

with n r-- 16. For the Susskind modified theory these equations still hold with nf -- 4 
as argued in sect. 3. It is easily shown that 

+ = o ,  (6.6) 

and in the continuum limit 

(a) (b) I I , .  ( p )  + 1-I,. (p)=(8~..p2-p~.p.)II (f' 

+ (I p, Oolo ½PoPoO.aolo) (b)co., - - H , ,  ( p ) ,  ( 6 . 7 )  
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fl (') = - T ( R ) n , g Z 2 f  "/2 d 4 k  c o s 2 k , c o s 2 k 2 -  ~cos2k ,cos2k  z 
• 2 2 J -,/2(2'n') [m2a2 + y.oSl n ko ] 

(6.8) 

FI (f) is just the quantity which is relevant for the calculation of the contribution of 
the fermions to the lattice partition function in the weak background field, weak 
coupling approximation. Using the pure gauge part previously calculated [15, 16] we 
obtain 

Ami~ -exp J + -~o ~ - N P  + T ( R ) n t P  4 , (6.9) 

where 

J = ½(ln4~r - ~,) = 0.9769042, (6.10) 

l 1 \ 
p =  ~ [ ~ P ,  + 88P 2 + ~ ] (6.11) 

2~z 2 / ' 

P4 = f d4k [c°s2 k'  c°s2 k z -  ½ cos2k, cos2k2] 

(Y~p sin kp) 

4 1 ) }  
× ~;,[I O('Tr-lk~l)- 3 (k2) 2 (k2+1)  2 

_ 1 l n 2 ) ,  

and Pi, P2 are the integrals (evaluated in ref. [16]) 

fO ~ 
P, = d f l e -SaI~(2 f l )  = 0 .1549334. - . ,  

p2 = fo~dfl(/3e-St~lo4(2fl) 1 - e - t ~  116~.2fl J 

yielding 

= 0.0240132. • •, 

P = 0.0849780, 

P4 = 0.0026248, 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 
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and hence, e.g. for n f = 4, 

A rain - -  34.44 for N -- 2 
A L,Sum 

= 28.78 for N = 3, 

which may be compared with the case without fermions 

mmin nf=0 A L = 7.46 for N : 2 

= 10.85 for N : 3. 

The ratio A M o M / A L . S u  ~ I~= I varies less dramatically with n t. 

2 3 3  

(6.17) 

(6.18) 

7. Conclusions 

In this paper  we have studied the Susskind method [7] of introducing fermions on 
a euclidean lattice. We have argued that there are no unwanted counter-terms in 
renormalized perturbation theory, the correct U(I)  anomaly is reproduced and a 
hamiltonian with real eigenvalues can be identified. Thus we may expect that the 
theory is on a good theoretical footing. There is a discrete invariance which implies 
that no mass counter-term is required if one starts with a zero bare mass. This is a 
distinct advantage over Wilson's action for initial Monte Carlo studies especially as 
the cut-off dependence of the bare fermion mass is not known. However, this is at 
the cost of requiring fermion degeneracy, four species in the case where X and ,~ live 
on all sites. Fortunately these species behave as flavors so far as strong interactions 
are concerned, though it is perhaps impossible to give separate electroweak quantum 
numbers to these flavors; and four massless flavors is not too far from the real 
world. 

We have also considered the euclidean action with only two fermion species in 4 
dimensions. This is phenomenologically even more satisfactory. However, the peri- 
odicity of the action is now four times the lattice spacing so that at least an 84 lattice 
is required for the Monte Carlo studies. Also the renormalized perturbation theory 
presents new complications. Hence it appears that the action with four flavors is the 
most favorable. 

Nielsen [17] has presented a fermion action on a euclidean lattice which has the "r5 
invariance and just two species (in 4 dimensions). The inverse propagator is 

3 t4 ) S I ( p )  = ~ i . r , a - l s i n p ,  a + i Y 4 a - i  E c o s p ~  a _ 3 , 
I I 
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which has two zeroes at (0,0,0, +-Tr/2a). However, the cubic symmetry is explicitly 
broken and this is not advantageous from the point of view of counter-terms. No-go 
theorems [18] suggest that a further reduction of the fermion species maintaining 
chiral symmetry and locality is not possible without a drastic change in our 
assumptions. 

The Susskind action has only a discrete "r5 invariance so that for a non-zero lattice 
spacing we do not get strictly massless pions even if the discrete symmetry gets 
spontaneously broken. The expectation is that the discrete symmetry is promoted to 
the continuous chiral symmetry in the continuum limit. However, in the strong 
coupling calculations of Banks et al. [10] of the spectrum of the hamiltonian lattice 
gauge theory, the pion mass turned out to be too large even when extrapolated to the 
continuum limit. It is possible that this defect is due to the strong coupling 
extrapolation methods employed. However, there is the danger that it reflects a 
defect of the Susskind action itself, in that the approach to continuous chiral 
symmetry is too slow, which may be a disadvantage for Monte Carlo studies. 

We are grateful to H. Joos for constructive criticism of a first version of this paper 
and to P. Becher and L. Karsten for helpful discussions. One of us (H.J.T) gratefully 
acknowledges the kind hospitality extended to him at the II. Institut for Theore- 
tische Physik der Universit~it Hamburg. 

A p p e n d i x  

2 DIMENSIONS 

We consider the following realization of the Dirac matrices: 

T2 ~O3,  "~1 =0.1 '  

with 0.j the Pauli matrices 

(0  l )  
0 . 1 =  1 0 ' 

Then 

0'2 ~--" 0 ' O3 = -- 1 " 

T5 = --iTIY2 =02"  

We chose the maximal subgroup H [see (2.26)] as 

H= 

and the corresponding eigenvalues ~'h [see (2.29)] 

~ ---- )~(t) --  1. 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 



It. S. Sharatchandra et al. / Susskind fermions 

The c-number spinor e(x) satisfying (2.30) is given by 
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(A.6) 

where for g E G, Pg' (x)  are projectors 

P f ( x )  = ½(l -4- e i'-'.'.~,) (A.V) 

and s(x) is a phase factor ( I s ( x ) l  = 1). This yields coefficients C,(x) in (2.33) 

C,(x) = s(x)s(x + a,), 

C2(x ) = s(x)s(x + a2) ( - 1)"'. (A.8) 

A convenient choice for s(x) is obviously s(x) = 1 

4 D I M E N S I O N S  

j =  1,2,3. (A.9) 

We consider the following realization of Dirac matrices 

It4 = - -  ]] ' "YJ = Oj 0 ' 

Then 

(0 
Y5 = ~I'~2Y3Y4 = 1 ~ 

We chose the maximal subgroup H as 

H = {q,,(3), (1,2), (1,2,3)}, 

and the corresponding eigenvalues hh as 

~ q ~ ' = ~ ( 3 )  = l ,  ~(1 .2)  = 4 ( I . 2 , 3 )  = i .  

The c-number spinor e(x) satisfying (2.30) is given by 

Pd) ( x ) Pd~) ( x ) 
ed) ( x )P(~,(  x ) 

e (x )  = s ( x ) ,  
P,3i (x)P(;~,(x) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 
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yielding the coefficients 

C,(x) 

G(x) 

c~(x) 

G(x) 

H.S. Sharatchandra et al. / Susskind fermions 

: s ( x ) s ( x + a , ) ,  

= - i ( - l ) " ~ - " ~ ( x ) s ( x + a 2 ) ,  

: ( - l ) " , ' " 2 s - - ( - ~ s ( x + a , ) ,  

: (-1)",+°~+%-G3s(x+a,). 

A convenient choice for s(x) is for example 

~(~) : ( - ] ) " ,  +"2+",(rE, - ;p,;, )(2 e(~ e,,~ - l ) ,  

giving 

C,(x) = ( -  l)"', 

q ( x )  = ( -  1)"', 

C2(x)  = ( - l )  °' , 

C4(x) = ( - 1 )  ~,+~= ~'~ 

(A.14) 

(A.15)  

(A.16) 
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