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We propose to use a suitably defined vortex free energy as a disorder parameter in gauge 
field theories with matter fields. It is supposed to distinguish between the confinement phase, 
massless phase(s) and Higgs phase where they exist. The matter fields may transform according 
to an arbitrary representation of the gauge group. We compute the vortex free energy by series 
expansion for a Z2 Higgs model and for SU(2) lattice models with quark or Higgs fields in the 
fundamental representation at strong coupling (confinement phase), and for the Z2 Higgs model 
in the range of validity of low-temperature expansions (Higgs phase). The results are in agreement 
with the expected behavior. 

1. Introduction 

In this paper  we invest igate a (non-local)  disorder  pa ramete r  for gauge theories  

with mat te r  fields such as, for instance,  q u a n t u m  chromodynamics  in eucl idean 

formula t ion .  It is supposed to dist inguish be tween  conf inement  phase,  massless 

phase(s), and  Higgs phase (in the sense of 't Hoof t  [1]) where they exist**. As is 

well known,  the Wilson loop cannot  be used for this purpose  when  the mat te r  fields 

t ransform according to a faithful r epresen ta t ion  of the gauge group G. We  propose  

to use the vortex free energy instead.  It was in t roduced  for pure  Yang-Mi l l s  theories  

by 't Hoof t  [1] and  by Mack and Petkova  [2]. It was computed  by the Monte  Carlo 

me thod  in [3, 4] and  can also be defined for theories  with mat te r  fields, e.g. quark  

fields, as was po in ted  out  in [5]. It can be defined both  in the c o n t i n u u m  and  on 

the lattice, and  for mat te r  fields that  t ransform according to arbi t rary represen ta t ions  

of the gauge group. 

One  considers a system on a finite lattice A whose b o u n d a r y  OA is not  simply 

connected .  Free b o u n d a r y  condi t ions  are imposed for the mat te r  fields (i.e. mat te r  

fields ~(x)  with x ~ 0A are in tegra ted  over independent ly) .  A vortex free energy is 

the change in free energy in A when  the b o u n d a r y  condi t ions  (b.c.) for the gauge 

* Work supported by Deutsche Forschungsgemeinschaft. 
** Cautionary remark: Since the disorder parameter is non-local, one cannot be sure that a change in 

its asymptotic behavior is always associated with a phase transition in the sense that the free energy 
is non-analytic. 

We dedicate this paper to the memory of our student and friend Tizian Maren, deceased 22 August 19~ 1. 
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field are twisted: 

vv(A, b.c.) = _1 In [Z(A, twisted b.c.)/Z(A, untwisted b.c.)]. (1.1) 

3' labels the possible twists. The twist is introduced by the action of a singular 
gauge transformation on the boundary values UIOA of the gauge field. Free boundary 
conditions for the matter fields are used, rather than periodic ones, because the 

action of the singular gauge transformation on matter fields which transform 

according to a faithful representation of the simply connected gauge group G could 
not be defined. A vortex free energy can be defined for any gauge group G with 
non-trivial center F. (When G has trivial center the problem of confinement does 
not pose itself.) 

A may be a parallelopiped in D 1> 2 dimensions [11, or a vortex container [2], 

and the untwisted boundary conditions may be periodic b.c. (p.b.c.), or boundary 
conditions U ( b ) =  1 for b ~ OA, etc. To be definite, we will consider lattice gauge 

theories with gauge group G = SU(2) or Zz whose center F = Z(2), and we take 

for A a parallelopiped of sides d l ×  dz × d3 ×" " " × d D  with d3 . . . . .  dD >> dl, d2. We 
impose periodic boundary conditions on the gauge fields in directions 1 and 2, and 
free b.c. in the other directions. There is then only one way of introducing a twist. 

If the path C is the intersection of a plane x3 . . . .  , xo = const, with OA, then the 

singular gauge transformation which twists the boundary conditions changes U(C) 
into - U ( C ) .  Explicit definitions for the 3-dimensional case are given in fig. 1. 

The expected asymptotic behavior of the vortex free energy in the limit dl, 
d2~ co is given in table 1. In the next sections we will compute the vortex free 
energy for several models, for ranges of parameters where expansion methods 
(high- or low-temperature expansions) are applicable, The results are in agreement 
with the list in table 1. The Z2 Higgs model possesses a Higgs phase, which can 
be studied with the help of low-temperature expansions, besides its confining 

high-temperature phase. 

Tx t ~ Z 

d 2 ,. 

x 3 

Fig. 1. Twisted boundary conditions on a 3-dimensional box. The twist is introduced by changing U(b) 
into U~(b); Uv(b) = U(b)~, for beT, and = U(b) for be ~A -T. 3' = -1 for G = SU(2) or Z2. 
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TABLE 1 

Expected asymptotic behavior of the vortex free energy 

251 

Without matter fields, or 
with matter fields that 

transform trivially under / "  

With matter fields that 
transform faithfully under F 

(e.g. quark fields) 

Confinement phase C 1 e °tdld2 Cll e -2re(all+d2) 

a = string tension m = "quark mass" 

Massless phase(s) c2(dld2) i c'2(dld2) -1 (Coulomb phase) 
or similar power law 

Higgs phase c3 # 0 c~ # 0 

The entries give the expected asymptotic behavior of limda...dD~OO (d3 ' " ' do) l u when dl, d2 ~ oo 

The massless phases are not well understood in the presence of matter  fields. 
Some may be characterized further by the presence of photons and Coulomb forces 
(example: QED) ,  and others by massless quarks and spontaneously broken chiral 

symmetry.  
For gauge theories without matter  fields, the vortex free energy has the advantage 

over  the Wilson loop expectation value [6] that no static quarks are introduced to 
probe the system, and their self-energy (which produces a perimeter- law behaved 
factor in the Wilson loop expectation value) therefore does not enter. Mtinster has 
verified [7] that the following asymptotic relation holds for a 4-dimensional pure 
SU(2) lattice Yang-Mills theory in the high-temperature  regime, to all orders of 
the high-temperature  expansion, in the same limit as in table 1: 

( d 3 d 4 ) - l v ( A ,  p.b.c.) = a -2 e -'~dld2 , 

= string tension,  a = lattice spacing. 

(1.2) 

A similar relation was predicted to hold outside the high-temperature regime [5]. 
This was later verified by Monte  Carlo computat ion [4]. There is no perimeter- law 
behaved factor in either case, in contrast with the Wilson loop. In the presence of 
mat ter  fields which transform non-trivially under F, the area law is lost, but a 
per imeter  law decay persists in the high-temperature  regime (confinement phase). 
This is in contrast with the Higgs phase in which v does not decay to zero when 
d l ,  d2 increase to infinity. 

The notion of a Higgs phase as used here and in the work of 't Hoof t  [1] is much 
more restrictive and should not be confused with what is customarily called a "Higgs 
mechanism".  Several years ago, one of us argued that mass generation in the 
confining phase of a pure Yang-Mills theory could be understood as a dynamical 
Higgs mechanism (which leaves the center of the gauge group "unbroken")  [8, 9]. 
This view was supported by later work of Fradkin and Shenker [10]. The Higgs 
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t 

Ttime = x  I 

d 2 

^ 

Fig. 2. How to avoid free boundary conditions for the purpose of Monte Carlo computations (drawing 
for 3-dimensions, and G = SU(2), n = 2). For explanation see text. 

phase, and the confining/screening phase of Fradkin and Shenker are two distinct 

phases which correspond to different ranges of coupling constants in the Z2 Higgs 
m o d e l -  see sect. 5 (fig. 4). 

For an SU(2) model with two Higgs triplets a Higgs phase is known to exist 
[11, 21], whereas for an SU(2) model with a Higgs doublet  there is no indication 
for its existence [12]. The essential difference between these two models is that 
the Higgs fields transform non-trivially under the center of the gauge group only 
in the second model. However,  it is conceivable that in sufficiently complicated 
models with Fermi fields in a fundamental  representation of G a Higgs phase could 
exist, because composite Higgs scalars may form that transform trivially under the 
center of the gauge group. It would be interesting to study what happens if these 
Higgs scalars carry flavor (compare refs. [8, 13]). 

Finally, we comment  on the boundary conditions. Free boundary conditions for 
the matter  fields are a nuisance if one wants to do Monte  Carlo computations,  
because a 4-dimensional lattice of practical size for such computations is mostly 
boundary. 

One way to circumvent this problem is as follows. Take nin2 lattices A of size 
dl × d2 X d3 × d4 and pack them together to form a lattice Atot of size n ld l  × rt2d2 × 
d3 × d4 as indicated in fig. 2. n; are chosen as integer multiples of N for an SU(N)  
or ZN gauge t h e o r y - f o r  instance n 1 = n 2 = 2  if G = S U ( 2 ) .  One imposes either 
periodic or twisted boundary conditions for the gauge fields on each of the lattices 
A, and periodic boundary conditions for the matter  fields o n  Atot. (For Fermi field,; 
it is more natural to take antiperiodic b.c. in the time direction instead of periodic 
ones [14].) 

Another  possibility is to use the "boundary  conditions" of Lang and Nicolai [15]. 
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2. The models 

We will consider two models with gauge group G = SU(2), one with quarks 
(fermions) and the other with a Higgs doublet  in the fundamental  representat ion 
of SU(2). In addition we study the gauge-invariant Ising model. This is a Higgs 
model with gauge group Zz. We set the lattice spacing a equal to one. 

The (random) variables of the models are string bit variables U(b) ~ G attached 
to links b of the lattice, and mat ter  fields tp(x) attached to the sites x. U ( b ) ~  U(b) -1 
under reversal of the direction of the link b. The action will be a sum of gauge 

and matter  part  as usual 

L(U, O)=LG(U)+LM(U, 0) .  (2.1) 

Let O±A be the part  of the boundary of A which bounds A in the transverse 
directions 1 and 2 (OiA = OA-end plates x3 = 0, d3 in fig. 1). It is convenient to 
consider partition functions for fixed boundary values U -  UI0a of the gauge fields 

first: 

Z(A,  U) = f ~USOO eL(U.4') , (2.2) 
J 

with 

@U = 1] d U ( b ) .  (2.3) 
b~A-O±A 

d U (  ) is the normalized Haar  measure on the group G. @0 will be of the following 
form: 

@O = I-I dox(g,). (2.4) 
xEA 

The partition functions for twisted and untwisted boundary conditions (as described 
in sect. 1) are obtained by integrating also over the boundary values U subject to 
the constraints imposed by the boundary conditions: 

Z(A,  twisted b.c.) = f I]  dU(b)Z(A, Uv), (2.5) 
at: periodic b~d,a_A/2 

Z(A,  untwisted b.c.) = f lq dU(b)Z(A, U).  (2.6) 
Ju periodic bEb±A/2 

Uv is obtained from U by the singular gauge transformation of sect. 1 (see fig. 1). 
It changes the parallel t ransporter  (see below) U(C) into - U ( C )  for every path C 
in O±A that winds once (mod 2) around A. 

For a path C that consists of a sequence bl • • • b ,  of oriented links one defines 
the parallel t ransporter  

u ( c )  = U ( b . )  • • • U ( b , ) .  
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In particular, the boundary 15---0p of a plaquette is a sum of four oriented links 
bx " " " b 4 ,  and U(15)--U(b4) • ' • U ( b l ) .  The gauge part  of the action will be chosen 
in the standard Wilson-Wegner  form 

I ~/3 tr U(15) + const . ,  for G = SU(2) ,  
LG(U)=~'~'~P(U)' withSCp(U)=tflU(15)+const., for G = Z 2 = { +  1} p 

(2.1') 

The sum includes only one of the two plaquettes on opposite sides of &A. The 
matter  part  of the action will be of the form 

LM(U, 0) = ~  ~b(U, 0 ) .  (2.1") 
b 

Summation is over all links b in A, and for b = (x, y) 5~'b will only depend on the 
string bit variables attached to the link b, and on the values of the mat ter  fields at 

x and y. 
Model I (SU(2) quark model). We introduce one species of  anticommuting quark 

field O. O(x) is a Dirac spinor and transforms according to the 2-dimensional 
fundamental  representation of SU(2). As is well known, in the euclidean formulation 
of such a Fermi field, 0 and ~ are treated as independent.  We use the Wilson form 
for the matter  part  of the action [6]: 

'~b( U, 0) = - K { f ( x ) ( 1  + y~,) U(b)0(y)  + 0(y)(1 - 3 ' , )U(b)*0  (x)} + const. 
(2.7) 

Finally, 

dpx (0) = e VT(x)~(x) d0(x)  d~ (x ) .  

Integration over anticommuting variables 0, ~ is defined in the standard way [16]. 
Color and spinor indices have been suppressed. 

Model 2 (SU(2) Higgs model). This model involves a doublet  of complex scalar 
fields 

 ,p2(x)J ' I'pa(x)12 + I'P2(x)12 = 1 .  (2.8) 

The matter  part  of the action takes its most convenient form when expressed in 
terms of the SU(2) matrices 

0(X) = (qgl(X) --~i~2(X)~ 
\~02(X) ~I(X) ] " (2.9) 

In this notation, the matter  part  of the action is given by eq. (2.1") with 

5eb(U, 0) = l K { t r  0 ( x ) * U ( b ) 0 ( y ) + c . c . } + c o n s t . ,  f o r b  = (x, y ) ,  (2.10) 

@0 = H d 0 ( x ) ,  dO = normalized Haar  measure on SU(2) .  
x E A  
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Under  a gauge transformation Vl(X) 

to(x)-,  Vl (x )to(x ) , 

U(X, y)"~  V l ( x ) U ( x  , y)  V l ( y )  -1 . 
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(2.11a) 

(2.11b) 

From eq. (2.10) one sees [17 (especially sect. 2)] that the model has in addition 

another  global SU(2) symmetry.  We call it isospin. Isospin rotations act according 
to 

t0(x) --, to(x) V]  1 , (2.12a) 

U(x, y)-* U(x, y) ,  (2.12b) 

with V2~SU(2) independent  of x. If V z = - i  then it commutes  with all SU(2) 
matrices. Its action on to, U therefore agrees with the action of a global gauge 
transformation V l ( x ) ~ - - 1  in the center Z2 of the gauge group. The combined 
symmetry  is therefore 

(SU(2)local × SU(2)global)/Z2 global. (2.13) 

In the confining phase, all physical states are supposed to have integral isospin (see 
the discussion in ref. [17]). We are not able to prove that the per imeter  law decay 
of 1, as given in table 1 is a sufficient condition for that. 

Model 3 (Gauge-invariant  Ising model). This is one of Wegner 's  generalizations 
of the Ising model [18]. Its string bit variables U(b) and matter  fields both take 
values ~1. Otherwise the model is the same as model 2. Integration with the 
normalized Haar  measure on G = Z2 amounts to summation: 

d U ( . . . ) = ½  Y~ ( . . . ) ,  d to ( . . . )=~  Y. ( . . . ) .  (2.14) 
U=±I  4~=±1 

The matter  part  of the action is given by eq. (2.1") with 

and 

~b(U,  4 / )=Kto(x)U(b) to(y)+cons t . ,  f o r b  = (x, y ) ,  (2.15) 

dpx(~b) = dto(x). (2.16) 

3. Expansions for the free energy of polymer systems 

Expansions of classical statistical mechanics can be obtained in two steps. In the 
first step one transforms the system which one wishes to consider into a polymer 
system. In the second step one writes down expansions for the free energy, etc. of 
this polymer system. In this section we will be concerned with the second step. 

We regard a lattice A as a cell complex made of 0-cells (sites x), 1-cells (links 
b), 2-cells (plaquettes p), 3-cells (cubes c) . . . . .  To define a polymer  system (in the 
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sense of Gruber  and Kunz [19]) certain subsets of the cell complex A are declared 
to be polymers. To every polymer  P an activity ~(P)  is assigned. We use the symbols 
+, Y~ for union of disjoint sets. For any X _~ A a partition function is defined by 

Z x  = 1 +  Z I- I4 ' (P) .  (3.1) 
~P~_X P 

Summation is over non-empty  collections of disjoint polymers that are contained 
in X. It is required that Z ( X ) >  0 for all X_c A, but the activities q)(P) need not 
necessarily be positive. 

For the purpose of this investigation it is expedient to allow for some generaliz- 
ation. In the case of the low-temperature  expansions, two polymers P1 and P2 will 
be called disjoint only if they have vanishing intersection and P1 U Pz is not a 
polymer.  In the case of the high-temperature expansions, polymers P with different 
activities are admitted which can occupy the same set of cells in A (=its "support") .  
Two such polymers will be called disjoint if no cell of A is occupied by both. The 
results of Gruber  and Kunz all generalize to these cases [19]. 

In our applications, the activities q)(P) can depend on the boundary conditions 
when P meets the boundary of A. We write ~(P ,  U) or (/)(P, ~b.c.)  when we want 
to indicate this dependence.  Our  polymer  systems will be defined in such a way 
that the partition function is reproduced,  viz. Z(A,  U) = Za  as defined in eq. (3.1), 
etc. If the activities (~(P) are small enough, then the free energy of the polymer  
system admits a convergent cluster expansion. A linked cluster Q = (P~'~. . . . . .  PN N) 

is a non-empty collection of not necessarily distinct polymers.  It may contain 
polymer  Pi ni I> 1 times. It has to be connected in the following sense. Consider the 
abstract graph ~ o  whose vertices are the polymers in Q, and whose links are the 
pairs of polymers in Q which are not disjoint. ~ o  has to be connected. The cluster 

expansion reads (for X = A) 

l n Z A = ~ a ( Q )  [I  ~ ( P ) .  (3.2) 
Q P~Q 

Summation is over all linked clusters Q which consist of polymers in A. a(Q) are 
combinatorial  factors which can be computed if the graph ~ o  is given. (a(Q) = 1 
if Q consists of a single polymer,  and - 1  if it consists of two distinct polymers.) 
Sufficient conditions for the convergence of expansion (3.2) are well known [19]. 
(They are derived by use of Kirkwood Salsburg equations [19, 20].) For an applica- 
tion of this formalism to the computat ion of the string tension by high-temperature  
expansions see Mfinster [7]. 

4. High-temperature expansions 

We consider first the situation where both coupling constants/3 and K in our 
models are small. Following standard procedure [20, 21], we write 

e ~"(v) = 1 +fo(U) = 1 + O(/3), (4.1) 
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e ~eb(U'~ = 1 +gb(U, 0) = 1 + O ( K ) .  (4.2) 

fp depends on the gauge field configuration U only through U(15), and similarly 

gb(U, O) depends only on U(b) and bn if(x), ~(y) if b = (x, y) (and on 0(x), ~(y) 
in the quark model). 

We choose the additive constant in the gauge part ~o of the lagrangian in such 
a way that the character expansion of fp contains no constant term. It follows that 

f dU(b)fp(U)=O, for b~ c3p. (4.3) 

Similarly, we choose the additive constant in the matter part of the lagrangian in 

such a way that 

f dpx(~b)gb(U, ~ ) = 0 ,  (4.4) f o r x c O b .  

To see that this is possible one considers gb(U, V~) as a function of V(x)~ G and 
expands in irreducible representations of G again. In the case of the quark model 

operators ~(1 + 3',~). The details are one also exploits the presence of the projection 
omitted since high-temperature expansions for theories with matter fields have 

been treated in the literature before [22, 15]. 
Consider now the partition functions defined in sect. 2 [eqs. (2.2)-(2.6)]. We 

wish to exhibit them as partition functions of polymer systems. To achieve this one 
inserts eqs. (4.1) and (4.2) into their definition and expands in products o f / ' s  and 

g's of the form 

I~ gu I-I fp. (4.5) 
b c ~  p ~ '  

With every term in this sum we associate a graph ~ = ~ ( ~ ,  ~ )  whose vertices are 

sites and links of A. For the term (4.5) the set v(~)  of vertices of .~ consists of all 
sites x c A which are end points of links b c ~ ,  of the links b ~ ~ themselves, and 
of the links b ~ A which are in the boundary of a plaquette p ~ ~. Two vertices of 
the graph ~ are linked if one of the following conditions is met: 

(i) Both vertices are sites of A and they are endpoints of the same links b c ~ .  

(ii) The two vertices are a link b ~ ~ and a site x which is an endpoint of b. 
(iii) The two vertices are both links, and there exists a plaquette p ~ ~ which 

contains both of them in its boundary. 

(iv) The two vertices are both links in 01A and are translations of each other in 
the 1- or 2-direction by dl or d2. 

The graphs ~ decompose into connected graphs ~ and the integrals over expression 
(4.5) factorize into a product of integrals of the same form, for each connected 
piece ~ of ~. 

A polymer P = (~, ~ )  is given by a set ~ of links in A and a set ~ of plaquettes 
in A such that the graph rg = rg(~, ~ )  that is associated with it in the manner 
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described above is connected. The support of P will consist of the sites and links 
in A which are contained in v(~). Two polymers P1 and P2 are disjoint if their 
supports have no site or link of A in common. An activity of polymers P is defined 
by 

qb(p, U ) = f  I-I dpx(~O) [I' dU(b)  FI gb(U, ~b) 1-1 fp(U). (4.6) 
x ~v(CY) bev(~3) b e ~  p c ~  a 

The prime on the second product indicates that integrations over variables U(b) 
attached to links b ~ O±A are to be omitted. Instead, qb depends on these variables 
when v(~) contains links in a.A. We write @ = qb(p, U) to indicate this dependence 
on boundary values of the gauge field. By construction 

Z ( A , U ) = I +  )~ I ]¢P(P ,U)  (4.7) 
Z P ~ A  P 

(sum over all non-empty collections of disjoint polymers). Finally, we can now 
integrate over boundary values U of the gauge field. Define 

~(P,  twisted b.c.) = f H dU(b)~(A,  Uv), (4.8a) 
Ju p e r i o d i c  b~OxA/2 

~(P,  untwisted b.c.) = f [I dU(b)qb(A, U ) ,  (4.8b) 
. /  U p e r i o d i c  boO±A/2 

similarly to eqs. (2.5), (2.6). Since dependence on a particular independent integra- 
tion variable U(b) appears in at most one of the factors ~(P,  U) in eq. (4.8) it 
follows that 

Z(A, b.c.) = 1+ Y~ 1-[ @(P, b.c.),  (4.9) 
3 ~ p c A  p 

where b.c. stands for the twisted or untwisted boundary conditions described in 
sect. 1. In this way we have exhibited the Z(A, b.c.) as partition functions of polymer 
systems. 

Now we can apply eq. (3.2). This gives for the semiperiodic boundary conditions 
b.c. described in sect. 1 

u(A, b.c.)= -½ ~ a (Q)[pl~Io qb(p, twisted b . c . ) -  P~O qb(p, untwisted b.c.)] . 

(4.10) 

Summation is over linked clusters Q of polymers P as described in sect. 3. For a 
polymer P = (~,  ~) ,  the activity 

¢~(P, ) = O(KI~I/~ I~1) (4.11) 

by definition and eqs. (4.1) and (4.2). 12~1 = number of links in ~,  etc. 
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We are interested in small K and /3. Our problem is then to find the leading 
term in the expansion (4.10). For fixed A the answer turns out of depend on the 

relative size of K and/3, but for large enough cross section dld2 of A (depending 
on the relative size of K and/3) this is no longer the case as we shall see. 

Evidently ~(P,  twisted b.c.) = qb(p, untwisted b.c.) unless @(P, U) ~ qO(p, Uv) for 
some U. But ~(P,  U) ~ ¢b(P, U~) is only possible if the support of P contains a link 
be0±A for which U ( b ) ~  U~(b). Since ~(P,  U) is invariant under any ordinary 

gauge transformation of the boundary values U on 0±A (this is seen by extending 
it to a gauge transformation in A which acts trivially on A - a ± A ) ,  @(P, U ) ~  
~(P,  Uv) must hold for any choice of the singular gauge transformation. Let [Cl] 
be the (homotopy) class of all closed paths on OiA which wind once around A (see 

fig. 1). The singular gauge transformation can be carried out in such a way that 

Uv(b) = U(b) except on an arbitrary set T of links which is a closed path (in 3 

dimensions) or surface (in 4 dimensions) on the dual of OIA and which meets every 
path Ce[C1]  once (mod 2) (for G = S U ( 2 )  or Z2); compare fig. 1. Any two such 
choices differ by an ordinary gauge transformation in Z2. It follows that a cluster 
Q can only make a non-zero contribution to the expansion (4.10) if it contains a 
polymer P with the following properties. 

(1) @(P, U) should not be identically zero for all boundary values U. 

(2) The support of P should contain all the (unoriented) links b in some closed 

path C e [C1] on alA. 
Next we note that the activity ¢b(P, • ) of a polymer P = (~, ~ )  is zero if P has "free 

ends". A site x in the support of P is a free end if there is only one b e ~ which 
has x as an endpoint. A link in the support of P is a free end if it is not in aiA or 

and is contained only in the boundary of a single plaquette p ~ ~. Vanishing of 

the activities in the presence of free ends follows from eqs. (4.3) and (4.4). 
If a polymer P satisfies condition (2), its support must contain at least ]C] = 

2(dl +d2) links, [CI = minimal length of a path C e [C1] on O±A. Therefore [~1 + 
41 1/> IcI and, because of eqs. (4.1), (4.2), 

]¢b(P, )[ <~ O([K4+/3](a'+d2)/2). 

Therefore, the leading contribution to the sum (4.10) is at most of the same order 
in fl and K. It follows that u(A, b.c.) has an exponential decay at least as fast as 
indicated in the 1st row, 2nd column of table 1, if K and/3 are small. 

It is instructive to determine the leading term more explicitly. A typical polymer 
which satisfies conditions (1) and (2) above is shown in fig. 3a. It consists of a 
decorated surface -~ made of plaquettes p e ~ whose intersection with a±A is a 
closed curve C ~ [C1], with some holes in it that are bordered by links b E ~ (compare 

ref. [22]). Two limiting cases are shown in figs. 3b, c. The contribution from a 
cluster Q that consists of a single polymer P of the form shown in figs. 3b, c can 
easily be evaluated [22]. In the 4-dimensional SU(2) Higgs model one obtains, for 
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Cr-.t~.̂  

~. -~,'. , . . :  =7. 

.IIL..:I ; I. :;.. ;--.. : 

;...- ~: ?~ / .  "...~.:..-. 

(a) (b) (c) 
Fig. 3. (a) A typical polymer P = (~, ~') that satisfies conditions (1) and (2) above, when CE [C1]. The 
dotted areas are composed of plaquettes pE ~ and the heavy lines are made of links bE ~. (b) A 
special case: ~ is empty, and ~ is exhausted by the links in a closed path C E [C1] of minimal length. 
(c) Another special case: a minimal surface with boundary C E [C1] that is filled with plaquettes p E ~. 

is empty. 

ins tance (a = 1) 

u(A, b.c.) : d3d4{e-2m°(d'+u2) + e %did2 + . . . } ,  

and  similarly in the other  two models,  ao = - I n  (¼fl) is the string tens ion  to leading 

order  of the h igh- t empera tu re  expans ion  in the pure gauge theory and  mo = 

- I n  (¼K). For  large dl  and  d2 the first te rm dominates .  

5. Low-temperature expansions for the gauge-invariant Ising model 

We will now consider  the gauge- invar ian t  Ising model  (model 3) for large/3 and 

small  K. For  the sake of defini teness we shall consider  the case of a 3 -d imens iona l  

lattice. The 4 -d imens iona l  case can be handled  in the same way. 

Conce rn ing  the phase diagram of this model ,  r igorous results of Marra  and 

Miracle Sol6 are available [23] which establish analytici ty of the free energy in two 

regions I and II of the /3, K diagram. These regions are b o u n d e d  by the dashed 

lines in fig. 3. Mon te  Carlo data  are also available [24]. They  confirm that the two 

\ screening 

.c 

K u ~ r . . . .  

J 
0 

', Higgs 
i 
i 

0 
0 F} a. 

Fig. 4. Phase diagram of the gauge invariant Ising mode] in 3 dimensions. 
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regions are separated by a phase transition line. In our terminology, region II is 

the Higgs phase, as we shall see, whereas region I is the confining/screening phase 
that was also investigated by Fradkin and Shenker [10]. It is customary to speak 

of a Higgs mechanism when both/3 and K are large. We have already commented 
on that at the end of sect. 1. Our high-temperature result of sect. 4 covers only a 

small part of region I. It would be of interest to show that it remains true throughout 
region I. 

In this section we are interested in region II. It is convenient to introduce 

Z±(A) = Z(A,  untwisted b.c.) + Z (A, twisted b.c.). (5.1) 

In computing the vortex free energy, the limit d3--> ~ is taken first. It turns out 

that in this limit the second term in (5.1) becomes very small compared to the first. 
Therefore, in this limit 

Z(A,  twisted b.c.)/Z(A, untwisted b.c.) = ~ In Z+(A) Z (a)" (5.2) 

We compute the expression on the right-hand side. To get the vortex free energy 

one must take the logarithm of the result, at the end. 
To compute In Z± we reinterpret the model as a polymer system with activities 

O±(P) in such a way that [compare eq. (3.1)] 

Z±(A)= 1+ Z FI o±(P) .  (5.3) 
F P ~ A  P 

Summation is over non-empty sets of disjoint polymers. We must find a suitable 

definition of polymer, of disjointness, and determine the activities O±(P) in such a 
way that eq. (5.3) holds. We follow Marra and Miracle So16 and generalize their 

procedure in such a way that the dependence on boundary conditions, in which 
we are interested, can be determined. 

Let C = 0 -  ~ be a closed path which is boundary of a surface _~ in A. Since we 
are now dealing with an abelian theory we have 

u ( c )  -- lq u(f~), if c = 0_~. (5.4) 
p c . _  ~ 

Let --~ be the intersection of any plane x 3 = const, with A. Then 

U(C) = 1, for the untwisted b.c., (5.5a) 

U(C) = - 1 ,  for the twisted b.c.. (5.5b) 

as described in sect. 1. 

Given a gauge field configuration U on A, let S consist of those plaquettes p 
where U(15)= -1 .  S is coclosed-~ closed on the dual lattice. This means that every 
cube c in A contains an even number of plaquettes p ~ S in its boundary. It follows 
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f rom eqs. (5.4) and (5.5) that  the number  IS N -~1 of plaquet tes  in S (3 ~ satisfies 

j-even, for untwisted b.c . ,  (5.6a) 
Is fq 21 

t odd ,  for twisted b.c . .  (5.6b) 

Conversely,  if the "field strengths" U(fg) satisfy periodic bounda ry  condit ions in 
directions 1 and 2 and also eq. (5.6a) or  (5.6b) then U(lb) is field strength of a 
gauge field U(b)  which satisfies the untwisted or  the twisted b.c., respectively. 

Therefore ,  the part i t ion functions can be written as follows (for suitable choice of 
the additive constants in the action) 

Z ± ( A ) = ~ ( ± ) l s n ~ l e - 2 ~ l s l f H d ~ ( X ) I u  I-I d U ( b )  
S (15)= 1 i f fp~S  

× I]  {1 + tO(x)U(x, y)$ (y )  tanh K } .  (5.7) 
(x,y) 

Let  Aper be obta ined  f rom A by identifying plaquettes in opposi te  sides of O±A. 
The sum over  S in (5.7) extends over  all coclosed sets of plaquet tes  p in Aper. The  
sum over  gauge fields U(b)  is restricted as indicated. -~ is intersection of an arbi t rary 
plane x 3 = const, with A. 

The  produc t  H{ } is expanded  into a sum of terms that are labelled by sets 

of links. Now the ~ summat ions  are carried out.  This annihilates all the terms with 
not  closed in A ( ~  is closed if every site x c A has an even number  if links b ~ ~3 

incident on it). Since A is topologically trivial, ~ = OZ for some sum of plaquet tes  

Z if 0 ~  = 0. One  defines the winding number  of ~ relative to S by 

n(S, ~ )  = ( - 1 )  Isn't . (5.8) 

Because of eq. (5.4), the result of the ¢J summat ion  can be expressed as 

Z~(A) = ~ (+)lsn--=l e-2~lsl y. (tanh K)l~ln (S, ~ ) .  (5.9) 
S 

0*S=0  in Ape r ~ = 0  in A 

The final step is to factorize the terms appear ing in these part i t ion functions. 
Consider  sets P = {sl . . . . .  sn ; cl • • • cm}, n + m/>  1, where  si are coclosed sets of 
plaquettes in Aoer, and cj are closed sets of links in A. With every such P we 
associate an abstract  graph as follows. The  vertices of the graph are the sets si 

and ci. Two vertices s~ and Sk are linked with each other  if there exists a cube c 
whose boundary  contains a plaquet te  in s~ and a plaquet te  in s i. Two vertices c i 
and ck are linked if there is a point  x such that  a link in cj and a link in Ck are 
incident on it. Finally a vertex si is linked to a vertex ci if the relative winding 
number  n(si, c i ) = - l .  P is called a po lymer  if the graph associated with it is 
connected.  Two polymers  P1 and P2 are disfoint if the graph associated with P11.3 Pz 
is not  connec ted  (i.e. P1 LJP2 is not  a polymer) .  We write Y.P for the union of 
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Fig. 5. A p o l y m e r  (sx, Cl) whose  vor tex  s l  winds  once  th rough  .4. 
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mutually disjoint polymers. The activities of the polymers shall be given by 

qb±(p) = (±)Els, n---t e-2~El~,l(tanh K)EIc~I f i  f i  n ( s i ,  c j )  (5.10) 
i = l  j = l  

for P = ( s l  • • • s ,  ; Cl  • • • c ,~) .  si will be called vortices and cj will be called loops. The 
factor (_)b~,nzl counts how many times the vortex si winds through A(mod 2). As 
an example, a polymer (sl, cl) whose single vortex winds once through A is shown 
in fig. 5. With these definitions, the partition functions (5.9) take the form (5.3). 
The first term 1 in (5.3) is the contribution from the term in (5.9) with ~ and S 
both empty. 

Having exhibited Z+ and Z as partition functions of polymer systems with 
activities rp+ and 4_  we can now apply expansion (3.2) for In Z±. With eq. (5.2) 
we obtain, in the limit of large d3 

Z ( A ,  twisted b . c . ) / Z ( A ,  untwisted b.c.) = I I ~ l n Z + ( A ) - ~ l n Z  ( A )  

=½Y, a (Q)[  I-[ rp+(p)-  l] ~ - ( P ) I "  
Q LpEQ p~Q 

(5.11) 

Summation is over linked clusters Q = "' (P1 . . . . .  P~)  of polymers. They are collec- 
tions of polymers P~ such that the graph that is associated with UP~ is connected. 

- l n  Z+ is the free energy of a system with semiperiodic boundary conditions for 
field strengths U(l~). Absolute convergence of its low-temperature series follows 
from the results of Marra and Miracle Sol6 [23] for low enough/3 -1 and K. The 
series for In Z differs only in the sign of the individual terms and is therefore also 
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absolutely convergent. In conclusion, eq. (5.11) is a convergent expansion for low 
enough/3 -1 and K. 

Next we will identify the leading term. The activities ~+ and @_ differ only in 

sign. All those terms in which I-I ~ -  and [-I ~+ have the same sign drop out in eq. 
(5.11). We get opposite signs if the total winding n u m b e r  (--)E~, ~°ls~n-=l of all the 

vortices in all the polymers in Q is - 1 .  Therefore, we need at least one vortex 

which winds through A in such a way that it meets every plane -~: x3 = const. It 

must therefore have at least d3 plaquettes. Every plaquette contributes a depression 
factor e -2~. The leading term is thus given by a cluster Q which consists of a single 

polymer P = ( s l ; )  which consists only of a single vortex sl that winds through the 
lattice. The situation is as shown in fig. 5 except that the loop cl is absent. For 

such Q one has a (Q) = 1. Thus 

Z(A, twisted b.c.)/Z(A, untwisted b.c.) = did2 e -2d3B +" • • • (5.12) 

To obtain v/d3 we must take the logarithm and divide by -2d3.  The contribution 

of the leading term to t,/d3 is therefore equal to 3, in the limit d3 ~ o0, independent 

of dl and d2. 
Finally, we will discuss correction terms. They have one "principal" vortex Sl 

which winds through A and may differ from the minimal one shown in fig. 5 by 
some deformations. It may have some decorations attached to it. The whole cluster 
Q may consist of one or several polymers, one of them contains sl. (Contrib0tions 
with several vortices that wind through A become negligible when d3 ~ oo.) The 

leading corrections come from a kink in the vortex Sl, which gives it an extra 
plaquette, or from the presence of a loop cl of four links that winds around Sl. In 
the second case, the vortex and the loop may each form a polymer, or they may 
be in one polymer. The kink or loop may be positioned anywhere on the vortex 

sl. Therefore, one gets a correction to the leading term that is proportional to d3. 

There are other corrections which involve 2, 3 . . . .  such loops and kinks. They give 
contributions proportional d], d ] . . . . .  The point is that all these contributions (and 
more complicated ones) sum up to an exponential. The argument is exactly the 

same as in Miinsters computation of the string tension [7] and the details will 

therefore not be repeated here. (He had to consider decorations and deformations 
of the minimal surface with prescribed boundary = Wilson loop.) The idea is to 

rewrite expression (5.11) as 

Z(A, twisted b.c.) /Z(A, untwisted b.c.) = Z l-I ~+(P),  
Q P 

winding no . -1  

to regard this expression as partition function of still another polymer system, and 
to use eq. (3.2) again to compute its logarithm. The result is that all the correction 

terms to v/d3 go to zero when /3 -1, K-*  0, uniformly in dl and d2. The leading 

correction terms give, for large d3 and d3 >> d l ,  d2 ~ 1, 

v(A, b.c.) = d3[fl - 2 e -2t3 + (tanh K)  4 + .  • -]. (5.13) 
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C o m p a r i n g  wi th  t ab l e  1 we  see  tha t  this is in a g r e e m e n t  w i t h  t h e  e x p e c t e d  b e h a v i o r  

fo r  a H iggs  phase .  

T h e  a u t h o r s  a r e  i n d e b t e d  to  D r .  M.  G 6 p f e r t  a n d  T.  M a r e n  fo r  he lp fu l  d iscuss ions .  
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