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A horizontal extension of the Weinberg-Salam electroweak theory by a right-handed O(3)nH 
gauge symmetry for the three-fermion families is studied. By an appropriate choice of the Higgs 
scalar fields the CP symmetry of the lagrangian is spontaneously broken, but the mixing of the 
left-handed fermion states, and hence the Kobayashi-Maskawa mixing matrix, remains real. The 
CP violation is manifested in the superweak horizontal gauge interactions, which are suppressed 
by the large mass of the corresponding gauge bosons. It is, however, possible that the horizontal 
boson acting on the second and third families can be considerably lighter than the other two, 
implying an interesting phenomenology of the related CP violation effects and flavour-changing 
neutral currents. 

1. Introduction 

17 years  a f te r  its d i scovery  [1] the  reason  for CP viola t ion  is still myster ious .  

U p  to now it has been  e x p e r i m e n t a l l y  o b s e r v e d  only  in the  subt le t ies  of K - m e s o n  

decays .  This  fact fol lows f rom its smal lness  c o m p a r e d  to o rd ina ry  weak  in te rac t ions .  

Theo re t i c a l l y  it is, in fact, not  difficult to i m p l e m e n t  CP (or equ iva len t ly  T)  v io la t ion .  

It is, however ,  h a r d e r  to u n d e r s t a n d  that  if t he re  is CP viola t ion  at all why is it so 

small .  This  appl ies ,  in par t i cu la r ,  to  most  of the cur ren t ly  popu l a r  mode l s  where  

the  CP viola t ion  is par t  of the  weak  in te rac t ions  desc r ibed  by s p o n t a n e o u s l y  b r o k e n  

gauge  theor ies  (see, e.g. [2, 3]). T h e r e  exists also the dange r  of large CP (and P) 

v io la t ions  in s t rong  in te rac t ions ,  i nduced  by n o n - p e r t u r b a t i v e  Q C D  effects [4-6] ,  

if the  quark  mass  matr ix  o b t a i n e d  f rom s p o n t a n e o u s  s y m m e t r y  b r e a k i n g  is complex .  

A poss ib le  way to expla in  the  smal lness  of CP viola t ion  is to associa te  it to a 

new s u p e r w e a k  in te rac t ion  due  to the  r epe t i t ion  of l e p t o n - q u a r k  families.  Such 

" 'hor izon ta l "  weak  in te rac t ions  [7 -9 ]  have to be s u p e r w e a k  anyway  because  of the  

o b s e r v e d  accuracy  of s epa ra t e  e l ec t ron- ,  muon- ,  and  r - l ep ton  n u m b e r  conse rva t ion  

and because  of the  small  u p p e r  l imits on f lavour -changing  neu t ra l  cur ren ts  [10, 

11]. The  hor izon ta l  in te rac t ions  are  assoc ia ted  to a spon t a ne ous ly  b r o k e n  gauge  

s y m m e t r y ;  the re fo re ,  this is a field theo re t i c  rea l iza t ion  [ 12] of the  s u p e r w e a k  mode l  

of CP vio la t ion  [13]. As  shown recen t ly  by Dav idson  and Wal i  [14], this CP 
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violation scenario can be implemented for any number  of fermion families with an 

SU(2) horizontal symmetry.  In particular, they pointed out the importance of the 
chiral structure of horizontal interactions for obtaining realistic fermion mass 
matrices. An important property of their model is the vanishing of the tree level 
strong and weak CP violation, leaving the horizontal interaction as the main source 
of CP violation. (For different, recent at tempts with horizontal CP violation, see 
also [15-17].) 

In this paper  we present a new CP-violation model of "horizontal"  type, based 
on the gauge symmetry group SU(2)I.V ® U(1) ® O(3)RH. Here  SU(2)I.V ® U(1) is 
the Weinberg-Salam electroweak symmetry [18, 19] and O(3)R. is a right-handed 
"horizontal"  symmetry for the three observed families. (We assume the existence 
of the t-quark completing the third family.) The main difference compared to the 
model of Davidson and Wali [14] (and also compared to the other models in refs. 
[15-17]) is in the chiral structure of the horizontal interactions: in our case only 
the right-handed fermions carry non-zero O(3)R. quantum numbers and the left- 
handed fermions are horizontal scalars. The Davidson-Wali  model is based on an 
axial-vector-like ("flavour-chiral") horizontal symmetry with opposite horizontal 

isospin for left- and right-handed fermions. The change in the chiral structure 
implies, besides the difference in the horizontal interaction, a completely different 
Higgs sector and therefore different structures for fermion and vector-boson mass 
matrices. In addition to the questions studied in refs. [14-17] we also explicitly 
construct and study the Higgs sector of our model. This allows a more precise 
specification of the phenomenological  consequences. From the study of the Higgs 
potential we show that in our model CP violation can arise from the spontaneous 
breaking of the original CP symmetry of the lagrangian by the minimum of the 
Higgs potential. At the tree level the mixing angles of the left-handed quarks and 
leptons are real due to the choice of the Higgs fields even in the case of three 
families. (Therefore, at least in the tree approximation,  the Kobayashi -Maskawa 
mechanism [20] of CP violation in ordinary weak interactions is not operating.) 
The strong CP violation also vanishes at the tree level. The right-handed mixing 
is, however, complex, inducing CP violation in the superweak horizontal interac- 
tions, which act only on the right-handed fermion components.  The 
SU(2h .v® U ( 1 ) ® O ( 3 ) R .  model is a modest  extension of the Weinberg-Salam 
electroweak theory, as the O(3)R. horizontal symmetry affects only the right-handed 
fermion components,  which are scalar under the "vertical" SU(2)t.v. 

In sect. 2, after definining the model precisely, we construct and diagonalize 
the mass matrices of fermions and gauge bosons. In sect. 3 we first show (in 
part referring to the appendix) how CP-violating minima of the Higgs potential 
arise and then determine the low-energy, effective, four-fermion interactions 
containing the CP-violating "horizontal"  neutral currents. In sect. 4 we briefly 
discuss the phenomenological  implications of the model and make a few conclud- 
ing remarks. 
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3. The O(3)Rn family group 

We assume in this paper  that there are three lepton-quark  families spanning a 
three-dimensional  (fundamental,  vector) representation of O(3)RH with the right- 
handed field components  ~Rr(x)~ (r = 1 2, 3; q 1, 2 1 , = 3, .~). Of course, the Lie algebra 
of 0(3)  is isomorphic to SU(2); therefore,  we could call the horizontal symmetry 
SU(2)RH as well. By using the name O(3)RH we want to emphasize that representa-  
tions with half-integer SU(2) spin (doublets, quartets, etc.) will not be considered. 
Besides, for a larger number  n > 3 of families we would take the generalization 
O(n)RIl and its n-dimensional representation. The index q above refers to the 

2 1 
electric charge: q = 1 stands for charged leptons, q = 3 for up-quarks and q = .~ for 
down-quarks.  Right-handed neutrinos will not be considered in the present paper  

because of their exceptional status. 
The left-handed fermion field components  ~[~ (X)h (h = 1,2, 3) are doublets (index 

a )  under SU(2)t v. The index h stands for the three different families. There  are, 
of course, separate left-handed doublet  fields for quarks and leptons but in most 
cases it will not be necessary to specify whether quarks or leptons are being 
considered. 

The only difference is in the values of the weak hypercharge Y belonging to 
U(I): Y=3 for the quark doublet  and Y = - 1  for the lepton doublet. (The Y 
values for the right-handed fields are also determined by the familiar expression 

for the electric charge: Q = TLv3+~ Y.) 
The simplest possible set of Higgs scalar fields consists of a complex SU(2)~ v 

doublet,  Y =  1 and O(3)RH triplet: ~bT(x) and three real SU(2)LV singlet, Y =  
0, O(3)RH triplets: r/,(x)j (J = 1, 2, 3). These latter do not have Yukawa coupling 
to fermions. They are needed in order to give large masses to the horizontal gauge 
bosons. The Yukawa coupling, e.g. to quarks has the form 

..~Pv = --• {Gh~ar(X),/3c~,(X)~b'l~.(X)h + Gh~Rr(X)2/3C~r(X)~O~.(X)h} + h ' c ' '  ( 2 . 1 )  
h 

where the Y = - 1  field ~ is defined as usual by ~ "  =-e,,~qS~. The Yukawa coupling 
constants are real in accordance with the CP-invariance of the lagrangian. The 
zeroth-order  quark mass matrices are given by the vacuum expectation value of 
the & field, which is of the form 

(O[07(x)]O) = a,,2x/r(u, + i v , ) .  (2.2) 

This gives the following mass matrix, for instance, for the down-quarks:  

m,h = ~/12(Ur -- i v , )Gh . (2.3) 

For the charged leptons we have the same form as this, only with different Yukawa 
coupling constants G'h. For the up-quarks,  on the other hand, Gh is replaced by t~h 
and the complex conjugate is taken. In order to obtain the physical fermion states 
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with definite mass the mass matrix m has to be diagonalized by a biunitary 

transformation: 

LkmUL’ = diag (m) , 

URmm+l& = ULm’mlJ~’ = diag (m*) . 
(2.4) 

(In what follows we shall explicitly consider only the down-quark sector, as the 

results can be easily transcribed also for the up-quarks and charged leptons.) U, 

and UL are, in general, 3 x 3 unitary matrices. The specific form of eq. (2.3) implies 

(m+m)hh, = +$G~G~~, (P2=PrPr) 3 
(2.5) 

(mm’),, = iG2prp,, ei”“-‘Pr.’ , G2=CG; , 
h > 

where we used the notation 

U, + iu, = p, e+r. (2.6) 

From eq. (2.5) it follows that 

&=O,, lJR = ORF, (2.7) 

where Or_ and OR are real orthogonal matrices and F is a diagonal matrix containing 

the phases 

e irpl 0 0 

F = 0 eiv2 0 

j I 

. (2.8) 

0 0 ei+p, 

From the remarks made after eq. (2.3), it follows that 0, is, in general, different 

for different electric charges, whereas On is the same and the phases in F are the 

same for down-quarks and charged leptons and they are opposite for the up-quarks. 

It can be shown, that in the parameterization introduced for the three family 

mixing problem by Maiani [21], we have for the right-handed orthogonal mixing 

matrix OR: 

I 

cos PR -sin yR sin fiR 

OR= 0 cos YR , (2.9) 

sin PR sin yR cos PR 

where the angles are given by 

sin PR = e, 
P 

sinYRzd&. (2.10) 

The third Maiani-angle OR is zero. The horizontal interaction of the physical quarks 

depends on the right-handed mixing matrix UR given by eqs. (2.7)-(2.9). 
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It can be easily shown that the mass matrix m in eq. (2.3) has two zero eigenvalues 
(the third, non-zero eigenvalue is m3 = ~/}Gp). This means that the masses of the 
first two families are zero at the tree level. In order to obtain non-zero tree-level 
masses, one has to introduce three Yukawa-coupled 0-1ike Higgs field: 07(x)s 
(J = 1, 2, 3). (For the possibility of radiative generation of the masses of the first 
and second family see the remarks in sect. 4.) The Higgs potential with three 
0-like and three 0-l ike fields is, however,  rather complicated, because of the large 
number  of independent  invariants. Therefore,  in sect. 3 we shall consider in detail 
only the simpler case with one 0-field. Note, that if the three 0-fields have the 
vacuum expectation values 

< 0 l O 7 ( X ) j ] 0 >  = ~ , , 2 ~ r / ~ / ~ ( 1 6  + i t )r) ,  (2.11) 

then both the gauge boson matrix and the structure of the fermion mixing matrices 
in (2.7) remain the same. As a consequence, from the point of view of CP violation 
nothing essential is changed. The down-quark mass matrix, for instance, following 
from eq. (2.1 1 ) is 

mr, ,  = ~/}( Ur --  i t ) r ) G l - r . h .  ( 2 . 1 2 )  

This implies 
3 

(m*m)h,i, ½ X 2 = psGjhGsh', 
J - l  

(2.13) 
3 

(mm-),,. = ~ E G,hG~'hp,p~, e '''~'-~'~ . 
h ~ 1 

The relations (2.7), (2.8) are valid as before, but the explicit form of On is more 
complicated than (2.9). In fact, OR is now different for different electric charges 
(like OL, too). The reality of the left-handed mixings implies that the Cabibbo 
matrix entering the left-handed, vertical interactions 

2 1 1 
CL=-- Ul.(q = g)U, (q = 3) (2.14) 

is real. Therefore  the Kobayashi -Maskawa CP-violation phase [20] vanishes. There 
is, however, CP-violation in the right-handed horizontal couplings because of the 
phases in Ua. These phases are opposite for the up-quarks and clown-quarks. This 
means that det m has opposite phase for up- and down-quarks,  therefore the total 
phase of the determinant  of the quark mass matrix on the whole flavour space is 
zero at the tree-level. As a consequence, there is probably no problem with the 
induced strong CP (and P) violation as it can arise only through the radiative 
corrections, similarly to the model in [22, 23]. 

Let us consider the mass matrix of gauge bosons following from the vacuum 
expectation values in (2.11). [This also contains eq. (2.2) with a single 0-field as a 
special case.] Corresponding to the symmetry group S U ( 2 ) L v ® U ( 1 ) ® O ( 3 ) R H  
there are altogether 7 gauge bosons: Wt.2.3(x),, for SU(2hv ,  B(x),, for U(1) and 
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HI,2.3(x) u for O(3)RH. The experimental  upper  limits on the flavour-changing (in 
fact, generally "family-changing") neutral currents [10, 1 1] tell us that the masses 
of the horizontal gauge bosons are at least a factor 10 2 larger than the masses of 
the Weinberg-Salam gauge bosons. These high masses are provided by the vacuum 
expectation values of the Higgs fields 0,(x)j  (J = 1, 2, 3), which are scalar with 
respect to SU(2)1 v ® U(1). Therefore,  our model has two different intrinsic mass 
scales set by the magnitudes of the vacuum expectation values of ~b-fields and 
O-fields, respectively, the latter being at least a factor 10 2 larger than the former.  

In order to break down the O(3)RH symmetry completely we need at least two 
O-fields. The third one is needed for the spontaneous breaking of the C P  symmetry.  
As we shall see in the appendix, it seems to be impossible to have a CP-violating 
minimum of the Higgs potential with two o-fields. By the O(3)R. symmetry 
transformation freedom the vacuum expectation values of the three 0-fields can 
always be transformed into the position: 

< 0 l n , ( x ) , 1 0 >  = a , , z ,  --- z , r ,  

(0]O,(x)210) = (6,1 cos ~ + &2 sin a ) z 2  = - z 2 , ,  (2.15) 

(0lo,(x)3]0) = [(6,1 cos c~'+ 6,2 sin a ' )  sin B ' +  6,3 c o s  • t ] z  3 ~ Z 3 r  , 

where the absolute values are ordered according to Izll >I [z21 i> ]z31. The gauge boson 
H,, (a = 1, 2, 3) belongs to the rotation in the O(3)RH space around the ath axis, 
and hence to the generator  T , ,  where 

i °°°) i °°') ii !! T I =  0 0 - i ,  T2 = 0 0 0 , T3 = 0 . (2.16) 

~0 i 0 ' ! - i  0 0 ,  0 

This implies that for a generic vacuum expectation value z, of an o-like Higgs field 
the mass-squared matrix of the horizontal bosons is (with gH the O(3)Rll coupling 
constant) 

M 2 b  i 2 = ag H ( z , z , 8 ~ b  - Z~Zb) .  (2.1 7) 

Adding together the contributions of the three o-like fields in eq. (2.15) and the 
similar contributions of the (complex) fields ¢,"(x)j, having the vacuum expectation 
values (2.1 1), we have 

M ~ b  = agH (z~,z~,8~b - z j ~ z j ~ )  + ( u , u ,  + v , v , )8~b  - u~ub - v ~ v h ] .  (2.18) 
J 1 

The last terms due to the &-fields are, of course, only small corrections to the 
contribution of the O-fields. 

The Weinberg-Salam SU(2)t.v @ U(1) gauge bosons get their masses from the 
vacuum expectation values of the SU(2)I.V doublet  fields &7 (x).~ (J = 1, 2, 3); there- 
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fore, the mass of the charged W-bosons is the standard one: 

MEw 1 2  2 = 4 g y p  , ( p 2 = p , p ,  = U,U,+V,V,). (2.19) 

Here  gv denotes the "vert ical" SU(2)Lv coupling constant. The coupling constant 
belonging to the weak-hypercharge group U(1) will be denoted below by g'. The 
photon and Z-fields are the usual linear combinations of W3 and B with the 
Weinberg-angle 0w: 

sin Ow --- . (2.20) 
Z ,  = - c o s  Ow W3,, + sin OwB,, , x~ 

The photon field A,, is, of course, massless, whereas the diagonal e lement  in the 
mass-squared matrix belonging to Z is 

M~z  t 2 = ,i(gv + g,2)p2 . (2.21) 

This is, however, not the physical mass-squared of the Z-boson,  because the vacuum 
expectation value of the ~b-fields induces mixing terms between the horizontal gauge 
bosons and the Z-field in (2.20), too. Using the generators in eq. (2.16), together 
with the generators of SU(2)Lv ® U(1), it can be easily shown that the H , - Z  mixing 
term is (a = 1,2, 3): 

2 "~ t 
M , z  = M ~, = ~gH x/ g v - -~~Ob  p,. sin (~oc -- ~0b), (2.22) 

abc being a cyclic permutat ion of 123. 

The diagonalization of the 4 x 4 mass-squared matrix of the neutral (Z and H) 
gauge bosons is facilitated by the hierarchy of the vacuum expectation values. 
Because of Izj] >> p we can use, e.g., ordinary t ime-independent  perturbation theory 
[24] for the determination of the eigenvalues and eigenvectors, taking the contribu- 
tions of the &-fields (proportional to O) as the perturbation. The diagonalization 
of the "unper tu rbed"  • 2 matrix M, t ,  (a, b = 1, 2, 3) is possible analytically. The general 
formulae are, however, rather lengthy and later on we do not need them, as we 
shall assume that one of the horizontal gauge bosons (namely Ht)  is much lighter 
than the other two. This means that it is enough to consider the special case 

Iz,I >> Iz2l >> Iz3]. In this case one can neglect z3 completely in the mass matrix (not, 
however,  in minimizing the Higgs-potential:  see sect. 3). Putting z3 = 0, H3 becomes 
diagonal and the small mixing angle OH among Ht and H2 is given by: 

- z ~  sin 2a  
tg201t= 2 2 (2.23) 

z~+z2  cos 2a  

The " 'unperturbed" (i.e. p = 0) masses of the neutral gauge bosons are the following: 

M - ~ = 0 ,  M 2 t  1 2 2 
= d g H w 2  , 

(2.24) 
2 1 2 2 2 1 2 z 2 o 

Mtte  = 4 g H w l ,  M H 3  = z g l t t z t + z ~ ) ,  
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where we introduced the notation 

w, = ½[z~+ z~ + , / cz~ -  zb2 +4z,~z~ cos 2 ~], 
(2.25) 

142 2 = l [ Z 2  4" Z 2 - -  X / ( Z l  2 - -  Z 2 )  2 -F4Z21Z 2 C 0 $  2 Or']. 

This shows, that [z~l > Iz:l > Iz~l implies, in general, MIt3 > MH2 > MH,. 
Taking into account the first-order perturbation due to the terms of order P we 

have: 

M~,. ' " , 2 , 2  , =,~(g~+g'2)O2 M23 = a g , , t z , + z ~ + p 2 + p  2) 

=,~gH[w2+p3+o2COS2 OH+p~sm 8.+O~02sin28HCOS(~--~02)], (2.26) 

M ~ , 2  ~ 2 2 = ag.[w~ +p~+p 2 sin 2 0 . + 0 ~  cos 2 8H-O~p2 sin 20 .  cos (~#, - ¢2)]. 

It can be seen that the Z-boson mass remains up to first order at its canonical value 

Mz = Mw/cos 8w. In the next order it is shifted slightly upwards due to the mixing 
with H-bosons. The situation is phenomenologically similar to the case of neutral 
SU(2), which was considered in a different context recently by Claudson, Georgi 
and Yildiz [25]. The eigenvectors corresponding to the eigenvalues in (2.26) can 
also be determined by perturbation theory. Transforming this information, also up 

to first order, into a rotation matrix with respect to the unperturbed coordinate 
system, one can obtain the inverse mass-squared matrix M 2 of the HZ system, 
which enters the low-energy effective neutral current interactions. The final result 

is given in table 1. It is remarkable, that the off-diagonal terms in the H ~.2,3 subspace 
are a factor p2/z2 smaller than the diagonal ones. Similarly, the HZ mixing terms 

are smaller than M z  2 >> M n ,  2, by the same factor. 

3. CP-violating effective four-fermion interactions 

As we discussed in sect. 2, from the point of view of CP violation it is enough 

to consider the simpler case with a single Yukawa-coupled field ~ ~ (x). A necessary 
condition for spontaneous CP violation is that d~'(x) develops complex vacuum 
expectation values in the minimum of the Higgs potential. This condition is, 
however, not always sufficient. The overall phase in eq. (2.2) can be arbitrarily 
adjusted by the SU(2)LV freedom left over after transforming the vacuum expecta- 
tion values in the c~ = 2 direction. As we shall see below, even a non-zero relative 

phase between the different components does not always imply CP violation. 
A convenient complete set of independent invariants for a single ~b and three 

different r/-fields is the following: 

Bj=7~rJ~r j - -Z j~- - -~ j 'T~ j - -Z~,  (J= 1,2,3), 

B3+s=~K "Th--ZKZLCOSaKL, ( K # L g J ; J , K , L = I , 2 , 3 ) ,  
~, 1 2 B7 =~,,,,~, _½02_=~*. ,~_~.p , 
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Qj = 2r/,xrta4b,+,,4b ~, (J = 1, 2, 3) ,  
+ a 

Q 3 + j = ( ' t l r K ' t l . ~ l  + T l , r ' r l r t . ) t ~ u r t ~ . ,  , ( K  # L # J ; J , K , L  = I , 2 , 3 ) ,  

.&~2 & ~ .&o 4 + ..kl~ 
Q 7  = (t4P + " q" t  q . ' , ~ r q . ' s q ' t J s W ,  , 

t a t- . k ~  

The most general renormalizable invariant potential is therefore: 

(3.1) 

7 8 

V(r l , ,~)  = Y A#kB,Bk + Y. K,O,. (3.2) 
/ , k - 1  ; - 1  

are dimensionless coupling constants, such that the first term with 
definite quadratic form of the B 's  and K~ ( / =  1 . . . . .  8) is positive. 

Here &k and K i 
Aik is a positive 
The parameters  with the dimension of a mass (z ~,2,3 and p) are put into the definition 
of the bilinear invariants B i (] = 1 . . . . .  7). 

It is shown in the appendix that for a finite range of the parameters  this potential 
has its absolute minimum at the point of the vacuum expectation values given by 
eqs. (2.15) and (2.2). The angle a in (2.15) is equal to a,2 contained in B6 and a '  
and /3' can also be expressed by a~2, ctl~ and a3~. In the present paper  we shall 
not need a '  and/3 '  explicitly; therefore, this relation is omitted. (In general, ah-~ 
is the angle between the directions of the vacuum expectation values zr ,  and z,.,.) 

The important  point is that the phases ¢,.2.3 in the vacuum expectation value of 
are completely general and none of the p~.2.3 vanishes. As we shall see below, this 
insures C P  non-conservation in the horizontal interactions. 

Our  next task is to determine the low-energy effective four-fermion interactions 
among the physical fermions. The charged current is the standard one with a real 
Cab ibbo-Kobayash i -Maskawa  matrix; therefore, we shall concentrate on the 
neutral current interactions. As was shown in the previous section, the four neutral 
gauge bosons H1.2.3 and Z are mixed by the spontaneous symmetry breaking. The 
corresponding inverse mass-squared matrix is given by table 1 in the case M z  2 >> 
MR], ME-t~, MH3 (equivalent to p2<< z~). The neutral currents have to be given in 
terms of the physical fermion fields XL.R(X) obtained from q~L.R(X) by the unitary 
transformations in (2.7), which diagonalize the mass matrix: 

) ( L . R ( X )  ~ UI . .R~/ / I . .R(X ) • ( 3 . 3 )  

The "family-changing" (horizontal) neutral current belonging to H ,  (a = 1, 2, 3) is 
then: 

J , , . , ( x ) ,  1 - = (UR,  T~URo ) , ,XR,(X) ,Y ,  XR,(X),~. (3.4) 

Here  T,, is the horizontal generator  given by eq. (2.16) and the index q = 1, ~, ~ is 
also included in order to distinguish the different electric charges. The matrices 
U R T a U R  1 are displayed in table 2 for UR given by eqs. (2.7)-(2.9). The neutral 
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current belonging to Z is the standard one: 

3 $'3 
J z ( x ) ~ ,  = s i n  2 OWJem(X) .  -- ~. ) ~ l . ( X ) h ' g u  7 X l . ( X ) h ,  

h = 1 
(3.5) 

where h is the family index and Jc~n is the electromagnetic current. 
The full low-energy effective neutral current interaction hamiltonian is 

~2z '2)  j z ( x ) J z ( X y ,  1 ; ~ .  , , , ) g ( x ) c , -  (g2v +2gHVgv + g  . tz~X),  Y. M z ~  E L . q ( x ) "  
. o = 1  q 

3 
1 2 +g~glt Y. M ~  2 Y. J..q(x)~.Jb.q.(x) ~" . (3.6) 

a,b = 1 qq' 

The first term is the standard Weinberg-Salam neutral current interaction. The 
third term is the "family-changing" (flavour-changing) neutral current interaction 
between two horizontal currents, and the second one is a mixed interaction involving 
the Z neutral current and the horizontal currents. The inverse gauge boson masses 

2 --2 are given by table 1. Because of M z  2 >> M,,b, Mz~ the family-changing pieces are 
in general small. As shown by table 1, the off-diagonal (a ~ b) pieces in the last 
term of (3.6) have an extra suppression factor compared to the diagonal (a = b) 
terms, which are similar in order of magnitude to the mixed ZH terms. 

The C P  violation in ~'~tt is caused by the matrices U R T ,  U r  I (see table 2) 
appearing in the horizontal currents. It can be seen from eq. (2.10), that for general 

non-zero 01.2.3 the mixing angles /3r and YR do not take on any special value; 
therefore,  in general neither sin/3r, sin 3'r nor Cos/3r, COS "/r vanish. Similarly, as 
is shown in the appendix, the phase differences (~o i -~ok) are also arbitrary; hence, 

the off-diagonal elements in U r T , , U )  1 are general complex numbers,  which appear  
in )gen. This violates the C P  symmetry (and t ime-reversal  symmetry),  which would 
require the coefficients of the current-current  terms in ~ ' ~  to be real. 

4. Discussion and concluding remarks 

In the previous sections we have seen, that in the SU(2)t_v® U ( 1 ) Q O ( 3 ) r H  
model the spontaneous breaking of C P  invariance is manifested at the tree level 
only in the right-handed horizontal interactions suppressed by the large masses of 
the horizontal gauge bosons. This is the consequence of the peculiar chiral structure 
of interactions (only left-handed "vertically" and only right-handed "horizontally") 
and of the form of vacuum expectation values in eq. (2.2) or (2.11). This form is 
achieved in the simpler case (2.2), considered in detail in sect. 3, by taking a single 
&-field. In this case the masses of the first two families vanish at the tree level. 
These masses have to be given by the loop corrections. An interesting possibility 
for this is to embed the O(3)Rr, horizontal symmetry in a left-right symmetric 
O(3)IH ® O(3) rm similarly to a recent paper  on radiative quark mass generation 
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[26]. The  radiative correct ions generally do not preserve the specific form of the 
fermion mass matrix rn given by (2.3); therefore ,  the K o b a y a s h i - M a s k a w a  phase 

6 in the lef t -handed mixing matrix (2.14) is expected to get a small, non-ze ro  value 
at the one - loop  level. This implies a small CP violation also in vertical interactions,  

where the smallness is explained by the fact that 6 ~ 0 comes from radiative 
corrections.  The  presence of CP violations in both horizontal  and vertical interac- 
tions, of course,  complicates  the phenomenology .  In the discussion below we shall 

assume, for simplicity, that  the horizontal  CP violation dominates .  (If the vertical 
CP violation dominates ,  the p h e n o m e n o l o g y  is of the convent ional  Kobayash i -  
Maskawa type [20, 27].) 

The  CP non-conserving,  low-energy effective four - fe rmion interaction containing 
the horizontal  neutral  currents was de te rmined  in sect. 3. The  dominan t  piece of 
the dd ~ ss transit ion relevant for the neutral  kaon system is, f rom eqs. (3.6), (3.4) 
and table 2, the following: 

3~ao .... (X)--'=sghSR(X)y~,dR(X)gR(X))'UdR(X) 

X {MH] sin2 /3R[sin 2 (q~2 -- ~3) COS 2 2yR -- COS 2 (¢2 -- ¢3) 

-- i sin 2(~2 - ¢3) cos 2yR] 

+ MI]~ sin 2 YR COS 2 flR[--COS 2(~03 -- q~) -- i sin 2(~o3 - q~l)] 

+ M r-~ cos 2 VR COS 2 fiR[-- COS 2(q~1 -- q~2) + i sin 2(q~l - ¢2)]}. (4.1) 

Accord ing  to eq. (2.26) the horizontal  gauge boson masses satisfy M.~  < MH2< 

MH3. This favours the first term, but the mixing angles /3R and YR can be small, 

typically one can take, e.g., fiR = 10 2 and y R =  10 -~. [This is satisfied if in eq. 
( 2 . 1 0 )  p l / p  = 10  -2  and P2/P = 10  1. Note  that f iR  is the mixing angle between the 
first and third families, whereas YR is the one  between the second and third families; 
therefore ,  it is plausible to take /3R smaller.] The  effect of these mixing angles in 

(4.1) is that  if all the three terms in the curly brackets  are roughly the same, then 
Mr~ ~ 10 ~MH2~ 10-2M.3.  This leaves open  the interesting possibility, that the 
gauge boson H~ is considerably lighter than H~. Consequent ly ,  the horizontal  
transitions between the second and third family are larger than those between the 

first and second one [1 l]. Replacing cos fiR and cos yR by 1, and considering the 
three contr ibut ions in (4.1) separately,  the measured  value of the imaginary part  

of the K~, K~ mass difference (or the convent ional  e -paramete r  of CP violation) 
gives, for sin 2Aq~ of order  1, 

sin- [3RM~v/Mhl <~ 10 -~ , 

sin e 2 2 y R M w / M m  <~ 10 , (4.2) 

2 2 9 
M w / M H 3  ~ 1 0  

Here  one of the inequalities has to be an equality. For  the above values of the 
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H 
s 

' d b ' d ~ I ,S,_ x - S 

q ~ ~ q  

Fig. 1. The "penguin" graph induced by the horizontal gauge boson H IG is a gluon). 

mixing angles (/3R= 10 -2, " y R  ~-  10 -~) this means MH~ > 3 0 T e V ,  MH2 > 3 0 0 T e V ,  
MH3 t> 3000 TeV. Therefore,  as already noted in another  horizontal CP-violation 
model by Davidson and Walt [14], the mass of the horizontal gauge boson H3 
comes out from the CP violation about a factor 102 larger than the lower limits 
obtained from the absence of the family-changing decays in the first two families 
[10]. 

The prediction for the CP-violating e' in our model is smaller than the one in 
the Kobayashi -Maskawa model [28]. e '  is proportional  to the imaginary part of 
the so-called "penguin graphs"  [29]. In the standard Kobayashi -Maskawa scheme 
the penguin graphs induced by the W-boson contribute to e '  and give e ' / e  = 1% 

[28]. In our model these graphs are purely real since the Kobayashi -Maskawa 
phase is zero. However,  the horizontal bosons induce extra "penguin graphs" (fig. 
1), which are non-real and hence contribute to e'. The graphs are finite because 
the analogue of G I M  mechanism is operative. (This is a consequence of the relation 
Y.~ T, 7",, = 2 satisfied by the matrices 7,, of table 2.) The detailed prediction depends 
upon what we assume for various mixing angles. Roughly, we find the ratio 

~ k _  ~ 10 a-10 (4.3) 
I £ K  M I 

between e '  in our scheme (e~) and in the Kobayashi -Maskawa scheme (ekM). 
Within the present experimental  accuracy this prediction is indistinguishable from 
the prediction of the superweak model [13]. 

The electric dipole moment  of the neutron is in our model smaller than the 
"usual"  superweak value D ,  = 10-29e . cm [30]. This is due to the extra suppression 
factor in the imaginary part of the graph in fig. 2. Namely, the diagonal part of the 
H-boson inverse mass-squared matrix gives a pure real contribution (see table 2). 
As already noted previously, the off-diagonal terms of M 2 in table 1 have additional 
suppression factors like PiPk/Z~. 

Another  phenomenological  consequence of the SU(2)I,V ® U(I ) ® O(3)RH model 
is the small mixing of the Z-boson with the three horizontal gauge bosons. According 
to eq. (3.6) and table 1 the corresponding decays of the Z are suppressed, compared 
to the normal neutral current decays, by factors like pipk/z~. Again, the H3 channels 
are suppressed by the smallest factor: p~p2/z~ and the H~ channels by the least 
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U~C , ,t 

U = ~ U 
H 

Fig. 2. The graph with a horizontal gauge boson H contributing to the electric dipole moment of the 
u-quark. (The wavy line 3' is a photon.) 

small one: p2p3/w 2. Hence there are small CP non-conserving, flavour-changing 
decays of the Z to the first two families at the level of 10 -12 and to the second and 
third families at the level of 10 -6 (in the amplitude, for the above values of/3R and 
7R). These are very small, but perhaps the mixing angles are different. For sin YR = 
O(1) and f l a =  10 -3 the suppression factor p2p3/w~ is only 10 -3 and then the 
observation of the CP-violating, flavour-changing decay Z ~  g r  is not hopeless. 

As mentioned above, the possibility of a relatively light horizontal gauge boson 
H1 acting on the second and third families is not ruled out by the present data. 
M H I  ~ 3 TeV, for instance, would require in eq. (4.2) ~R ~ 10-3.  [An even smaller 
value of MH 1 is allowed if in eqs. (4.1), (4.2) sin 2(~2 - ¢3) < 1 is taken into account.] 
Perhaps the best place to search for such effects is offered by possible rare r-decays 
[11], but rare decays of the b-quark may also give interesting information. The 
CP-violating character of the horizontal interactions implies that these rare decay 
channels would show large CP-violating effects. 

In summary:  the predictions of the S U ( 2 ) I v ® U ( 1 ) ® O ( 3 ) R t t  model for the 
conventional CP-violating parameters  are typically of " superweak"  magnitude (or 
even smaller). This is due to the large mass (--=10 ~' GeV) of the horizontal gauge 
boson acting on the first two families. It is, however,  possible that the horizontal 
gauge boson acting on the heavy families is much lighter (-'= 10 3 GeV). Therefore,  
the CP violation in the third family can be of "milliweak'" strength. 

It is a pleasure to thank A. Ali, G. Kramer  and D. McKay for helpful discussions 
and valuable comments .  A.S.J. would like to thank the Alexander von Humboldt  
Foundation for financial support.  

Appendix 

In this appendix we show that for an appropriate  range of parameter  values the 
Higgs potential (3.2) has its absolute minimum in the point of the vacuum expecta- 
tion values given by eq. (2.2) and (2.15). Let us first ignore the "mixed"  quadrilinear 
couplings Q1 . . . . .  Q6 connecting the ~b-field with the r/-fields. We first determine 
the minimum in this case and then "switch on"  the couplings O1 . . . . .  06  keeping 
the corresponding parameters  K~ . . . . .  K6 small compared  to the others. We shall 
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see that  the absolute min imum obta ined by this "pe r tu rba t ive"  p rocedure  fulfills 

all our  requirements .  
The  parameters  ,~ik determine,  by assumption,  a positive definite quadrat ic  form 

which has its (zero) absolute min imum if all Bi 's (] = 1 . . . . .  7) are zero. This can 

be fulfilled only if r/T(x)j (J = 1, 2, 3) is equal to the three-vector  with r -componen t  
z jr, having length zj and relative angles c~K to the o ther  Z K , ' S .  By an appropr ia te  
O(3)RH t ransformat ion z j, can be brought  to the form given in (2.15) where  ~ = a~2 
and a ' , / 3 '  can also be expressed by c~12, a23 and a3~. The  requi rement  B 7  = 0 implies 
that  the ~b-field has a length ~/~0. 

Using the Cauchy-Schwarz  inequality it can be easily shown that the invariants 
Ov and O8 are non-negat ive .  By explicit calculation or, more  elegantly, with the 

help of the hermit ian matrix V , s  = ~b~,~b~,+ " one  can show that 

07  ---- 2{~b + 1 + 2 , l d~ + z >_ 

This is zero if and only if ~b~r = Aa~ CA independent  of r). By an appropr ia te  SU(2)t v 
t ransformat ion  it is always possible to achieve, e.g., ~bT_-=~ ~ = 0, implying A = 0 and 

hence d~ = 0 (r = 1, 2, 3). This insures that the pho ton  remains massless (the electric 
charge will be conserved) and the min imum in ~b has the form required by eq. 
(2.2). In order  to fulfill also the previous condit ion we have to put 

2 
p = p ~ p ,  = U,Ur + V~V, .  (A.2) 

The  invariant O8 has in this min imum the form 

1 
0 8  = ~(UrU, -- C,V, )  2 + (U~r',) 2/> 0 .  (A.3) 

This shows that  the absolute min imum of the potential  V without  the mixed 

quadri l inear  terms is equal to zero and it is in the set of points satisfying 

I 2 
u ,u~  = v ,v~ = 50  , u , v ,  = 0 .  (A.4) 

As far as the &-dependent  part  is concerned  this is consistent with a result in ref. 

[311. 
The relative or ientat ion of the equal length or thogonai  vector  pair u, t' to the 

three vectors z 1.2.3 is up to now undetermined.  There  is also the f reedom of choosing 
the overall  phase left over  f rom the SU(2)Lv t ransformat ion  (resulting in ~b~ = 0). 
A c o m m o n  phase change q~, ~ g,~ + ~o in the three componen t s  of ~b~ is equivalent  
to the t ransformat ion 

u'~ = u, cos ~o - v, sin ~o, v'~ = u, sin ~ + v, cos q~. (A.5) 

This leaves the plane of u, v always invariant, and it is a rigid rotat ion of the u, v 
pair if eq. (A.4) holds. In o ther  words,  the whole potential  V can only depend  on 
the normal  vector  n of the u, v plane because it is independent  of ~0. 

The effect of the mixed terms O1 . . . .  , 0 6  is to fix the relative or ientat ion of the 
normal  vector  n with respect to the three vectors z~.2..~. Explicitly, the "mixed"  
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par t  of the  V in the  m i n i m u m  o b t a i n e d  above  is 

3 
Vmix = E Ki[(UrZir) 2 4- (f)rZir) 2] 

i=-1 

3 

+ Z K3.i[U,Zk.U,Z~+V,Zk.V~Z,]. 
i=1 

k,,'t,~j 

(A.6)  

where  

3 
Vmix = L C/- s i n  2 toi + E 

i=1 k/= 12.23.31 
Fkl sin tok sin to~ cos (Sk -- 8 3 ,  (A.7)  

Fi = ~#2Kjz~, ( j  = 1, 2, 3 ) ,  
1 2 ( A . 8 )  

FkI = K3+~ZkZI ~p , (k ~ l ~ j ) .  

wi is the  angle  b e t w e e n  n and  zi and 6k --8t is the  angle  be tw e e n  the p ro j ec t i ons  of 

the  vec tors  Zk and zt on to  the  u, v p lane  with no rma l  vec tor  n. It fol lows f rom a 

spher ica l  t r iangle  that  we also have 

COS Odkl --COS tol COS £02 
cos (?Jk - St) = , (A.9)  

sin to, sin to2 

where  akt is the  angle  b e t w e e n  Zk and zt. 

C o m b i n i n g  ( A . 7 ) - ( A . 9 ) ,  one  can see that  the  m i n i m u m  of Vm~x as a funct ion of 

the  o r i en t a t i on  of n re la t ive  to the  vec tors  z, ( j  = 1, 2, 3) is at genera l  values  of the 

angles  toL2.3. F o r  instance,  t ak ing  cos akt = 0 (Zk o r thogona l  to zt) for all k, l and  

F12 = F23 =/"~1 > F1,2.3, the  m i n i m u m  is s o m e w h e r e  in the  middle ,  be tw e e n  the th ree  

o r t h o g o n a l  d i rec t ions  of zi 's.  This  means  that  the  phases  ~, given by 

tg ¢i = vffui (A. 10) 

are  genera l ,  resul t ing  in CP viola t ion .  This  conclus ion is not  changed  if the small  

changes  in the  vec tors  zi and u, v due  to the  small  mixed  coupl ings  are  also t aken  

into account .  One  can,  for instance,  show that  in the p lane  p e r p e n d i c u l a r  to n the  

vec tors  u and v will not  r ema in  exact ly  o r thogona l .  The  dev ia t ion  of the i r  angle  

f rom ~Tr will be of the  o r d e r  K,/Ks<< 1 ( / =  1 . . . . .  6). The  pos i t ion  of the  abso lu te  

m i n i m u m  of V is an analy t ic  funct ion  of K] . . . . .  K6 in some  n e i g h b o u r h o o d  of the 

po in t  K1 . . . . .  K6 = 0. This  insures  that  within this n e i g h b o u r h o o d  the  m i n i m u m  
cons t ruc ted  above  r ema ins  the  abso lu te  min imum.  In the  whole  p a r a m e t e r  space 

the re  can be,  of course ,  also o t h e r  reg ions  with d i f ferent  abso lu t e  min ima.  T h e r e  

might  be  CP-conse rv ing  min ima  and  also o the r  min ima  with CP viola t ion .  

If the  p a r a m e t e r s  K1 . . . .  , K6 are  small  c o m p a r e d  to Aik and  K7, K8, then  in first 

a p p r o x i m a t i o n  the  vec tors  zL2.3 r ema in  unchanged  and u, v still satisfy eq. (A.4) .  

A f t e r  some  t r i gonome t r i c  work  one  can show that  in this case 
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F r o m  the  a b o v e  c o n s t r u c t i o n  it is a lso c lear ,  t ha t  wi th  t w o  rt-f ields it is i m p o s s i b l e  

to  ob t a in ,  at leas t  by  this p e r t u r b a t i v e  m e t h o d ,  a C P - v i o l a t i n g  m i n i m u m .  N a m e l y ,  

in t h e  f o r m  (A.7)  of  Vmix t h e r e  a re  t h e n  o n l y  the  t e r m s  wi th  Fa, I '2 a n d / ' z 2 .  In this 

case  o n e  can  s h o w  tha t  in t he  m i n i m u m  the  n - v e c t o r  is a lways  in t he  Za, z2 p lane .  

By  the  use of  t he  phase  f r e e d o m  (A.5)  o n e  can  a lways  r o t a t e  u o r  v in t he  z~, z2 

p lane .  T a k i n g ,  for  ins tance ,  v we  h a v e  v3 = 0 and  u~ = u2 = 0. T h e r e f o r e ,  t he  p h a s e  

d i f f e r e n c e s  Aftik = f t i - - f tk  g iven  by eq.  ( A . 1 0 )  a r e  e i t h e r  0 o r  ½7r. D u e  to t he  speci f ic  

s t r u c t u r e  of  t he  m a t r i c e s  in t ab l e  2 t he  C P  v i o l a t i o n  in t he  h o r i z o n t a l  n e u t r a l  c u r r e n t  

i n t e r a c t i o n  is p r o p o r t i o n a l  to sin 2Aftik;  t h e r e f o r e ,  it v a n i s h e s  for  Aftik = 0 and  
1 

Aftik = ~Tr. 
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