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A horizontal extension of the Weinberg-Salam electroweak theory by a right-handed O(3)g
gauge symmetry for the three-fermion families is studied. By an appropriate choice of the Higgs
scalar fields the CP symmetry of the lagrangian is spontancously broken, but the mixing of the
left-handed fermion states, and hence the Kobayashi-Maskawa mixing matrix, remains real. The
CP violation is manifested in the superweak horizontal gauge interactions, which are suppressed
by the large mass of the corresponding gauge bosons. It is, however, possible that the horizontal
boson acting on the second and third families can be considerably lighter than the other two,
implying an interesting phenomenology of the related CP violation effects and flavour-changing
neutral currents.

1. Introduction

17 years after its discovery [1] the reason for CP violation is still mysterious.
Up to now it has been experimentally observed only in the subtleties of K-meson
decays. This fact follows from its smallness compared to ordinary weak interactions.
Theoretically it is, in fact, not difficult to implement CP (or equivalently T') violation.
It is, however, harder to understand that if there is CP violation at all why is it so
small. This applies, in particular, to most of the currently popular models where
the CP violation is part of the weak interactions described by spontaneously broken
gauge theories (see, e.g. [2, 3]). There exists also the danger of large CP (and P)
violations in strong interactions, induced by non-perturbative QCD effects [4-6],
if the quark mass matrix obtained from spontaneous symmetry breaking is complex.

A possible way to explain the smallness of CP violation is to associate it to a
new superweak interaction due to the repetition of lepton-quark families. Such
“horizontal’’ weak interactions [7-9] have to be superweak anyway because of the
observed accuracy of separate electron-, muon-, and 7-lepton number conservation
and because of the small upper limits on flavour-changing neutral currents {10,
11]. The horizontal interactions are associated to a spontaneously broken gauge
symmetry; therefore, this is a field theoretic realization [ 12] of the superweak model
of CP violation [13]. As shown recently by Davidson and Wali [14], this CP
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violation scenario can be implemented for any number of fermion families with an
SU(2) horizontal symmetry. In particular, they pointed out the importance of the
chiral structure of horizontal interactions for obtaining realistic fermion mass
matrices. An important property of their model is the vanishing of the tree level
strong and weak CP violation, leaving the horizontal interaction as the main source
of CP violation. (For different, recent attempts with horizontal CP violation, see
also [15-17].)

In this paper we present a new CP-violation model of ‘‘horizontal” type, based
on the gauge symmetry group SU(2);v ® U(1) ® O(3)ru. Here SU2),.v ® U(1) is
the Weinberg-Salam electroweak symmetry [18, 19] and O(3)gy is a right-handed
““horizontal” symmetry for the three observed families. (We assume the existence
of the t-quark completing the third family.) The main difference compared to the
model of Davidson and Wali [14] (and also compared to the other models in refs.
[15-17]) is in the chiral structure of the horizontal interactions: in our case only
the right-handed fermions carry non-zero O(3)gy quantum numbers and the left-
handed fermions are horizontal scalars. The Davidson-Wali model is based on an
axial-vector-like (“‘flavour-chiral’) horizontal symmetry with opposite horizontal
isospin for left- and right-handed fermions. The change in the chiral structure
implies, besides the difference in the horizontal interaction, a completely different
Higgs sector and therefore different structures for fermion and vector-boson mass
matrices. In addition to the questions studied in refs. [14-17] we also explicitly
construct and study the Higgs sector of our model. This allows a more precise
specification of the phenomenological consequences. From the study of the Higgs
potential we show that in our model CP violation can arise from the spontaneous
breaking of the original CP symmetry of the lagrangian by the minimum of the
Higgs potential. At the tree level the mixing angles of the left-handed quarks and
leptons are real due to the choice of the Higgs fields even in the case of three
families. (Therefore, at least in the tree approximation, the Kobayashi-Maskawa
mechanism [20] of CP violation in ordinary weak interactions is not operating.)
The strong CP violation also vanishes at the tree level. The right-handed mixing
is, however, complex, inducing CP violation in the superweak horizontal interac-
tions, which act only on the right-handed fermion components. The
SU2)1.v ® U(1) ® O(3)ru model is a modest extension of the Weinberg-Salam
electroweak theory, as the O(3)ry horizontal symmetry affects only the right-handed
fermion components, which are scalar under the *‘vertical” SU(2); v.

In sect. 2, after definining the model precisely, we construct and diagonalize
the mass matrices of fermions and gauge bosons. In sect. 3 we first show (in
part referring to the appendix) how CP-violating minima of the Higgs potential
arise and then determine the low-energy, effective, four-fermion interactions
containing the CP-violating ‘‘horizontal” neutral currents. In sect. 4 we briefly
discuss the phenomenological implications of the model and make a few conclud-
ing remarks.
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3. The O(3)gy family group

We assume in this paper that there are three lepton-quark families spanning a
three-dimensional (fundamental, vector) representation of O(3)g;; with the right-
handed field components g, (x), (r=1,2,3;9g=1, §, {) Of course, the Lie algebra
of O(3) is isomorphic to SU(2); therefore, we could call the horizontal symmetry
SU(2)ry as well. By using the name O(3)gr); we want to emphasize that representa-
tions with half-integer SU(2) spin (doublets, quartets, etc.) will not be considered.
Besides, for a larger number »n >3 of families we would take the generalization
O(n)ry and its n-dimensional representation. The index g above refers to the
electric charge: g = 1 stands for charged leptons, g =3 for up-quarks and q =} for
down-quarks. Right-handed neutrinos will not be considered in the present paper
because of their exceptional status.

The left-handed fermion field components ¢ (x), (h =1, 2, 3) are doublets (index
a) under SU(2), v. The index h stands for the three different families. There are,
of course, separate left-handed doublet fields for quarks and leptons but in most
cases it will not be necessary to specify whether quarks or leptons are being
considered.

The only difference is in the values of the weak hypercharge Y belonging to
U(1): Y =; for the quark doublet and Y = -1 for the lepton doublet. (The Y
values for the right-handed fields are also determined by the familiar expression
for the electric charge: Q = Ty vs + ] Y.

The simplest possible set of Higgs scalar fields consists of a complex SU(2), v
doublet, Y =1 and O(3)gy triplet: ¢, (x) and three real SU(2),\ singlet, Y =
0, O(3)rn triplets: n,(x); (J =1, 2, 3). These latter do not have Yukawa coupling
to fermions. They are needed in order to give large masses to the horizontal gauge
bosons. The Yukawa coupling, e.g. to quarks has the form

Fy = —Z {Ghd;Rr(x)1/3¢;r(x)¢;x.(x)h + G-h'/;Rr(X)z/s(f;;r(X)d/T.(X)h}+h.c. , (2.1
h

where the Y = —1 field ¢ is defined as usual by o= £.5¢ 5. The Yukawa coupling
constants are real in accordance with the CP-invariance of the lagrangian. The
zeroth-order quark mass matrices are given by the vacuum expectation value of
the ¢ field, which is of the form

Ol 7 (x)]0) = 8.2V 5 u, + iv,) . (2.2)

This gives the following mass matrix, for instance, for the down-quarks:

My, =5, —iv,)Gy . (2.3)

For the charged leptons we have the same form as this, only with different Yukawa
coupling constants G}. For the up-quarks, on the other hand, G, is replaced by G,
and the complex conjugate is taken. In order to obtain the physical fermion states
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with definite mass the mass matrix m has to be diagonalized by a biunitary
transformation:

UrmUL' =diag (m),
+rr—1 + -1 2 (24)
Urmm Ug =Urm mUyg =diag(m®).

(In what follows we shall explicitly consider only the down-quark sector, as the
results can be easily transcribed also for the up-quarks and charged leptons.) Ugr
and U, are, in general, 3 X 3 unitary matrices. The specific form of eq. (2.3) implies

(m+m)hh’=%szhGh' ) (PzEPrPr) )
(2.5)
(mm™),, =3Gp,p, "%, (62 E% Gﬁ) ,
where we used the notation
u, +iv,=p, e (2.6)
From eq. (2.5) it follows that
U.=0,., Ugr = OrF, (2.7)

where O; and Og are real orthogonal matrices and F is a diagonal matrix containing
the phases

et 0 0
F=|0 &% 0 |. (2.8)
0 0 e

From the remarks made after eq. (2.3), it follows that Oy is, in general, different
for different electric charges, whereas Og is the same and the phases in F are the
same for down-quarks and charged leptons and they are opposite for the up-quarks.

It can be shown, that in the parameterization introduced for the three family
mixing problem by Maiani [21], we have for the right-handed orthogonal mixing
matrix Og:

' cos Br —sin yrsin Br  —COS yg sin Br
Ogr= 0 COS YR —sin yr s 2.9)
sin Br  sin yrcos Br  COS YR COS Br |
where the angles are given by
P2

. 1 .
sin Br=—, sin yg = ————. (2.10)
P Vp’-pi

The third Maiani-angle 8 is zero. The horizontal interaction of the physical quarks
depends on the right-handed mixing matrix Uy given by egs. (2.7)-(2.9).
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It can be easily shown that the mass matrix m in eq. (2.3) has two zero eigenvalues
(the third, non-zero eigenvalue is m; =~/§Gp). This means that the masses of the
first two families are zero at the tree level. In order to obtain non-zero tree-level
masses, one has to introduce three Yukawa-coupled &-like Higgs field: ¢ (x);
(J =1, 2,3). (For the possibility of radiative generation of the masses of the first
and second family see the remarks in sect. 4.) The Higgs potential with three
n-like and three ¢-like fields is, however, rather complicated, because of the large
number of independent invariants. Therefore, in sect. 3 we shall consider in detail
only the simpler case with one @-field. Note, that if the three ¢-fields have the
vacuum expectation values

(Ol (x)5{0) = 8,28,V 5w, +iv,) (2.11)

then both the gauge boson matrix and the structure of the fermion mixing matrices
in (2.7) remain the same. As a consequence, from the point of view of CP violation
nothing essential is changed. The down-quark mass matrix, for instance, following
fromeq. (2.11) is

Mo =VHu, —iv)G;_ . (2.12)
This implies
3

(m™ m)uy = % Zl piGthjh' s
4o
(2.13)

3
(mm‘)rr' = ; z GrhGr'hprpr' e!(w,-—w,l .
h=1
The relations (2.7), (2.8) are valid as before, but the explicit form of Og is more
complicated than (2.9). In fact, Og is now different for different electric charges
(like O, too). The reality of the left-handed mixings implies that the Cabibbo
matrix entering the left-handed, vertical interactions

Co=Ulq=5U(g=} " (2.14)

is real. Therefore the Kobayashi-Maskawa CP-violation phase [20] vanishes. There
is, however, CP-violation in the right-handed horizontal couplings because of the
phases in Ur. These phases are opposite for the up-quarks and down-quarks. This
means that det m has opposite phase for up- and down-quarks, therefore the total
phase of the determinant of the quark mass matrix on the whole flavour space is
zero at the tree-level. As a consequence, there is probably no problem with the
induced strong CP (and P) violation as it can arise only through the radiative
corrections, similarly to the model in [22, 23].

Let us consider the mass matrix of gauge bosons following from the vacuum
expectation values in (2.11). [This also contains eq. (2.2} with a single ¢-field as a
special case.] Corresponding to the symmetry group SU(2)Lv ® U(1) ® O3)rn
there are altogether 7 gauge bosons: W, ;(x), for SU(2), v, B(x), for U(1) and
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H, ;3(x), for O(3)ru. The experimental upper limits on the flavour-changing (in
fact, generally “‘family-changing”) neutral currents [10, 11] tell us that the masses
of the horizontal gauge bosons are at least a factor 10° larger than the masses of
the Weinberg-Salam gauge bosons. These high masses are provided by the vacuum
expectation values of the Higgs fields n.(x); (J =1, 2, 3), which are scalar with
respect to SU(2);.v & U(1). Therefore, our model has two different intrinsic mass
scales set by the magnitudes of the vacuum expectation values of ¢-fields and
n-fields, respectively, the latter being at least a factor 10? larger than the former.

In order to break down the O(3)ry symmetry completely we need at least two
n-fields. The third one is needed for the spontaneous breaking of the CP symmetry.
As we shall see in the appendix, it seems to be impossible to have a CP-violating
minimum of the Higgs potential with two n-fields. By the O(3)ry symmetry
transformation freedom the vacuum expectation values of the three n-fields can
always be transformed into the position:

<0|77r(x)1|0> =6n21=24,,
(0]n,(x)20) = (8,1 cos @ + 8, sin @)z, =z, (2.15)

(07,(x)3]0) =[(8,1 cos '+ 8,, sin a’) sin B’ + 8,3 cos B')za=z3,,

where the absolute values are ordered according to [z, 2 |z5| =|z3|. The gauge boson
H. (a=1,2,3) belongs to the rotation in the O(3)ry space around the ath axis,
and hence to the generator T,, where

0 0 0

0 0 i) 0 =i 0
T,=y0 0 -if, I,={0 0 0], T3=(i 0 0\). (2.16)
0 i 0 =i 0 0 0 0 0.

This implies that for a generic vacuum expectation value z, of an n-like Higgs field
the mass-squared matrix of the horizontal bosons is (with gy the O(3)gy; coupling
constant)

M2y =igh(2,2.800 = 2a2s) . (2.17)

Adding together the contributions of the three n-like fields in eq. (2.15) and the
similar contributions of the (complex) fields &} (x),, having the vacuum expectation
values (2.11), we have

3
Mih = }18124 [ Z (z]rzlraah - zlazlb) + (urur + vrvr)aab — UgUp — Uavb] . (2-18)
J=1
The last terms due to the &-fields are, of course, only small corrections to the
contribution of the n-fields.
The Weinberg-Salam SU(2); v ® U(1) gauge bosons get their masses from the
vacuum expectation values of the SU(2), v doublet fields ¢ ¢ (x); (J =1, 2, 3); there-
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fore, the mass of the charged W-bosons is the standard one:
My =igup’,  (p’=pp.=uu+uvu,). (2.19)

Here gv denotes the *‘vertical** SU(2),.v coupling constant. The coupling constant
belonging to the weak-hypercharge group U(1) will be denoted below by g’. The
photon and Z-fields are the usual linear combinations of W, and B with the
Weinberg-angle fw:

A, =sin §w W3, +cos OwB,, g
(sin Ow= P—_’Z> . (220)
Z, =—cos §w W3, +sin 6wB,,, gvtg

The photon field A, is, of course, massless, whereas the diagonal element in the

mass-squared matrix belonging to Z is
M7, =igv+g")p”. (2.21)

This is, however, not the physical mass-squared of the Z-boson, because the vacuum
expectation value of the ¢-fields induces mixing terms between the horizontal gauge
bosons and the Z-field in (2.20), too. Using the generators in eq. (2.16), together
with the generators of SU(2),.v ® U(1), it can be easily shown that the H,-Z mixing
termis(a=1, 2, 3):

M2, =M%, =3guVg? + g ppp. sin (¢c — @) , (2.22)

abc being a cyclic permutation of 123,

The diagonalization of the 4 X4 mass-squared matrix of the neutral (Z and H)
gauge bosons is facilitated by the hierarchy of the vacuum expectation values.
Because of |z;] > p we can use, e.g., ordinary time-independent perturbation theory
[24] for the determination of the eigenvalues and eigenvectors, taking the contribu-
tions of the ¢-fields (proportional to p) as the perturbation. The diagonalization
of the “‘unperturbed” matrix M2, (a, b=1,2, 3)is possible analytically. The general
formulae are, however, rather lengthy and later on we do not need them, as we
shall assume that one of the horizontal gauge bosons (namely H,) is much lighter
than the other two. This means that it is enough to consider the special case
|z1]»|z2| > |z5]. In this case one can neglect z; completely in the mass matrix (not,
however, in minimizing the Higgs-potential: see sect. 3). Putting z; = 0, H; becomes
diagonal and the small mixing angle 8 among H, and H. is given by:

2 .
—z38In 2a

tg 26, = (2.23)

zi+z5cos2a
The “‘unperturbed™ (i.e. p = 0) masses of the neutral gauge bosons are the following:
Mi=0, M|2n=§'gf¢wg,

2 1 2 2 2 12,2 2 (2.24)
M3 =agawy, Mus =agn(zi+z3),
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where we introduced the notation

wy =322+ 23+ V(zi-23)?+4ziz5cos’ a],
(2.25)

W2=%[2%+Z§—\/(z%—z§)2+4zfz§c052 aj.

This shows, that |z,| > |z2| > |z3| implies, in general, M3 > My, > My,
Taking into account the first-order perturbation due to the terms of order p we
have:

M2 =gy +gMp?, Mhis=igh(zi+z3+pi+p3),
M, = ighlwi+p3+p3cos’ B+ pisin® 61+ p1p25in 204 cos (@1 —@2)],  (2.26)
M, =ighlwi+pi+p; sin” 6y +p1 cos’ By — p1p2 sin 264 cos (¢1 — ¢2)].

It can be seen that the Z-boson mass remains up to first order at its canonical value
M, = Mw/cos fw. In the next order it is shifted slightly upwards due to the mixing
with H-bosons. The situation is phenomenologically similar to the case of neutral
SU(2), which was considered in a different context recently by Claudson, Georgi
and Yildiz [25]. The eigenvectors corresponding to the eigenvalues in (2.26) can
also be determined by perturbation theory. Transforming this information, also up
to first order, into a rotation matrix with respect to the unperturbed coordinate
system, one can obtain the inverse mass-squared matrix M * of the HZ system,
which enters the low-energy effective neutral current interactions. The final result
is given in table 1. It is remarkable, that the off-diagonal terms in the H, > ; subspace
are a factor p’/z” smaller than the diagonal ones. Similarly, the HZ mixing terms
are smaller than MZZ > M”f, by the same factor.

3. CP-violating effective four-fermion interactions

As we discussed in sect. 2, from the point of view of CP violation it is enough
to consider the simpler case with a single Yukawa-coupled field &7 (x). A necessary
condition for spontaneous CP violation is that ¢; (x) develops complex vacuum
expectation values in the minimum of the Higgs potential. This condition is,
however, not always sufficient. The overall phase in eq. (2.2) can be arbitrarily
adjusted by the SU(2),_v freedom left over after transforming the vacuum expecta-
tion values in the « =2 direction. As we shall see below, even a non-zero relative
phase between the different components does not always imply CP violation.

A convenient complete set of independent invariants for a single ¢ and three
different n-fields is the following:

By =nomu—zi=n; M —23, J=1273)),
Bs.; =Mk " M. —2Zx2ZL COS kL, (K#L#J,J,K,L=1,2,3),

Br=dbLd —3p’=d" d-3p°,



v,

A.S. Joshipura, 1. Montcay |/ Superweak CP violation

"1X31 3y} 39S SUONBIOU 13110 0] 1(97°Z) 'ba ur udaId are <y pue "My cwi paqy st red 1addn oy A[uo ‘d10j010y) IUBWIWAS STy
S ¥ : : T

A
Awu+mﬁ:u
Y A
3+ u\fm
LyHy
-8 [(¥d - ) uis Hg uts Yo -
AN LI . .

<

(16— o) u1s g 03 Y10 Ligy — Zpy)

(TP —1d)uis Tdld( m:\él m.m\é.

ImHy

B+ NAnT
i _C s Hy $00 Y0t A
(¥ — 2 uts Hy 00 Ydid]( AR A4

[(td—td)misHg uis tald ..

tH gar
R Al

NA.::_S tP) 500 Hy uis tdtd +

(Y —29) 500 Hg 502 *did( ﬁn:\él wmvﬁ M_CQ
c tn[(¥d — 2) s0o Hg uts ¥ty — . Am.: |M..x.:§| 1#) $00 Hyz s03 2d1d +
A_S-.msvmc,v:tmoo&_u_;:ve.l _N_._S; :%NEWGQ)WSW‘:M:\Q m:\\i

TH ppr
T W

/2/.9 u113p10 1514 51 01 dn suosoq d8ned [rNNAU jo ; W xihew porenbs-ssew as1oaur sy

[ d19v]



156 A.S. Joshipura, 1. Montvay / Superweak CP violation
Q, 27-77'177;1(1):’4’:, J= 1,2,3)» (3-1)
Qses = M + k)b 0ds,  (K#L#J;J,K, L=1,2,3),
Q:=(¢" - &) —dudibud’,
Qs=dudidsdt.

The most general renormalizable invariant potential is therefore:
7 8
Vin,¢)= ¥ AuBBi+ 2 xQ;. (3.2)
ik -1 =1

Here A, and «; are dimensionless coupling constants, such that the first term with
Ajx is a positive definite quadratic form of the B's and «, (j =1, ..., 8) is positive.
The parameters with the dimension of a mass (z, ;.3 and p) are put into the definition
of the bilinear invariants B, (j=1,...,7).

It is shown in the appendix that for a finite range of the parameters this potential
has its absolute minimum at the point of the vacuum expectation values given by
eqs. (2.15) and (2.2). The angle « in (2.15) is equal to a,, contained in B¢ and a’
and B’ can also be expressed by a,,, aiz and as;. In the present paper we shall
not need a’ and B’ explicitly; therefore, this relation is omitted. (In general, ax,.
is the angle between the directions of the vacuum expectation values zx. and z,,.)
The important point is that the phases ¢, >3 in the vacuum expectation value of ¢
are completely general and none of the p, 3 vanishes. As we shall see below, this
insures CP non-conservation in the horizontal interactions.

Our next task is to determine the low-energy effective four-fermion interactions
among the physical fermions. The charged current is the standard one with a real
Cabibbo-Kobayashi-Maskawa matrix; therefore, we shall concentrate on the
neutral current interactions. As was shown in the previous section, the four neutral
gauge bosons H, , ; and Z are mixed by the spontaneous symmetry breaking. The
corresponding inverse mass-squared matrix is given by table 1 in the case M7 >»
MH?i, M[fz, MH§ (equivalent to p2<< zf ). The neutral currents have to be given in
terms of the physical fermion fields x, r(x) obtained from ¢ r(x) by the unitary
transformations in (2.7), which diagonalize the mass matrix:

xLr(x)=Up g rlx). (3.3)

The *“‘family-changing’ (horizontal) neutral current belonging to H, (a =1, 2,3) is
then:

Ja.q(x)y = (URqTa UR:; )I.Y/\;RI(X)q‘YuXRS(x )q . (3~4)
Here T, is the horizontal generator given by eq. (2.16) and the index g =1, 3, 1 is

also included in order to distinguish the different electric charges. The matrices
UxrT,UR' are displayed in table 2 for Uy given by egs. (2.7)-(2.9). The neutral
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current belonging to Z is the standard one:

3
Tox), = sin’ Buden(X)u = L GOy S X0 n, (3.5)

where h is the family index and J.,, is the electromagnetic current.
The full low-energy effective neutral current interaction hamiltonian is

(g% +g?

H(X)eq =
T oMl

3
T2(x), T2 ()" +3guvVgy + 8 0(x) ¥ Mza T Jualx)®
a=1 q

3
tagh T M T Jaqudnalx)" (3.6)
ab= qq

The first term is the standard Weinberg-Salam neutral current interaction. The
third term is the ““family-changing” (flavour-changing) neutral current interaction
between two horizontal currents, and the second one is a mixed interaction involving
the Z neutral current and the horizontal currents. The inverse gauge boson masses
are given by table 1. Because of M35? » M.}, M32 the family-changing pieces are
in general small. As shown by table 1, the off-diagonal (a # b) pieces in the last
term of (3.6) have an extra suppression factor compared to the diagonal (a = 6)
terms, which are similar in order of magnitude to the mixed ZH terms.

The CP violation in #.q is caused by the matrices URT‘,URl (see table 2)
appearing in the horizontal currents. It can be seen from eq. (2.10), that for general
non-zero p;»; the mixing angles 8g and yr do not take on any special value;
therefore, in general neither sin B, sin yg nor cos Bg, cos yx vanish. Similarly, as
is shown in the appendix, the phase differences (¢, — ¢« ) are also arbitrary; hence,
the off-diagonal elements in Uy T‘,Uﬁl are general complex numbers, which appear
in #.q. This violates the CP symmetry (and time-reversal symmetry), which would
require the coefficients of the current-current terms in #.q to be real.

4. Discussion and concluding remarks

In the previous sections we have seen, that in the SU2).v ® U(1) ® O(3)rnu
model the spontaneous breaking of CP invariance is manifested at the tree level
only in the right-handed horizontal interactions suppressed by the large masses of
the horizontal gauge bosons. This is the consequence of the peculiar chiral structure
of interactions (only left-handed **vertically” and only right-handed “‘horizontally™)
and of the form of vacuum expectation values in eq. (2.2} or (2.11). This form is
achieved in the simpler case (2.2), considered in detail in sect. 3, by taking a single
&-field. In this case the masses of the first two families vanish at the tree level.
These masses have to be given by the loop corrections. An interesting possibility
for this is to embed the O(3)gy horizontal symmetry in a left-right symmetric
O3 .u ® O3)xi, similarly to a recent paper on radiative quark mass generation
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[26]. The radiative corrections generally do not preserve the specific form of the
fermion mass matrix m given by (2.3); therefore, the Kobayashi-Maskawa phase
& in the left-handed mixing matrix (2.14) is expected to get a small, non-zero value
at the one-loop level. This implies a small CP violation also in vertical interactions,
where the smallness is explained by the fact that § # 0 comes from radiative
corrections. The presence of CP violations in both horizontal and vertical interac-
tions, of course, complicates the phenomenology. In the discussion below we shall
assume, for simplicity, that the horizontal CP violation dominates. (If the vertical
CP violation dominates, the phenomenology is of the conventional Kobayashi-
Maskawa type [20, 27].)

The CP non-conserving, low-energy effective four-fermion interaction containing
the horizontal neutral currents was determined in sect. 3. The dominant piece of
the dd - ss transition relevant for the neutral kaon system is, from egs. (3.6), (3.4)
and table 2, the following:

Haass(x) = g 0SR(X)V,dr(X)Sr(x)y"dr(x)
x{M 1 sin’ Brlsin’ (¢2— @3) cos’ 2yr —cos® (¢2— ¢3)
—isin 2(¢; — ¢3) cos 2yr]
+ M5 sin® yr cos® Br[—cos 2(¢3— ¢1) — i sin 2(¢3 — 1))
+ M5 cos” yr cos® Br[—cos 2(¢y — @) +i sin 2(¢1 —¢2)]} . (4.1)

According to eq. (2.26) the horizontal gauge boson masses satisfy My, < Mj, <
My3. This favours the first term, but the mixing angles 8 and yr can be small,
typically one can take, e.g., Br=10 * and yr = 10"". [This is satisfied if in eq.
(2.10) py/p =10"% and p»/p = 10 . Note that Br is the mixing angle between the
first and third families, whereas yg is the one between the second and third families:
therefore, it is plausible to take Bx smaller.] The effect of these mixing angles in
(4.1) is that if all the three terms in the curly brackets are roughly the same, then
My, =10 1M”25 lO_ZMm. This leaves open the interesting possibility, that the
gauge boson H, is considerably lighter than H;. Consequently, the horizontal
transitions between the second and third family are larger than those between the
first and second one [11]. Replacing cos Bx and cos yr by 1, and considering the
three contributions in (4.1) separately, the measured value of the imaginary part
of the K{, K< mass difference (or the conventional e-parameter of CP violation)
gives, for sin 24¢ of order 1,

sin® BeMw/Mi, <107°,
sin’ ‘YRM%V/MlZ»D <10 ° , 4.2)
My/Mis <107,

Here one of the inequalities has to be an equality. For the above values of the
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Fig. 1. The “*penguin” graph induced by the horizontal gauge boson H (G is a gluon).

mixing angles (B = 1072, yr=10"") this means My, =30 TeV, M,;,=300TeV,
M,3=3000 TeV. Therefore, as already noted in another horizontal CP-violation
model by Davidson and Wali [14], the mass of the horizontal gauge boson H;
comes out from the CP violation about a factor 10° larger than the lower limits
obtained from the absence of the family-changing decays in the first two families
[10].

The prediction for the CP-violating £’ in our model is smaller than the one in
the Kobayashi-Maskawa model [28]. ¢’ is proportional to the imaginary part of
the so-called “‘penguin graphs™ [29]. In the standard Kobayashi-Maskawa scheme
the penguin graphs induced by the W-boson contribute to £' and give ¢'/e = 1%
[28]. In our model these graphs are purely real since the Kobayashi-Maskawa
phase is zero. However, the horizontal bosons induce extra “penguin graphs™ (fig.
1), which are non-real and hence contribute to £'. The graphs are finite because
the analogue of GIM mechanism is operative. (This is a consequence of the relation
Y T.T, = 2 satisfied by the matrices T., of table 2.) The detailed prediction depends
upon what we assume for various mixing angles. Roughly, we find the ratio

!
EKM

=10 *-10 °® 4.3)

between ¢’ in our scheme (e44) and in the Kobayashi-Maskawa scheme (ekm).
Within the present experimental accuracy this prediction is indistinguishable from
the prediction of the superweak model [13].

The electric dipole moment of the neutron is in our model smaller than the
“usual’ superweak value D, = 10"*°¢ - cm [30]. This is due to the extra suppression
factor in the imaginary part of the graph in fig. 2. Namely, the diagonal part of the
H-boson inverse mass-squared matrix gives a pure real contribution (see table 2).
As already noted previously, the off-diagonal terms of M “in table 1 have additional
suppression factors like p,pk/zlz.

Another phenomenological consequence of the SU(2); v ® U(1) ® O(3)ry model
is the small mixing of the Z-boson with the three horizontal gauge bosons. According
to eq. (3.6) and table 1 the corresponding decays of the Z are suppressed, compared
to the normal neutral current decays, by factors like p;p./z7. Again, the H; channels
are suppressed by the smallest factor: pi1p»/z; and the H, channels by the least
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u

Fig. 2. The graph with a horizontal gauge boson H contributing to the electric dipole moment of the
u-quark. (The wavy line y is a photon.)

small one: p,p3/w3. Hence there are small CP non-conserving, flavour-changing
decays of the Z to the first two families at the level of 107" and to the second and
third families at the level of 107° (in the amplitude, for the above values of 8r and
¥r). These are very small, but perhaps the mixing angles are different. For sin yg =
O(1) and Br=10"" the suppression factor p,p3/w3 is only 107 and then the
observation of the CP-violating, flavour-changing decay Z - w7 is not hopeless.

As mentioned above, the possibility of a relatively light horizontal gauge boson
H, acting on the second and third families is not ruled out by the present data.
My, =3 TeV, for instance, would require in eq. (4.2) Bx=10"". [An even smaller
value of My, is allowed if in eqgs. (4.1), (4.2) sin 2(¢2 — ¢3) < 1 is taken into account.]
Perhaps the best place to search for such effects is offered by possible rare 7-decays
[11], but rare decays of the b-quark may also give interesting information. The
CP-violating character of the horizontal interactions implies that these rare decay
channels would show large CP-violating effects.

In summary: the predictions of the SU(2);v ® U(1) ® O3)ry; model for the
conventional CP-violating parameters are typically of “‘superweak™ magnitude (or
even smaller). This is due to the large mass (=10° GeV) of the horizontal gauge
boson acting on the first two families. It is, however, possible that the horizontal
gauge boson acting on the heavy families is much lighter (=10 * GeV). Therefore,
the CP violation in the third family can be of “milliweak'" strength.

It is a pleasure to thank A. Ali, G. Kramer and D. McKay for helpful discussions
and valuable comments. A.S.J. would like to thank the Alexander von Humboldt
Foundation for financial support.

Appendix

In this appendix we show that for an appropriate range of parameter values the
Higgs potential (3.2) has its absolute minimum in the point of the vacuum expecta-
tion values given by eq. (2.2) and (2.15). Let us first ignore the “mixed’" quadrilinear
couplings Q,, ..., Q¢ connecting the ¢-field with the n-fields. We first determine
the minimum in this case and then “switch on’" the couplings Q,, ..., Qs keeping
the corresponding parameters «, ..., k¢ small compared to the others. We shall
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see that the absolute minimum obtained by this *‘perturbative’ procedure fulfills
all our requirements.

The parameters A;, determine, by assumption, a positive definite quadratic form
which has its (zero) absolute minimum if all B;’s (j=1,...,7) are zero. This can
be fulfilled only if n,(x), (J =1, 2, 3) is equal to the three-vector with r-component
z,, having length z; and relative angles a;x to the other zk,’s. By an appropriate
O(3)ru transformation z;, can be brought to the form given in (2.15) where a = a3,
and ', B’ can also be expressed by a2, a,; and as,. The requirement B; = 0 implies
that the ¢-field has a length ~/§p.

Using the Cauchy-Schwarz inequality it can be easily shown that the invariants
Q- and Qg are non-negative. By explicit calculation or, more elegantly, with the
help of the hermitian matrix V,; = ¢, ¢+, one can show that

Qr=2{¢1.¢,03.6: —b2.,061.6:}=0. (A.1)
This is zero if and only if ¢} = Ad? (A independent of r). By an appropriate SU(2); v
transformation it is always possible to achieve, e.g., ;' =0, implying A =0 and

hence &, =0 (r =1, 2, 3). This insures that the photon remains massless (the electric
charge will be conserved) and the minimum in ¢ has the form required by eq.
{2.2). In order to fulfill also the previous condition we have to put

P’ =p.p. = uu, +uv,u,. (A.2)
The invariant Qx has in this minimum the form
Qs =iluu, —ve,) +(ur,)*=0. (A.3)

This shows that the absolute minimum of the potential V without the mixed
quadrilinear terms is equal to zero and it is in the set of points satisfying

U, = 0,8, = %pz , uv,=0. (A.4)

As far as the ¢-dependent part is concerned this is consistent with a result in ref.
[31].

The relative orientation of the equal length orthogonal vector pair u, v to the
three vectors z; 5 3 is up to now undetermined. There is also the freedom of choosing
the overall phase left over from the SU(2), v transformation (resulting in &) =0).
A common phase change ¢, - ¢, + ¢ in the three components of ¢} is equivalent
to the transformation

U, =u,Cos ¢ —,sin ¢, Ur=u,sin ¢ + v, COS @. (A.5)

This leaves the plane of u, v always invariant, and it is a rigid rotation of the u, v
pair if eq. (A.4) holds. In other words, the whole potential V can only depend on
the normal vector n of the u, v plane because it is independent of ¢.

The effect of the mixed terms Q;, ..., Q¢ is to fix the relative orientation of the
normal vector n with respect to the three vectors z,, 3. Explicitly, the ‘‘mixed”
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part of the V in the minimum obtained above is

3

Vaix= Y &[(1,2;,) +(v,2,,)°]

i1

3

+ Y ks lWziuszi + 0,26,0,21] (A.6)
j=1
ket
If the parameters «;, ..., ke are small compared to A, and «7, kg, then in first

approximation the vectors z,,; remain unchanged and u, v still satisfy eq. (A.4).
After some trigonometric work one can show that in this case

3
V=Y Ijsinf o+ Y I sin wy sin w; cos (8, — &,), (A7)
1=1 ki=12.2331
where
n=%p2K/212, (]21,2’3)v
(A.8)

Fk,=K3+,~2k21%PZ, (k#1#]).

w; is the angle between n and z; and 6, — &, is the angle between the projections of
the vectors z, and z, onto the u, v plane with normal vector n. It follows from a
spherical triangle that we also have

COS ay; — COS w1 COS w>

cos (6, — &) , (A.9)

sin w, sin w;
where «y, is the angle between z, and z,.

Combining (A.7)-(A.9), one can see that the minimum of V,,;, as a function of
the orientation of n relative to the vectors z, (j =1, 2, 3) is at general values of the
angles w, ;3. For instance, taking cos a,,; =0 (z, orthogonal to z,) for all &, [ and
I'\; =TI'y3=1I%,>1T,3,the minimum is somewhere in the middle, between the three
orthogonal directions of z;’s. This means that the phases ¢, given by

tg o, =/ u; (A.10)

are general, resulting in CP violation. This conclusion is not changed if the small
changes in the vectors z; and u, v due to the small mixed couplings are also taken
into account. One can, for instance, show that in the plane perpendicular to » the
vectors u and v will not remain exactly orthogonal. The deviation of their angle

from 37 will be of the order ki/ks< 1 (j=1,...,6). The position of the absolute
minimum of V is an analytic function of «,, ..., e in some neighbourhood of the
point k, =- -+ = ke = (. This insures that within this neighbourhood the minimum

constructed above remains the absolute minimum. In the whole parameter space
there can be, of course, also other regions with different absolute minima. There
might be CP-conserving minima and also other minima with CP violation.
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From the above construction it is also clear, that with two n-fields it is impossible
to obtain, at least by this perturbative method, a CP-violating minimum. Namely,
in the form (A.7) of V., there are then only the terms with I'y, I'; and I'y». In this
case one can show that in the minimum the n-vector is always in the z,, z, plane.
By the use of the phase freedom (A.5) one can always rotate u or v in the z,, z»
plane. Taking, for instance, v we have ¢3 =0 and u, = u, = 0. Therefore, the phase
differences Ay = ¢; — ¢« given by eq. (A.10) are either O or 3. Due to the specific
structure of the matrices in table 2 the CP violation in the horizontal neutral current
interaction is proportional to sin 24¢;; therefore, it vanishes for 4¢; =0 and
A‘Pik = %7T-
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