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Abstract. We present in detail the analytic calculation of the Sterman-Weinberg type 3-jet cross section to order @ 
The fit to recent P L U T O  data gives in the MS scheme %=0.17 which corresponds to A =0.24 GeV in the l- loop 
approximation. 

I. Introduction 

Recently, 3-jet events have been observed in e+e - annihilation at the higher P E T R A  energies [1]. This is inter- 
preted as hard single-gluon bremsstrahlung off quarks  and antiquarks at small distances before fragmentation 
into final state hadrons takes place and was first predicted in [2]. More lately, somewhat more unambiguous tests 
of perturbative QCD in e+e - annihilation have been proposed [3-6]. So far one can say that the observed 
properties of the 3-jet events seem to be in good qualitative agreement with lowest order QCD perturbation theory 
[1, 73. 

This agreement of theory and experimental data could, however, be fortuitous if higher-order corrections 
should turn out to be large. In such an event also the recent determinations of the strong coupling constant % from 
the anatysis of e+e - jets [8] had to be revised. Moreover, it is welt known that the determination of % or, 
equivalently, of the scale parameter  of the strong interactions A and comparison with other processes (e.g., deep 
inelastic lepton scattering) is meaningful only if higher-order corrections are included [-9]. The amount  of higher- 
order contributions depends on the renormalization scheme which is used to define es or A. Only if the higher- 
order corrections are known can we try to fix the renormalization scheme in such a way that they are minimized in 
as many processes as possible. 

2 correction to the total e+e - annihilation A first step in this direction has been the calculation of the order % 
cross section o-. In the MS renormalization scheme this was found to be small [,10]. The MS scheme also minimizes 
higher-order corrections to various other proc__, esses [1t3 which one might take as an indication that the 
perturbation expansion converges well in the MS scheme***. 

2 correction to a (it has an effect of less than half a percent on the zero'th order In view of the small order ~s 
background), this seems favoured for determining es. However, because of substantial statistical and systematic 
errors attending the measurement of a, an accurate determination of a, or A is not feasible for the time being [13]. 

2 corrections to 3-jet final states, which is the last step in our In this paper we shall calculate the order % 
2 contributions to e+e -  jet cross sections [4-6-1. For that purpose we have to cut out the systematic study of order e~ 

2-jet region. In principle, this can be done in various ways used to from the order % analysis. But some caution is 
demanded. 

We have chosen to use a Sterman-Weinberg type [14] angle and energy cut off [-15] for a variety of reasons: (i) 
The Sterman-Weinberg type multi-jet cross sections are the only ones known to us which factorize [,16] like the 

* Present address: SLAC, Stanford, USA. Supported by the Max-Kade-Foundation 
** Supported by Bundesministerium fiir Forschung und Technologic, Bonn, Federal Republic of Germany 
*** It appears, though, that this is not true for the total decay rate of heavy pseudoscalar quark-antiquark states [12]. This quantity is, 
however, sensitive to details of the bound state wave function 
**** The 2-jet cross section slightly modified though 
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total cross section. We emphasize that a cross section which does not factorize has a priori no physical meaning, in 
particular, as higher order contributions and hadronization effects may be large. (ii) The C and ("bare") thrust (T) 
distributions calculated in [17, 18] (e.g.) are not defined at C = 3 and T= ~ while the Sterman-Weinberg 3-jet cross 
section is bounded to all orders by Xmax > ~, Xm~ being the scaled maximum jet energy. (iii) As we shall see, the 
(numerically) relevant pieces of the Sterman-Weinberg 3-jet cross section can be checked independently. (iv) At a 
later stage we want to include fragmentation which requires a clear separation between 3- and 4-jet final states. 

In a recent letter we have reported some results of our calculation [15]. Here we shall give account of the 
details. 

z virtual corrections to q?lg production. The outline of the paper is as follows. In Sect. II we calculate the order e~ 
The integration of the q?lgg and qrlq?l final state contributions over small energy and/or angular regions is done in 
Sect. III. In Sect. IV we present the Sterman-Weinberg 3-jet cross section in analytic form and compare it to 
experiment. Section V, finally, contains some concluding remarks. 

II. Loop Corrections to qFtg Final States 

In the following we will be dealing with the order cd corrections to 

e + (P + ) + e - (P - )-+ q(P l ) + El(Pc) + g(P3) (2.1) 

and the processes 

e + (p +) + e- (p  _ ) ~  q(Pl)+ q(Pz) + g(P3) + g(P4), (2.2) 

e + (p +) + e -(iv_ ) ~  q(Pa ) + ~](P z) + q(P3) + q(P4). (2.3) 

The symbols in brackets in (2.1)-(2.3) denote the momenta of the particles. All partons, quarks and gluons, are 
massless. 

We shall regularize the infrared and collinear divergences in (2.1)-(2.3) as well as the ultraviolet divergences in 
(2.1) by continuing to space-time dimension n = 4 - 2  [19]. In the first place this modifies the phase space for j 
massless final state particles so that 

/ ) (phase space) (j, ~ ,)~_~_~, -, q -  Z Pi = (2~z)"5 {") (2.4) 
\tzTr) zLi/  i=1 i=1 

which enters the cross section formula for the above processes: 

e 4 
ds f~q6(L"~H,v) (phase space) (~) . (2.5) 

Here L~  is the lepton and Huv the hadron tensor. The latter contains summation over the final state spin, colour 
and flavour indices and includes the appropriate quark charge factors. 

The cross section formula (2.5) contains the various angular correlations between the final state particles and 
the direction of the incoming beams [4, 6, 20]. In the following we'are only interested in the jet cross sections with 
all angular correlations integrated out. This allows us to write for the leptonic tensor 

q2 
Luv ( -  p + up_~ + p_ up + - guv ~-)  = - g~  ~ .  (2.6) 

For arbitrary n the zeroth order total e+e - annihilation cross section which occurs as a common factor in the cross 
section formulae of (2.1)-(2.3) becomes 

1 -  , a o :  ~75-2 N ~ 2 e2, (2.7) 
i=1  

where N~ is the number of colours, Nf  the number of flavours and el the quark charge in units of e. The parameter 

# is an arbitrary scale parameter and the factor 1 -  is due to the n dimensional contraction of g H~. 
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Fig. 1. Diagrams with three partons in the final state to order c% 
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2 Fig. 2. Diagrams with three partons in the final state to order % 
interfering with the diagrams in Fig. 1 

To lowest order the process (2.1) proceeds by the diagrams shown in Fig. 1. For the 3-jet cross section we 
obtain 

d(7(3)=(~(2)(4Tc#21;q2 1 d x l d x 2 [ ( X l + X 2 - 1 ) ( 1 - x l ) ( 1 -  2,3 ~ CFBV-2/2s(xx,x2),  (2.8) 

where \ - ~ - J  F ( 1 - ~ )  

2 s BV- ~/aS(x, 1, Xz,~- BV(xl,x2) ~ B (xl, x2), 

2 2 
X 1 + x  2 

BV(xl '  x2)  = (1 - x1) (1  - x 2 ) '  

x ~  ( 2 . 9 )  BS(xl, x2) = (1 - x l ) ( 1  - x2) 

and CF= ~. The variables are x i = 2 E i / ] / ~  and yii=sl/q ~, sij~-(pi+p) 2. They are related by x l = l - y 2 3  , 
x 2 = 1 --3213, X 3 = 1 --Y12 and x 1 + x 2 + x  3 =2. For 2=0  the three-jet cross section goes over into the familiar form. 
Note that B s is identical to the matrix element for the production of a scalar gluon. 
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After these preliminaries let us now come to the topic of this section which is the calculation of the order e z 
corrections to the process (2.1). The processes (2.2) and (2.3) with four partons in the final state will be treated in the 
next section. 

The loop corrections to (2.1) are shown in Fig. 2. The calculations are done in the Feynman gauge. The 
ultraviolet divergences appear as poles in 2. We perform renormalization in the minimal subtraction scheme (MS) 
[21] which corresponds to the subtraction of the ultraviolet poles. The counterterm in the MS scheme is given by 
(for the details see Appendix A). 

(4rc#2) ~/z 1 
da(a) = a (2) [(x, + x 2 - 1) (1 - x 1) (1 - xz) ] - 3~/2 

g" Bv-x/zs(x x ~ s(# )c tv  ~* 2 
2re ~v ~ , ,  2 , ~ - t ~ , s - w N ~ ) ~ .  (2.10) 

Other renormalization schemes will be discussed later on. 
The integrals over loop momenta can be expressed, using the reduction method of ' tHooft and Veltman [22], 

in terms of a few standard integrals corresponding to scalar 2-, 3-, and 4-point diagrams. These are given in 
Appendix B (and can be traced back in the final cross section formula given below). The traces and matrix elements 
throughout this paper have been calculated and processed with the help of Schoonship [24] and Reduce [25]. In 
intermediate stages of the calculation expressions become quite lengthy. The final result has, however, the 
relatively compact form: 

da(a) ~(z) (4rc#21~I2 
1 ((1 - x l ) ( 1 - ) 2 ) ( x  1 + x  2 -  1))-'a/z %(#2)2= UF 

4 "[ Bv-a/zs(xt'x2)+%(#2)F(12~z F(I ,-~-](47c#21a/2{BV-Z/2S(xt'xa)[-~ (2Cr+N~) 

where 

a = - 6C v + 2 N f -  ~ N  c + 2(2C F -  N~) lnyz 2 + 2No ln(y~ aY2a), 

7"/7 2 
b - (2C v + N c) ~ - 8C F + �89 2 - lnZy~ 3 - ln2y23) - Cv ln2yx 2 

4Y12 Y12 Y12 Yl~ Y2__33] 
] Y13+Y23 Y13 Y23 Y23 Y13 

] 
Yt3+Yaa3 

Y13Y23 t 2Y13--4y23]] 
(Y12 +Y23) 2 Ya2+Y23 /J 

Yz3Y13 2Y23- 4yl 3.)] 
(y12+Y13)2 + y12+Y13 

+(�89  - l n r c - l n  c 

f (Xa,Xz)=CF[ - 3;12_ + Y12 + 
tY12+Y13 Y12+Y23 

+N~]Ya2 + Ya2 + Y13 + Y23 
I_Y13 Y23 Y23 Y13 

IN Y13 + C F (  4 
+lny13 [ CY12-f-y23 

+lny23[N Y23 + C F (  4 
[ CytZ+Y13 

I 2y12 Y~2 ] 
+ 2(2Cv-Nc)lnYa2 Y-~vv13 Y23 -} (Y13~Y23) 2~-NcBv(xl'x2)r(y13,y23) 
-(2CF-Nc)(  y-~2+(y~2+y*3)2 r(Y12,y23)-~ Y~z+(Y*2+Y23)2 ] r(Yl 2, Yl 3) �9 

Y13Y23 Y13Y23 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Herein 7 is the Euler constant and r(x, y) is defined as 

7~ 2 

r(x, y) = in x In y -  in x ln(1 - x) - In y ln(1 - y) + ~-  - 5~ - 502(Y), (2.1 5) 

where 502(x) is the Spence function 

x 

502(x) = _ ~ dzln(1 - z) (2.16) 
0 Z 

In (2.11) we notice several expressions which are proportional to (ZN - l t N  ~ 3 s 6 j a n d ,  hence, can be absorbed into the 
definitions of the strong coupling constant. The large logarithmic term 

2 

- ( 1 N s -  ~Nc)ln~q~ BV-Z/ZStx, 1, x2, 

in (2.13) represents the explicit beginning of the renormalization group improvement of (2.8) and arranges that 
C~s(#2 ) becomes the running coupling constant: 

2 2 - 1  

2~ 
q2 + O(a3) �9 (2.17) 

(~tU c -  ~Ns)In 

For  better convergence of the perturbation series it is customary to also subtract the expression 
(1N.r-  11N ) 6 c (7-ln(4u))  from (2.13) together with the ultraviolet poles (as we will do later on) which then is called 
the MS scheme [2@ As can easily be seen, this is equivalent to replacing A by 

AMS-+ A~-~ = e ( ln(41t)  - 7 ) / 2 A M s .  (2.18) 

Our result for the loop diagrams agrees with that of Ellis et al. [17]. 

III. Reduction of Diagrams with Four Partons in the Final State 

In this section we shall calculate the contributions of qYlgg and q~lq77 final states to the 3-jet cross section. The 
corresponding diagrams are shown in Fig. 3. The transition matrix element for the processes (2.2) and (2.3) have 
been given already in two of our earlier papers [5] and [6], respectively (for n = 4  though). 

By 3-jet cross section we shall understand more precisely now the cross section for events which have all but a 
fraction* e/2 of the total energy distributed within three separated cones of (full) opening angle b. In other words, 
we call an event (on the parton level) a 3-jet event (with jet axis and e, 6 specified beforehand) if all the (parton) 

Fig. 3. Diagrams with four partons in the final state 

* This was misstated in [15] 
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Fig. 4. Three-jet phase volume 
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Fig. 5. Kinematics of 4-parton final state. The plane is perpendicular 
to the axis labelled III 

momenta fall inside the phase volume shown in Fig. 4. By construction this includes the singular region associated 
with one of the gluons in (2.2) being soft and/or collinear with one of the quarks or the other gluon and one of the 
quarks in (2.3) being collinear with one of the antiquarks, respectively. 

The 3-jet cross section is finite by virtue of the Kinoshita-Lee-Nauenberg theorem 1-27]. This is to say that the 
processes (2.2) and (2.3) must contribute the same pole terms as the loop corrections (2.11) but with opposite sign. 

The first step will be now to set up the 4-particle phase space. For obvious reasons we shall decompose it into a 
quasi 3-body (3-jet) phase space times an integral in one of the parton momenta extending over soft and/or 
collinear configurations (collinear with one of the jets). Which parton momentum this concerns depends on the 
singularities of the particular contribution to the 4-parton cross section to be considered. We will restrict ourselves 
to the case where the parton with momentum P3 is soft and/or collinear with the parton of momentum P4. 

We shall start from the 4-parton cross section (2.5) which we rewrite in the form 

2z 3 ~  n "~4 
) - J l !  d"-'p,  (q_ p,) (_ (3.1) 

where the scale factor, which makes c~, c~ s dimensionless, has been factored out explicity and 

Nf 

H , ~ = N  c 2 e~/~,~. (3.2) ,=1 
Note that the statistical factors are, different from [5, 6], now included i n / t ~ .  As before, our notation will be 

xi=2E]], /q 2 and s u = ( p i + p y = y u q  2. The two sets of variables are related by x l = l - Y 2 3 - Y 2 4 - Y 3 a ,  
x 2 = 1 -Y~3-Y~4-Y34 ,  x3 = 1 -Y~2 -Y I4 -Y24 ,  x4= 1 -Y l2  -Y:t3 -Y23, and x 1 + x  2 + x  3 + x r  now. The angles 
between parton momenta p~ and p~ are denoted by O u. The reference frame we shall use is shown in Fig. 5. 

We now integrate out all variables but x 1, x 2, x 3, the polar angle O3n ~ (between P3 and p3+p4) and the 
azimuthal angle qS. Clearly, the hadronic tensor wilt only depend on the latter. This yields 

1 
d~176 q2 j F ( 1 -  ~) dxldxzE�89 

{4rcg21z/2 2 ~ qZ ~ (3.3) 
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where we have made use of the phase space formulae [19] 

d"-lp _ ~ d p p , - 3 d O s i n " - 3 0 . . . -  rc"12-~ 
~ 2E F ( 2 _ l )  5dpp"-3dOsin"-30'  

((2))2 F - 1  

S dO sin"- 30  = 2"- 3 V(n-  2) (3.4) 
0 

The factor [�89 2 s inOlz ]  z in (3.3) differs from its 3-jet limit by an expression of the form (see Appendix C) 

[~x ix  2 sin Or2 ] - x -  [(x 1 + x 2 - 1) (1 - x 1) (1 - x2)  ] - ~/2 = O(kY34), (3.5) 

It is obvious that  a term propor t ional  to ~. will only survive in conjunction with a singular term. Since Y34 guv/quv is 
finite in the kinematical region we are considering, this means we can write 

[�89 lx2 sin O12 ] - a = [(x 1 + x z - 1) (1 - x 1) (1 - x2) ] - ~/2. 

/zv N . 
The matrix element g H,~ as a function of the invariants sij, dominant ly  s34 in the region under  discussion, so 

that  it is more  convenient  to use 034 rather  than O3m as integration variable. The transformation O3m to 034 
variables is given by 

d c o s  03111 ~-- d co s  0 3 4 x 2 ( x 3  c o s  0 3 4  ~- x4)  (x 2 ~- 2X3X r COS 034  q- X]) - 3/2 

A_ ~.,.2'~- 1/2 �9 sin 03 m = x4 sin O34(x 2 + 2x3x 4 cos "-'34 - ~4J (3.6) 

After this the cross section formula (3.3) assumes the form 

/ 4 ~  t /2\2/2 1 dxldXz[(X 1 q - X  2 - -  1)(1 - Xl) (1 - - X 2 ) ]  -2"/2 

{4n#21-~/2 2,~ q2 

2 - 3  

�9 (x 3 cos O 34 + x4) ( x2 + 2x 3x4 cos 0 34 -}- X 2) 2 d(~(-- g'uvHpv) . ~  (3.7) 

The first part  of (3.7) is exactly the 3-jet phase space as it appears in (2.8) and (2.11) (with "composite" jet energy 
2 - x  a - x 2 )  , while the remainder  represents the relative par ton  distribution inside a 3-jet event. The appropriate  
phase space formulae for the other  regions of integration can be  derived from (3.7) by interchange of momen tum 
labels. 

In the next step we shall integrate over the internal ,parton distribution holding the jet  energies fixed. Our  aim 
thereby is to calculate the 3-jet cross section analytically except for terms of order  e and 62. Since only the singular 
terms contr ibute to the nonvanishing part  (for e,6-~0) of the 3-jet cross section we shall focus on these 
contributions here. The corrections of order  e and 62 will be calculated numerically. 

The singular pieces have either one of the forms [5, 6] 

(i) s12 
$13s23s14s24, (3.8) 

1 1 
(ii) , + (1.--~2) + (3 +-,,4) + (1+--~2, 3 ~-~4), (3.9) 

S13S34 S14S24 

1 1 
(iii) - - ,  - -  + (1 ~--~2) + (3 *-+4) + (1 +-+2, 3 +-+4). (3.10) 

$34 $13 
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The first term can be decomposed into a sum of two terms plus a nonsingular piece A which separate the 
singularities at x 3 = 0 and x 4 =0 :  

S12 SII[ (S 1 1 i )  - - -  + + A ,  (3 .11)  
s~s~3sl,*~24 SimSiiH~ 1~s23 s~f.s2 

where* 

jet jet 2 . SKL =(PI,: + PL ) ]3-jetiimit,K,L=I, II, III, (3.12) 

pjet being the 4-momentum of the K-th jet, and the labels I, II and III refer to the jets having quark, antiquark and K 
gluon quantum numbers, respectively. This leaves us with terms of the form (3.9) and (3.10). 

Let us first consider (3.9) 

1 4 1 

S 13S3,* --  (q2) 2X 1X4 X2( 1 - -  COS 19 13) (1 - cos 19 3,*) (3.13) 

whichis singular at x 3 =0  and 19~3, 1934 =0. This may be decomposed into separate pole terms 

1 1 I 1 

X3t12( __ COS 191 X2(1--COSO13)(1--COS1934) 1- -  COS191nl 3) 

1 
4 

x32(1 -cosO34)  

where** 

jet jet 
OKL = ~ (PK, PL )13-jet limit ; K ,  L = I ,  II, I I I ,  

cos 19rL = 1 -- 2 (X K + x L -  1), --~̂2/5}~~ 
XK ~ Vq ~ 3-jet limit ~ XI -}- XII ~- XIII = 2, XKX L 

+ D(X3, coS 1913, cos  193,*) 1 , (3.14) 

(3.15) 

and D(x3, cos O13, cos 034) is singular only at x 3 --0 as can easily be deduced. Noticing that the phase space (3.7) 
can be written 

) .-3 
dxg(x3x4) 1 - ~'(x 3 -4- x4)d03,, sin l - 40 34(x3 cos 03,* + x,*) (x 2 + 2X3X , COS t9 34 q- X2) 2 de  

- -  dO 3̀ * sin 1 -'~1934d~)+O(x3(1 - cos O 3`*)), 
XIII/J 

xizi = x3 + x4, (3.16) 

and similarly for the other configurations, we obtain the following contribution to the (nonvanishing part of the) 
3-jet cross section, suppressing factors, 

HnH=2rc dx3SdO34-q- ! dx 3 d034 x 3 1 -  x3 sinO34 +(4~--q, III~M) 
0 o x ~ ( 1 - c o s O 3 4 )  

1 + dx3Id034 f dr 1 -  sinO34 D(x3,cosO13,cos034) 
0 0 0 k 

(3.17) 

etc. For  the last integral it is the same if we integrate over 034, q5 or O13, qS. The result of (3.17) is given in 
Appendix D. 

The single pole terms (3.8) have only a collinear singularity so that the relevant integral is 

xm ,~ [ / X \ ] 1 - ,~ 
M,n=27r ! dx3!dO34[x3[l_~3|sin034[ 1 (3.18) 

\ xn~/ l xmx3(1 - cos O3,) '  

etc. The result of (3.18), as well as that of some related integrals, is given in Appendix D. 

* E.g., sliilooso13= 1 =qZ(1-x,,) 
** E.g., Xllcosol3=t=xl q-x 3 
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After these preliminaries we shall now compile the singular contributions of the 4-pat ton transition matrix 
elements. According to the various groups of diagrams we write 

(-gu~ffI~)=(4~z%)2Cr {CeA(1) +(2CF- N~)A(2) + N~A(S) + ~ -  A(4)}, (3.19) 

where A ~,  A (z), and A ~3), corresponding for q@9 final states (2.2), receive contributions from the following 
diagrams, using the notat ion of [5], 

A(~): A(1, 1), A(2, 1), A(2, 2), A(3, 1), A(3, 2), A(3, 3), A(4, 4), A(5, 4), A(5, 5), A(6, 4), A(6, 5), A(6, 6) 

A(2): A(4, 1), A(4, 2), A(4, 3), A(5, 1), A(5, 2), A(5, 3), A(6, 1), A(6, 2), A(6, 3) (3.20) 

A(3): A(7, 1), A(7, 2), A(7, 3), A(7, 4), A(7, 5), A(7, 6), A(7, 7), a(8, 1), A(8, 2), A(8, 3), A(8, 4), A(8, 5), 
A(8, 6), A(8, 7), A(8, 8) 

while A ~4) proceeds from qYtq?l final states (2.3). Since the double poles (3.9) lead (after integration) to singularities 
1/2 2 and the single poles (3.10) to 1/2, we have to compute  the residues of the double-pole terms (3.9) to order 2 2 
and those of the single poles (3.10) to order 2 which goes begond our  earlier calculations [-5, 6]. The result can be 
written 

(1 - -~ (~(o_ 2Ai0) (3.21) A(o= 
2 / ~ 0  

where the factor 1 - reflects the n dimensional contraction of g Hu~ as before and the Ag ) and A~ ~ are given in 

Appendix E. 
The (real) order es 2 contributions to the 3-jet cross section can now be read off from the formulae in 

Appendices D and E. Let us define 

BG(xI, XlI) = 1 - x m 
(1 - x~) (1 -x , , )  (3.22) 

and (see Appendix D) 

V,S V,S RKL =B (Xj, xn)HrL, 
V,S __ V ,S S K - B  (xI, xn)MK, (3.23) 

T v's'e = BV'S'e(xl, xn) NI~ 

(K, L = I, II, III). We then find 

(4n#:]~/z 2~ (~ (3.24) dZa(4)(e,6)=a(2)(4nl~21a/2dxldxu ' - ~ - ]  F[1-2'~-2)1 [(x~+xn_l)(l_x,)(l_xi,)]_z/z _] 4 n F ( 1 -  ~)\2rc] 

where* 

T =  C F [2(S v -  ~/2s + S v - .~/2s) + 4(B v + 2BS)] + (2CF ~,r ~ v  - .V2s . ~.T r~,l~,v - ~./2s . ov - ~./2s~ 

N f  F4(sV-Z/2s Tv-,~/2s~+ 4_BS q uV-Z/2s___ U v _~" + 2 TVi- Z/2s + 2(2Ba- !~ BS)] + 2 " ~i,, *iii , a J, - 2 u S ,  U=R,S, r. (3.25) 

Explicitly, this leads to the pole terms 

T=4n2- ~CFBV- Z/2S(xi, xn) {~--2 (2CF + Nc) 

1 2 l 
+ ~ (6C F - ~ N I + ~ N c-  2(2 C F -  No) In y~ n - 2No In (Yl iiiYit in) / 

(YI H = 1 - Xm, Yl m = 1 - xn, YII m = 1 - x 0 . (3.26) 

* Note that (3.8) is symmetric under x 1 =xl, x2=xn~xK, xt, K # L  (K,L=I ,  II, III) 
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The  full 3-jet cross section will be the sum of (2.11) and (3.24) with x ~ - - x  l, x 2 - x  n and  x 3 - x  m. Utilizing 

F (  1 - 
- 1 + 0(22),  (3.27) 

it is readily seen that  the pole terms cancel as they should. More  generally, we can state that  the differential cross 
section in any variable  which is linear in the pa r ton  energies in the 3-jet limit is finite. 

tn the following we shall redefine the variables xx(K = I ,  1I, I I I )  to be twice the energy going into the K- th  cone 
divided by  the total  energy going into all three jet  cones. This definition of jet energies does not  alter (3.24) as it 
effects only the order  e,52 contr ibut ions  but  is directly relevant to experiment.  No te  that  0__<xK<l and 
xl + xn + xm = 2 as before. 

I V .  F i n a l  R e s u l t s  

After this the 3-jet cross section, which now is 

daC3)(e, 6) = do -(3) + da(4)(c, ~5), (4.1) 

can be writ ten down explicitly. For  ease of  writing we shall label the jets by their arabic  numbers  (i.e., I, II, I I I ~ l ,  
2, 3) th roughou t  this section. We obtain  in the MS scheme 

dZcr(3)(z'5) = %  C F BV(xl,xz) 1 -  cq(q2) Cvln + C F l n - -  
dxldx 2 ~ x2 

18Cv+I1N c NZlln(l-c_osc~l _ / / 1 - c o s  e + 6 ]  ~ 2 ]--lne~Ncln~ - 2 0 1 3 ) + N c l n ( 1 - c 2  sOz3) + N J n - -  
x 3 12 

z e \ / 1 - c o s &  

where 

R(xl, x2)= 5-  2 2 5 -  2 +�89 - 

-Cv2f2(1-x~)-Cp2fz(1-x:) - (2Ce-N~)s188 

- N~ ln~x3 - (2C v -  Nc) lnx 3 ln(1 - x3) 

+ �89 F -  N~) ln(1 - x3) (ln(1 - x l )  + ln(1 - x2)) + ~ ln(1 - x l )  ln(1 - x2) 

- CF(ln2xl + ln2x2 + l n x  t ln(1 - x l ) + l n x  2 ln(1 -x2)) 

_ ~Cv(inxl +lnx2)  + �89 ~_ 13 ikT - -  5 ( - "  - -  137 N (4.3) 
18~" f 2 ~ F  ~ c,  
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F(xl,x2)=BS(xpxz)(�88 - Nc)[lnx I ln(l - x~) + 502(1 - -  X l )  

and 
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+ lnx 2 ln(1 - x;)  + 5r - x 2 ) -  In (1 - x3) ln(1 - x ~ ) -  ln(1 - x3) ln(1 - x2) 

+2502(1-x3)+21nxaln(1-x3)- +C~-Nc+ ~-f 

+ B3(xl,x2)(�89 - N )  [ln(1 - x3) ln(1 - x 0 - l n x  I l n ( 1 -  x l ) - ~ a ( 1 -  xa) 

q ) + ln(1 - x3) ln(1 - x 2 ) -  lnx 2 ln(1 - x2) - 502(1 - x 2 ) -  21nx 3 ln(1 - x ~ ) -  25~72 (1 - x3) + 3 -  - �89 Nr 

+(2C F -  N~) [lnx 3 ln(1 - x 3 ) +  502(1 - x 3 ) +  �89 1 ln(1 - x l )  + �89 2 ln(1 - x z )  

+ �89 - x j) + �89 - x 2 ) -  �89 - x3)In (1 - x a ) -  �89 - x3)ln(1 - x2) 

6~J + 2Cp[ ln (1 -  x 1)+ l n ( 1 -  x2)] + 2CF-- ~N~ 

+ ( l _ x 0 ( l _ x 2 )  �88 )[lnx~ ln(1-x~)+Y'z(1-x~)-ln(1 - x z ) l n ( 1 - x 3 )  

- lnx 2 ln(1 - x 2 ) -  5~ - x2) + ln(1 - x2) ln(1 - x3) ] 

- � 8 9  1-xtx2 + 1--x2]xt/ - �89 - xl)  (I" - / x ~ X 2 )  , [ l n ( 1 -  x , ) +  ln(1 - x2) 1 7 _ 2 2  -] 

ln(1 - x l )  
-- (2Ce(1-  x2) �89 ) 

X1 

- (2Ce(1 - x l ) -  �89 Nc)(1 - x2) ) 1 - x 3 + x3 In (1 - x 3 ) t  l n ( 1 - x 2 ) + ( 2 c e _ g c ) ~ 3  (1+  1 (4.4) 
X2 X 3 / 

B3(x1,x2)= x3 (1-xl)(1-x2) (4.5) 

The cross section (4.2) was given already in the letter version of this work [ 15] (where, however, we have set C~ = 
and N~ = 3 explicitly* right from the beginning). 

2 corrections to the 3-jet cross section In view of the contrasting statements in [17, 18], namely that the order % 
are large, the central question is now how (4.2)-(4.4) can be checked (independently). 

Let us first consider the logarithmic terms lna, In ( 1 -  cos6) 2 , i.e., the leading contribution for e, c5--*0. This has 

been calculated independently by Smilga and Vysotsky [28] who found** 

d2~r(3)(~, 6) G(,q2)CvBV(xl,Xe)41_ %(qZ)((Cvln~+Cvln ~ 
dxldx2 =~o zn t g x2 

+ N c l n  ~x3 + 18Cp+ 1 t N c 1 2  NLlln62-1na(Ncln(!-c2013)6 j 4 

1 - cos O12 (4.6) 

As can readily be seen, (4.2) agrees with*** (4.6). 

* In (5) of [153 the last term, - @, should read - ~ and in (7) of [15] the last term in the first curly bracket, - ~, should read - 
** Note that [28] contains a misprint (A.V.Smilga, private communication) and that our 6 is the full opening angle 

*** Note that In =ln 4- +O(fi z) 
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In order to check the remaining finite terms we proceed in two steps. First we set N ~ = N I = 0  in (4.2)-(4.4) 
(retaining a o 4= 0 though). This makes the diagrams involving the triple-gluon coupling vanish ("abelian limit") and 
switches off the qqqgl production channel so that only the quark and antiquark jets are "composite". From the 
Ward identity we then derive the relation 

1 -A  1 - A  d2o'(3)(g, 3) CXs(q 2) 
dxl ~ dx2 -- ln2A CFa(2)(g, 3), 

o 1 -x~ dx f l x  2 a~-o n 

a(2)(e, 3) being the well known (O(G)) Sterman-Weinberg cross section for two jets [-14, 29] : 

OCs(q 2) 3 2 3 2 
o'(2)(~, 3)= a0 { 1 - C e  [(21ne + ~)In ~ - -  211n ~- 

7~ 2 

(4.7) 

(4.8) 

which must be satisfied by our 3-jet cross section. 
We notice that only the most singular part (for x a--+0) of the 3-jet cross section (4.2)-(4.4) contributes a factor 

ln2A. This is* 

d2a(a)(G3)dxldX 2 zTcG(q2) CBVtxF t { %(q2) [( f7  ~ = a o ~ - - -  1,x2) 1 -  -C  v In +In  ~ 
X 2 

+ ~ ) l n ( ~ ) _ (  7 g l l n ( 1 - - c ~  ~,a [1- -c~ n2 
~ + Xz/ \- ~ -] + 2~- ~ ) -2 s  ~ - - ~ ] } .  (4.9) 

If we integrate (4.9) over xl, x 2 we obtain 

I-A 1-.a d2a(3)(,%3) _ ln2A G(q2)Crao l1 - G(q2)CF[(21ne 
0 1 - x l  L 

 l-cos, , 2 lnt - o , t + g ) l n [ T  ) - . - , - -  -502(1)+ T - ~ ]  } (4.10, 

7C 2 
which agrees with the right-hand side of (4.7), realizing that 5('2(1 ) = -6-' The untested less singular terms (giving 

rise to a single logarithm in A or a constant) are numerically small over the whole kinematical range. 
In order to check the terms proportional to Nc and N I we shall set C 2 = 0 (but retain CFN c, CFN f 4 = 0) and 

consider the limit x 1, X s ~ 1 with (1 -x3)/(1 - x  1)--+ 1. This (again) corresponds to a 2-jet configuration with one jet 
being a "composite" gluon jet and the other consisting of a single quark. In this limit we expect our 3-jet cross 
section to be proportional to the Sterman-Weinberg type cross section for gluon jets as derived in [-30, 31]. 

The cross section in [-30] cannot be directly compared to (4.2}-(4.4) since it is source dependent. In order to 
divide out the source dependence we have to calculate the equivalent of what is called the "total cross section" in 
[-30]. We have done this and obtain, after a straightforward evaluation of our formulae, 

"at~ 1 2n r~ ~ + Nc+~2Ns (4.11) 

which leads to (noticing that cos O 13 --' - 1, cos 0 23--+0, cos O 12 ~0)  

= - - +T~Nc-  - -  + ~ - ~  N ~ + ~ .  
"O-tot" d x l d X 2  x~,x3-+ l 

(4.12) 

This agrees with (3.7) in [30] taking into account that the square bracket in (4.12) has to be multiplied by a factor 
two for comparison as we have only one gluon jet here. 

* Note  tha t  l im cos O12 = - 1 

Xl ,X2-+l  
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The "total cross section" (4.11) is partly hidden in the O(e), O(62) contributions not written down explicitly. To 
be more explicit, we can proceed in an alternative way. From (3.24) and (3.26) we obtain 

2 CeBV(xx,x2)]-i d20-(4)(e,b) ~ , ~ t  {4rc#2/x/2 [ /4re ''2\z/2 1 ( l _ x l ) ( l _ x 2 )  ] a/2 ~ ) 
0 . ( 2 ) [  '~i '* / [(XI"I-X 2 -  1) 

1 % ( q 2 ) { N c ( ( ~ + l l ,  tl ( ~ ) 5 ~ 2  ( ~ )  2zt ~ )  - ( 2 1 n e+  ~-)ln - + , ]  + ~---L[- 4 +~ ln  - ~ ) } ,  

,4.1,, 

where terms proportional to BS(xl, x2), which come from the n dimensional traces over lines x l, x 2 in conjunction 
with the poles in 2, have been discarded* in order to meet the assumptions of [303. The right-hand side of (4.13) 
then is found to agree with (3.5) in [-30] apart from the last term in the square bracket multiplying Ny, - ~ ,  which 
in [30] reads - ~ .  This difference can be traced back to (2.1) in [30] which has also been criticized in [31] (but 
may be source dependent). Our result corresponds to setting D = 0 in the second square bracket in (2.1). Note that 
in the ratio (4.12) (which is unambiguous) the difference drops out. 

As before the untested terms are numerically very small with the exception of the term ( ~ N c  - N L )  lnx 3 [cf. 

(4.2)]. The reason is that they (also) are less singular on the 2-jet limit x3~0.  
We like to emphasize at this point that there are no large rc 2 terms as found in [17]. The ~2 terms in (4.3) have 

the opposite sign and are nearly cancelled by the constant terms as in the Sterman-Weinberg cross section (4.8) 
(and the total cross section). 

The coupling constant in (4.2) is evaluated at q2 (see Sect. II) which provides the natural scale if the angles 
between the three jets are all large. In the 2-jet limit the 4-momentum squared, which determines the strength of the 
strong coupling constant, becomes, however, much smaller. This mismatch of scales results in the large logarithmic 
term** 

~s(q 2) ( a 2 

_ ~ ( 2 ) ~  CFBV(xl, x2 ) ~ ( ~ N ~ -  �89 lnx 3 (4.14) 

in (4.1). As can readily be seen, (4.14) can be absorbed into % by the change of scales 

2 ~ x22 %(q2)~%(x~q2). (4.15) q 3q , 

This means, if the renormalization is performed at x~q 2 rather than q2, the logarithmic term (4.14) is exactly 
cancelled. This mechanism is expected to repeat itself in higher orders so that better convergence of the 
perturbation series is obtained if the 3-jet cross section is expanded in powers of %(xZq2). 

We shall now present numerical results for the cross section 

1 do'(3)(g, ~) 
a dx~,~ , x~• X3}, (4.16) 

where [10] 

a = a 0 [1 + %(qZ) oc 2 2 
~ -  + (1.986- 0-115Nil ( ~ )  1 . (4.17) 

This derives from (4.2) by integrating over one of the jet energies. 
We expect (4.16) to be insensitive to hadronization and higher order corrections and, therewith, directly 

relevant to experiment as it factorizes [16] - in contrast to the C and ("bare") thrust distributions [17, 18] which 
do not. Furthermore, (4.16) has the advantage that Xma X extends from 2/3 to 1 independent of the number of 
partons/particles going into it. 

* It can easily be deduced from (3.21) and (E.I~(E.8) that the terms proportional to BS(xl,x2) vanish if the traces are taken 4-dimensional 
/1 cos6~ ** Note that the remaining logarithms in (4.2) are finite in the limit xs~0 or cancel against -N~ lnx 3 In ~ )  
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Fig. 6. Three-jet cross section for (~, ~5) =(0.2, 45 ~ and (~, ~) =(0.1, 30 ~ 
together with the Born cross section as a function of Xm.~ for 
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Fig. 7. Three-jet cross section fitted to the PLUTO data [33] with 
(~, ~) = (0.2, 45 ~ 

In Fig. 6 we have shown the cross section (4.16) for (e, &): (0.2, 45 ~ and (e, 3)= (0.1, 30 ~ together with the Born 
2 corrections to the 3-jet cross section are small for not too small e, 3, as one distribution. We find that the order c~ s 

would have expected from the total cross section [10], and negative. The latter one would also have expected from 
factorization plus the phase space cut off. In contrast to this, large positive corrections have been found for the C 
and ("bare") thrust distributions [17, 18]. 

Experimentally, the Sterman-Weinberg 3-jet cross section can be determined via a cluster analysis [32]. This 
has been done by the PLUTO group [33]. We have fitted (4.16) to the PLUTO data (Q= 30 GeV, e=0.2, 6 =45 ~ 
and obtain 

as=0.17. (4.18) 

This corresponds to Ag~=0.24 GeV using the l-loop formula (2.17), while the 2-loop approximation [34] 

~s(q2)= 
2~ 

b o l n ~  + bo \ , 

l lhT _I]v bt 17~r2 ~NcNf_�89 f bo = 6 X,c 3-,f, : 6 - ~ ' c  - -  
(4.19) 

gives A ~  = 0.48 GeV. The data and the fitted cross section curve are shown in Fig. 7. One should note, that the 
experimental data points have larger error bars and so has A ~  extracted from them. 

V. Conclusions 

2 corrections to the 3-jet cross section, defined to be the cross section for events We have shown that the order es 
which have all but a fraction e/2 of the total energy distributed within three separated cones of opening angle &, are 
small beyond all doubts. 
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Appendix A 

The renormalized current matrix element is given by 

1 
go (01T(tpCpAj)IO) - Z2 ~ go (01T(~vCpAj)IO) o , (A. 1) 

where the unrenormalized matrix element (OIT(tp~Aj)lO)o is calculated from the diagrams in Figs. 1 and 2. The Z 
factors, renormalizing the quark and the gluon wave functions, respectively, are (UV = ultraviolet, IR = infrared) : 

g~ C 2 

Z3 = 1 + ~ , 5 ~ , c -  5N•) - , 

Z = 21R 

(A.2) 

and the unrenormalized coupling constant go reads in terms of the renormalized coupling constant g: 

Z 1 
go = g + ~Sgo - ~ g, (A.3) 

Z2 VZ3 

where 

Z 1 = 1 -  9~=(Nc+CF) - 
16rc~ (A.4) 

In the minimal subtraction scheme (MS) only the ultraviolet poles in go are subtracted which gives 

g2 (_2N 1 1 N  ~ __1 
6go 16u2~3 y 3 CI2u v" (A.5) 

This leads us to the counterterm (2.10). 

Appendix B 

Here we shall list the scalar 2-, 3-, and 4-point function integrals which we encounter in calculating the loop 
corrections to (2.1). 

(i) 2-point function 

, ( , )  ]~7~2~_p2j F t -  2~uv+l ' ~  

.d'l 1 ( ~) 

Z ~  v -  , on shell 'p  2=0 .  

(ii) 3-point function 

(B.1) 

d"l 1 
J3(Pl, P3) 

f 
P2, J (2re) n 12(l + pl) 2 ( l -  P2 - P3) 2 

(B.2) 
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i 1 { 4n / 4/2 1 ( 2  _ 1 
J3(pl,p2,0) = 

8~2 s1 z \_pzj  V 1-- 

where P=P1 +Pz+P3 and p}=0.  
(iii) 4-point function (see also [--23]) 

. dnl 1 

J4(Pl, Pz, P3) = J (F~)" 12(1 + pl) 2 (I- p2) 2 (l + Pl + P3) 2 

i 1 (4re / x/zF 1+ F 1 -  [4 2 

-- 8~2 S12S13 \ ~ /  F ( 1 - 2 )  _ ~ -  2 (lny12 +lny13) 

+ �89 2 + �89 + lnyl 2 lnyl 3 - lny12 lnx3 - lnyl 3 lnx2 

-- ~2 (Yl  2)-- ~2 (Yl  3) q- ~ 1  - 
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(B.3) 

(B.4) 

Appendix C 
4 

The aim of this appendix is to derive (3.5). From ~ p i = q = 0  follows 
i=l  

X 2 -}- 2XIX 2 COS 1~I2 -~- X2 = XI + 2X3X4 COS {~J 34 -~- XI" (e .1)  

This leads to 

[-�89 2 sinO12]2 =(Xl + x  2 -- 1) (1--x l ) (1--x2)+ XIX2X3X4 ( 1 - c 0 s 0 3 4 )  [ 2 -  4 ~ ( x  1 + x  2 -  1 ) -  x3x4 (1-c0s034)1 
4 xlx 2 xlx 2 

(c.2) 

and 

[,�89 sinO12]-z=[,(xl + x2-1)(l-xl)( l-x2)]-a/2 {1-  ~ln(l + y34C)} 

Y34 C=xIx2[1- 2~(x1 +x2-1)-XlX2][,(x I +x2-1)( l -xl)(1-x2)]  -2 (C.3) 
XIX 2 

which finally proves (3.5). 

Appendix D 

In this appendix we give the results of the different integrals encountered in Sect. III. 
We start with (3. i7). First we shall perform integration of O(x> cos 0 13, cos O 34) over the azimuthal angle ~b. 

The result is 

2~ 4re IO(cos  Oiill - cos 034.) S d(~ cos 0 13, cos 0 3 4  ) = - x32( 1 _ cos 0 34) 
0 

Icos oi HI- cos O 3 41 - Icos O 1 m -  c o s  O 3.~L] + (o(cos OI Ill COS O 4) �89 3 lcos O 1 Ill-- COS O 3 In ~1 
(D.1) 

The second term in the square brackets of (D. l) is not singular. As we will calculate only the nonvanishing part (for 
e, 6--*0) of the 3-jet cross section analytically, we can omit this term from our further presentation. We then obtain for 
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HI III : 

(x-~1I-1)ln( 1 ~ ) V ) ]  ~/e2 I xI~I~e-;' + _ e _ e + 2  ~ ( 1 - c o s a )  -~/2- - -  

4 xm(l_2 ) +2 -s -1  In 1 -  

q-2/Z 2-'l{2"V2 ~ [4 (1 - cOs'OI III) -'~/2 - 2-  ~/2 c;so, ii,))]} (D.2) 

=2re 2-x{~--2 - ~ [-ln(1 - xn)-- 2 ] -  2lng [In (1 - ~ ~  ) 

- In  (1-c?O'" ') l- t-  In ( ~ )  (In Xl -t- In Xl,l -- 2) 

+ (x~+ e lln(1-cosa I /1-- COS Ollll ) (1-- X,II] \ 2 J--S2 k - 2 +�89 C20nH) 

+ In xi(ln x I -  2) + in Xin(lnXln - 2)- 2T~2 -~- 8} "Or- O(n-- 4) + O(8) + O(a2), (D.3) 

1172 
where we have utilized s176 ) = ~-. The other integrals Hin and Hnl n follow from (D.3) by interchanging the jet 
labels. 

The integral over the single terms (3.18) gives 

M,,, = 2re 2_,{2~/2 2 x/2[_x~Tta(ll)o 1 _ ~(1-cos6)- 2-2)  ~J} 

t , /1-cos6\ +lnxm_2J +0(n_4)+0((32) =2r~2-~{-~ + 71n ~ : ~ 7 ~ )  (D.4) 

and similarly for MI, Mir. Later on we shall encounter two more integrals of this sort: 

~rm=2rc ! dx3id0340 xa 1 -~m sinO34 xmx4(1-cos034) 

and 

(D.5) 

xi,, [ (  x, 
Nm=2= ! dx3!dO34x 31-~S)sinO34~ 1 

XIII/ ] X2i(1 -- COS O34) " 

As can readily be checked/~III=MIII, while for (D.6) we obtain 

~( ~/2 2 N,n=2~2- /2  ~ (1 - cos (5)- ~/2 [ - Xin'~ ( 2 1 2 3 1 s  - 3~21} 

-- 2rc2-~ [ -  M +51n (1-  ~ ~  +�89 ~] 

and analogously for NI, Nn. 

(D.6) 

(D.7) 
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Appendix E 

Here we shall list the singular matrix elements A(~ ) and A(~ i), i = 1,..., 4 of  (3.21): 

16 1 [(xl+x,)2+x~_ x 3 +2(1  - {Xl +X2+X3--  1) 2 
A(1) -  q2 x3(l__ COSO13) [(1__X1 __ X3) (1__ X2) Xl(X I +X3) Xl)(l_xl_x3)(l_x2)(xa +x3)  

Xl+X3 ] + (1~--~2)+ (3 *-'4) + (1~--~2, 3 ~ 4 )  
+2 (1 - -Xl ) (1 - -X  1 - x  3) 

16 1 [( ( 2 2 x l - x 2 - x 3 ) 2  2) x3 X2X3 
A?)= qa xdl-cos O.)L\(1-x~- x~)(1-x~) x~(x-; 7 x~) + (1-x~- x~)0-x0x~ 

+(1.--+2)+(3.---'4)+(1,--',2, 3,-,.4), 

{2, 16f  x2 + x2ii [ 1 1 
Ao '= ~ / i~ -x~) (1-  xii) X~(1- r + x~(1- :osO.)  

+D(x3,  cosO13, COSO23)+(3+-)4 ) - i l  --Xi)(1 --X t --X3)(1 --X2)(X 1 +X3) 

. + .  ) 1 1} + ( 1 - x x ) ( 1 - x l - x 3 )  x3(1-cosO13)  +(1~--~2)+(3+-~4)+(1+-+2, 3*-+4) , 

8 1 [ ( 2 2 x 1 - - x 2 - x 3 )  2 2 - X l - X 2 - x  3 
d(12)= q2 X3(1- COSO13)[(I__xI__X3)(I__x2)x 3 -- ( l__xl)(  1 __Xl __X3 ) 

2--X 1 --X2--X3] 
+ ( i T _ x ~ x l  ] +(1.--~2)+(3.-~4)+(1.--~2, 3 ~ 4 ) ,  

A(~ 16 ~ xt+x2 Ix 1 1 
L(1-~)~-x~) ~(1-&sO~3) + x~(1-cosO~O 

] [ (xl+x2+x3-1)2 
+D(x3, COSO13, COS034 ) - i l__x1)( l__x 1 - x 3 ) ( 1 - x 2 ) ( x  l + x  3) 

X 1 + x 3 ] 1 X 2 + X21 X 3 1 } 

+ (1 -- X I~-I~xx 1 -- X3) ] 7r -- COS O 13) ~ (1 - - X ~  ~XIII) 2(2 -- X 1 -- X2) 2 X3(1 -- COS O 34) 

A (3) = 

A(r = 

A~ ~-) = 

+ (1.-+2)+ (3,-,4) + (1.-.2, 3.-+4), 

8 {[ (2--Xl--Xa--X3) 2 2 - - x l - - x 2 - - x  3 ] 1 

.u(1--X1--X3)(1--X2)X3 ( I ~ - ~ X I ~ X X 3 ) - ] X 3  ( 1 - ~ s { ~ } l ; )  

[ (2-x l -x2)2--  2 - x l - x 2 +  x l + x 2 - 1  +1]  1 
+ L x~ x 3 ( 2 - x  1 - x 2 )  2 . ( 1 - x 0 ( 1 -  

+ (1 +~2) + (3 ~-~4) + (1.-+2, 3 ~,4), 

16 1 x~+x~ x ~ + ( 2 - x , - x 2 - x ~ )  2 
q2 X3(1- COSO34) (1--Xl) (1 --X2) (2--Xl--X2)2 (2--Xl--X2--X3) 

+ (1+-+2)+ (3 ~ 4 ) +  (1 ~--~2, 3,---,4), - 

8 1 (2 -- X 1 -- X2) 2 

q2 X3(l__ COS 1~34 ) ( 1 -  Xa) (1 -- X2) (2-- X 1 --X2--X 3) 

+ (1.~,2) + (3.--,4) + (1.-+2, 3 ~ 4 ) .  

{E.1) 

( 1 - - x l ) ( 1 - x  1 --x3)] 

(E.2) 

x2) (1 - cos 034) 

(E.3) 

(E.4) 

(E.5) 

(E.6) 

(ET) 

(E.8) 
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