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A fairly complete study of the renormalization of F~F,,,, is presented in the gauge in which 
it is simplest: the background field gauge. This gauge allows one to go to second-order perturbation 
theory without evaluating a single Feynman integral. The use of the equations of motion, the 
gauge invariance of a classically gauge-invariant renormalized operator and the renormalization 
group invariance are studied. Its two-loop anomalous dimension is given and its relation to the 
trace anomaly obtained. 

1. Introduction 

Since only coiourless states have been observed  in nature,  it is clear that  the 
successes of quan t um  gauge field theory  in explaining the physical reality will be 
corre la ted to the unders tanding  one develops  of gauge- invar iant  opera tors  in field 
theory.  Unfor tuna te ly  gauge- invar iant  opera tors  are ei ther  composi te  or  non-local  
(i.e. path dependent) .  Within the first approach,  where one  deals with composi te  

local operators ,  FF =- F~ ~ (x)F~,~a (x) is the gauge- invar iant  scalar opera to r  of lowest 
d imension in pure Q C D .  Here  F ~ ( x )  is the field s trength defined as F ~ ( x ) =  

- 0  A,~ +g.f,~bcAbAc, where A ,  is the gluon field of colour  index a and g is 
the coupling constant .  It will appear  in its normal  product  form as the first non-trivial  

ope ra to r  in the short-dis tance expansion of the product  of gauge- invar iant  

operators .  The  normal  p roduc t  makes  its vacuum expectat ion value irrelevant for 
per turba t ion  theory,  but  this is not  so for non-per turba t ive  physics, where one 
expects its physical vacuum expectat ion value to be non-zero.  This is on the basis 
of a non-per turba t ive  approach  to low-energy physics, which has achieved remark-  
able successes in the past years [ 1, 2]. However ,  and in order  to be of direct physical 
relevance,  FF, once renormal ized,  has to appear  in an expression such that it is 
renormal izat ion group invariant,  i.e. independent  of the renormal izat ion scale U. 
Its physical vacuum expectat ion value will then be, due to its gauge and renormal iz-  
at ion g roup  invariance, the scale of non-per turba t ive  physics. 

The  renormal izat ion of composi te  opera tors  has been studied in the B P H  scheme 

by Z i m m e r m a n n  [3] and in dimensional  schemes by Collins [4] and Bre i tenlohner  
and Maison [5]. The renormal iza t ion of gauge-invar{ant opera tors  like FF has 
special problems related to mixing. In usual covariant  gauges FF mixes not only 
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with other gauge-invariant operators  of the same dimension but also with non- 
gauge-invariant operators.  This is because continuum quantization requires the 
breaking of the gauge symmetry.  Nevertheless, the problem is understood in spite 
of its complexity [6, 7]. There  is, however, as we see it, a more elegant approach 
based on the background field method [8]. The action is then a functional of the 
classical background field A, and retains its gauge invariance for the background 
field, since quantization in the background field gauge only requires the breaking 
of the gauge symmetry for the quantum gauge field Q. As a consequence of this 
gauge symmetry many problems related to renormalization in gauge theories are 
simplified. Thus, the calculation of the Callan-Symanzik/3-function [9] only requires 
the computat ion of the background field self-energy and no vertex has to be 
considered [10]. More relevant to us, it has been shown by Kluberg-Stern and 
Zuber  that under renormalization a gauge-invariant opera tor  which does not vanish 
by virtue of the equations of motion only mixes with other gauge invariant operators  
[ 11 ]. This is both conceptually appealing and computationally very helpful, as we 
will see in this work, where we will use always the background field gauge. 

The introduction of matter  fields complicates the renormalization of FF. This is 
because one has to add three new local scalar gauge-invariant operators,  00  of 
dimension three and i O"(~y.O) and O(iJ~-m)~l, of dimension four. D.~- 

• 1 - -a~a  O. -tg~,~ ~ .  being the covariant derivative. They are, however, not on the same 
footing as FF; the first because it only mixes with FF if the quarks are massive, 
the second and third because they vanish if one uses the equations of motion. These 
we will see, are important  features for the renormalization of these four operators.  

Now, turning to the renormalization group invariant expression of FF there are, 
to our knowledge, two sources of information. For pure Q C D  and from a lowest 
order computat ion one knows that aFF, where a = g2/4~r, is independent of the 
renormalization scale [6]. On the other hand, FF appears in the trace anomaly [9, 
12]. The exact expression for the trace of the bare energy-momentum tensor on 
the mass shell and at non-zero momen tum is [13, 14] 

0" .  = (1 + y,~) E m,[~_~] + Ifl[FF]. (1.1) 
i 

where i = 1 . . . . .  Nf is the flavour index. The Callan-Symanzik 13-function and mass 
anomalous dimension %, are given by 

dct(~) dmi(p-) 
a(/z)/3(a (/z)) = ~ - - ,  m~(lz)ym(a(lz))= - ~ t - - ,  (1.2) 

dtz d~t 

a and m, being the renormalized coupling constant and mass, respectively, and 
brackets mean dimensionally renormalized normal order products, the lines under 
them indicate that the equations of motion have been used. Eqs. (1.2) are already 
written for the minimal subtraction renormalization scheme [15] for which both 
the fl and ym functions are gauge parameter  and quark mass independent [16]. 
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Since 0"~, in eq. (1.1) is written for dimensionally regularized bare fields, the r.h.s. 
of eq. (1.1) can not depend on tt and is thus renormalization group invariant. For 
massless quarks this means that /3  (a)[Fb-] is /x- independent .  If one then supposes 
that this is also so for massive quarks, because one can always work in a 
mass- independent  renormalization scheme, one reaches the conclusion that 
(1 +y,,)Y.~ m~[~t¢6] is also ix-independent [1]. This is, however,  not so. Taking, 
e.g., the MS scheme [15], one knows that to all orders in perturbation theory 
rn~[0~t0~] is renormalization group invariant, i.e. 

. , , [  ~ ,~ , ]  = .. , , ,( 6~,~,o) . (1.3) 

where the r.h.s, is written in terms of bare masses and bare quark fields. This is so 
because a zero momen tum insertion of (0~,,~), 

P 
(~,,,~.,o)" _~ | n - d x(O,,,O~o).(x), 

.I 

where n = 4 + 2e is the number  of dimensions, is equivalent to i O/Om~,, and the 
renormalization does not depend on the momen tum of the insertion. Recall that 
in n dimensions the dimensions of the bare quark field ~,,., are 3 + e so that eq. 
(1.3) gets its meaning from 

m,[0,0~ ]" = m,,,(0,,,O~,,) , (1.4) 

with [O~O~]'~=-jd4x[OiO~](x) after erasing the condition of zero momentum.  As a 
consequence of eq. (1.3) , /3(a)[FF] will in general not be tz-independent.  Instead, 
the correct renormalization group invariant expression for FF is 

V-, E m,[O,O,] + ~ [ F ~  • (1.5) 
i 

The aim of this work is to study fairly exhaustively the renormalization of FF 
up to second order in perturbat ion theory. We will work with zero momentum 
insertions, but comment  on the only new aspect which non-zero momen tum inser- 
tions introduce. We will in general consider matrix elements where the bare 
equations of motion cannot be used, but make their usefulness clear in the search 
of renormalization group invariance. The identification of non-renormalizat ion (i.e. 
the renormalization constant is Z = 1) with renormalization group invariance to 
lowest order, but their incompatibility at higher orders, will be studied with care. 
This is related to the fact that the bare coupling constant in n dimensions, ao,, is 
not dimensionless. Its dimensions may be made explicitly introducing a mass 
scale /z, so that ao.  = ( 2 )  ~a0. Notice that then ao, which is dimensionless, is 
/.t-dependent. Thus, if renormalization group invariance requires expressions 
inhomogeneous in the renormalized coupling constant a, they cannot be formally 
equal to their unrenormalized analogues, since an inhomogeneous expression in 
ao is necessarily # -dependen t  by virtue of the Iz-dependence of tr,~ which does not 
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factorize now as an infinitesimal factor. These subtleties will be made clear by the 
explicit two-loop computation.  

As a byproduct,  the renormalization group invariance of the trace anomaly will 
be proven in perturbation theory. This will imply that the trace anomaly gets 
renormalized in higher than the first orders of perturbation theory. This is in 
agreement  with the fact that the non-renormalizat ion of the dilatation anomaly,  
which is the trace anomaly inserted in a matrix element of current operators,  can 
only be proven non-perturbatively [13]. The origin of this problem lies in the 
appearance of the renormalization group functions in the trace anomaly. The reason 
for this can be traced back to the fact that this anomaly is caused by the unavoidable 
breaking of scale invariance by regularization and thus renormalization [9]. In this 
it differs from the triangle anomaly [17], where, since no renormalization group 
functions appear,  one can prove its renormalization group invariance by proving 
its non-renormalizat ion order by order in perturbation theory. This difference can 
be understood because there are regularization procedures which maintain chiral 
invariance in all diagrams except the lowest order axial triangle diagram, whereas 
at all orders scale invariance is necessarily broken [18]. But we will also give 
non-renormalized expressions at higher orders, which then, of course, are 
necessarily tz-dependent!  

We will work in the background field gauge; it is the only one in which FF is 
muitiplicatively renormalizable in pure QCD.  From the computational  point of 
view we will show that it is so advantageous that all our two-loop computat ions 
will not require a single Feynman integral calculation. 

We hope that the precise meaning of the renormalized operator  FF will be made 
clear in the course of this work as well as what has happened to its classical gauge 
invariance in the process of renormalization. 

In sect. 2 we study the renormalization of FF without fermion fields. It is 
multiplicatively renormalizable and we obtain its anomalous dimension up to two 
loops. In sect. 3 all the complications due to the inclusion of massless quark fields 
will be studied. Sect. 4 includes quark masses and makes the connection to the 
trace anomaly. We will draw some conclusions in sect. 5. The appendix collects 
some useful formulae from renormalization theory which are frequently used in 
omputations.  

2. Renormalizat ion of FF in pure Q C D  

We will give by an explicit two-loop calculation in the background field gauge 
the renormalized expression for FF, check from it that B (a) [FF]  is renormalization 
group invariant but that it gets renormalized and give an expression which does 
not get renormalized but is not renormalization group invariant. We will follow 
the background field gauge Feynman rules as given in ref. [10], to which we will 
refer throughout this section. We will work in the Landau background field gauge 
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a = 0, because then one does not have to consider renormalization of the gauge 
paramete r  and because of other advantages which will become evident immediately. 
Notice that as in the Feynman rules for some vertices terms proportional  to 1/a  
appear,  these have to be kept until they are multiplied by terms proportional  to 
a ;  those which are not do not contribute anyhow [10]. 

Since we do not consider quark fields in this section, F F  is the only scalar 
gauge-invariant local operator  of dimension four and one does not have to worry 
about mixing, as in the background field gauge F F  only mixes with other gauge- 
invariant operators  [11 ]. Thus, F F  is multiplicatively renormalizable: 

[FF] = ZFF (FoFo) , (2.1) 

ZFF being the renormalization constant. Recall that in the Landau background field 
gauge one only has to consider background field and coupling constant renormaliz- 
ation, and these are related by eq. (A.2). 

In order to compute  ZFF it is enough to consider the Fourier transform of the 
Green function (A"~(x)(FF)o(O)A~(y)) ,  which we will write as 

Ix v (A  ~ (FF)oA b) = Z ~-Z,, ( A  ~ [FF]A  ~), (2.2) 

where we have written renormalized background fields so that one does not have 
to consider external field renormalization. Thus we use the notation [see eq. (A. 1)] 

(FF)o = Z~, (FoFo) (2.3) 

for the composite  operators  written in terms of renormalized fields. 
The Feynman rules for the insertion of -~ i (FF)o  of zero momen tum are given by 

-i6,h(pZgIx~ - pIxp~) (2.4) 

for an insertion on a gluon propagator  of momentum p, and by the ordinary three- 
and four-gluon vertices for quantum fields for insertions on three- and four-gluon 
vertices independently of whether background fields flow into these or not. At the 
one loop-level the diagrams which contribute to eq. (2.2) are the first two shown 
in fig. 1, where we recall that the external fields are background fields A. 

From eq. (2.4) it is clear that the insertion of (FF)o into a gluon propagator  
transforms it into the same propagator  in the Landau gauge a = 0 but with opposite 
sign. Recalling the above given comment  on the gluon vertex insertion, one obtains 
the first equality of fig. 1. Notice that now the second diagram has a quantum 
external field O and that proper  account has been taken of the weight factors. Now 
recalling that the difference in the Feynman rules for A and O fields are the terms 
in l / a ,  one gets the second equality of fig. 1, where in the last diagram only the 
term proport ional  to a is left for the upper  propagator  and since we work in the 
Landau gauge and the external fields are quantum fields this will not contribute. 
Finally, as the 1 /a  terms always go with momenta  corresponding to quantum fields 
and which carry the Lorentz index of precisely the same field, they just pick out 
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= - 2  

a=O 

a:O a:O 

a 

=-2 

=0 

a:O a:O a :0 

a a a 

Fig. 1. Diagrammatic  proof of Z ~ .  = Z~,~ ~ in pure QCD.  

the a - t e r m  when contracted with the cor responding  p ropaga to r  according to 

1 ,. g~.. - (1 - a)p~p~./p2 P .  
- -  P p2 (2.5) 

This then implies the following equali ty of fig. 1, where in the last d iagram we have 
used the fact that  we work in the Landau  gauge. Only  the second diagram is left 
over,  but this is propor t ional  to 1 / a  and thus vanishes. 

This concludes our  one- loop  proof.  There  is no renormal izat ion of (FF)o at this 

revel, 

Z(2) 7(2~ FF = - - ,  , (2.6) 
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and therefore 

ot~2)[FF] 12~ = ao(FoF.)  . (2.7) 

The l.h.s, is /z- independent ;  it is enough to recall tha t /z (d /d /z)ao  = 2e~o and that 
(FoFo) is ~-independent .  Furthermore,  there is no renormalization of ao(FoFo) at 
this order, since the renormalized expression is formally equal to the unrenormalized 

one. 
It is an amus ing  exerc ise  to do  the  s ame  ca lcula t ion  to next  o rder .  A g a i n  one  

only needs to draw diagrams, 32 topologically different ones to start with, ]2 of 
them involving ghosts, and check carefully all the weight factors. Following rules 
similar to the ones used in fig. ] one finds that they are reduced to the 12 background 
field self-energy two-loop diagrams, 7 out of them involving ghosts, and with just 
the right weight factors but with opposite sign. As ZA~o = c~ implies that the 
two-loop poles do not get any contribution from renormalization of the one-loop 
self-energy, we find immediately from eqs. (A.4) and (A.8) that the result is 

so that we find from eq. (2.2) 
-) 

7 ' a ) =  Z',4'(1 - ( ~ ) "  ff'~) ~ r F  , (2.9) 

which is the main result of this section. It shows that the non-renormalization of 
c~o(FoFo) is no longer true at two loops. What happens with /3(a)[FF]? Let us 
consider its first two terms: 

(4) , ( 2 ) .  2~  / 3 2  Oft) 

/3, +/32 [FF]"': ](For0), (2.10) 

where we have used 2e[FF](4)=O, when e ~ 0 .  Using eq. (A.4) the r.h.s, can be 
written as 

[ /3, a°+/3, /32(a° +/32( a' '  (FoFo), (2.11) 
71" \ T T /  q,E" \ T r /  J 

which is not formally equal to the renormalized expression. Thus, also /3(~)[FF] 
gets renormalized. However,  it is ~- independent .  To see this, apply ~ d / d ~  to eq. 
(2.11). The result from eq. (A.4) is 

2e/32 ao o~ (FoFo) = O(a4) ,  (2.12) 
7/" 77" 

where eq. (2.9) has been used. It vanishes, therefore, at the level we are working 
for e ~ 0 .  This concludes our proof: /3(a)[FF] is renormalization group invariant 
but gets renormalized in perturbation theory. 
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From eq. (2.9) one can compute the anomalous dimension of [FF] up to two 
loops. It is given by 

d 
"YFF = /z S--- In ZpF (2.13) 

o/z 

which leads to 

,,) ( a )  2 
"rFF = - a - B 1 - 2  f12 

• r ~ " 
(2.14) 

Notice finally that from eq. (2.9) one can find a combination which does not get 
renormalized at the two-loop level: 

(4) "0¢ (2).  2 2 

(2.15) 

It is, however , /z-dependent .  Indeed/zd/d /z  gives 

2 e /32(~)  2(FoFo) = -/3 xB2(~)3[FF] .  (2.16) 

This is an uncommon situation. Usually non-renormalization implies renormaliz- 
ation group invariance. Here this is not so because of the inhomogeneous character 
in a of the functions we are considering and because of the fact that the dimension- 
less bare coupling constant is #-dependent .  

Notice that [FF] only depends on gauge-invariant quantities in pure QCD as 
(FoFo) is gauge invariant and the renormalization constant depends only on the 
/3-function coefficients which in the MS scheme we are using are gauge-parameter 
independent. This is, however, a result one only obtains in the background field 

gauge. 

3. Introduction o |  massless fields 

There is now a new set of gauge-invariant scalar operators of dimension 4 and 
which therefore mix with FF: i ~ i ,  j being the flavour index of the quark field. 
At non-zero momentum there is still another operator  of the same type ia~'(~i%,4~i); 
however, we will not consider it in order to keep the computations manageable, 
so that our results from now on will be valid for zero momentum operators. 

We will consider the effects of the operators i~//~0i on the one- and two-loop 
renormalization of Fir in the background field gauge. One expects from the general 
renormalization theory of gauge-invariant operators in the background field gauge 
that these operators enter into the renormalized FF but that their renormalized 
expressions contain non-gauge-invariant operators because they vanish when the 
equations of motion are used [1 l]. Thus nothing will be said about the renormaliz- 
ation of these operators. 
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For one flavour and with the zero m om en t um notation O1 = -  ~iFF ° arid O2 = 

- 0 D $ "  we will have to compute  

01 = ZI~ O°,, + Z,20°o (3.1) 

where we use the notation O °, for bare operators  written in terms of bare fields and 

01o=Z~O°o, 020=Z;~10°o, (3.2) 

for the bare operators  written in terms of renormalized fields [see eq. (A.1)]. The 
renormalization constants Z l l  and Z,2 will be obtained from the divergent parts 
of the insertion of the operators  O°o and O°,, at zero momen tum into the two 
background field and the two quark field Green  functions. Then, and for renormai-  

ized fields, 

p. v - - 1  IX v Ix 0 
(A ,  O I A  b) = Z ~  Z11(A,~ O l o A  h) + Z12(A a 02o  A b) , 

(3.3) 
<,1,o16) = z l  1<,/,o°o6> + z,~z,~<,l,O~o6). 

The Feynman rules for an insertion of 02o of zero momen tum on a quark propagator  
of momen tum p are given by 

ip (3.4) 

and for an insertion on a quark-quark-g luon  vertex, independently on whether  
the gluon is a background or quantum gauge field by 

ig~A ayl x . (3.5) 

v To lowest order the diagrams which contribute to (A~O~,,Ab) are the same ones 
~x 0 v 

as considered in sect. 2. The diagrams which contribute to (AaO2,,Ab) are shown 
in fig. 2. There  are two of each type and from eqs. (3.4) and (3.5) they cancel. The 
diagram which contributes to (00° , ,~)  is shown in fig. 3, which is equivalent to the 
quark self-energy diagram with changed sign in the Landau gauge, which is again 
zero. Finally the diagrams which contribute to (002oO) are shown in fig. 4 and they 
again do not contribute because we have chosen to work in the Landau gauge. 
Since also in this gauge Z ~  > = 1 [see eq. (A.5)], the solution of eq. (3.4) is 

Z'1~ I = Z'~ z' , Z]~' = 0 . (3.6) 

Fig. 2. Diagrams contributing to (A(~DO)A) ~2~. Fig. 3. Diagrams contributing to Ob(FF)~) ~2~. 
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Fig. 4. Diagrams contributing to <~(~/~)~>c2,.  

The renormalized operator  O1 is defined by the condition that Z12 starts directly 
with the poles in e, and not with 1, or equivalently by 

(~O1~)'"' = 0 .  (3.7) 

Eq. (3.6) shows that at this level FF does not mix with i ~ / ~  and that eq. (2.7) 
still holds at least at zero momentum in presence of massless quark fields 

ol'2'[FF] '2~'= ~(,(FoF~,)'. (3.8) 

However, a different situation is encountered at the two-loop level as we will now 
sketch. 

The diagrams which contribute to (A~OI,,A~) are the same ones as in the quarkless 
case plus 7 new ones involving quark loops. The result is the same as in the previous 
section, i.e. (2.8), only that now the /3z coefficient includes quarks. There are 11 
topologically different diagrams which contribute to (g,O~°,,~). Their  divergent 
contribution can be easily evaluated in the Landau gauge, because it is then precisely 
twice the divergent part of the two-loop quark self-energy, -i~I¢ ~(g), with changed 

~ .  ~(41 sign. From eq. (A.9) this is in the massless case  ztff2,o2 (p2). Then the result follows 
immediately from eqs. (A.10) and (A.4) and is, recalling that yFl(a = O) = O, 

ip ' /Fz(a:O) (c~121 (3.9) 
2 xrr/  e " 

We do not need the other two matrix elements, because Z~2 does not start 
with 1. The solution of the system of eq. (3.3) then is 

Z',4' = Z : ' ( 1  - ( ~ )  2 4~) , 

(3.10) 
Z,141 _ 3,r2(a = 0) (~ ) ' -  1 

- 2 e 

This is the main result of this section. The two-loop renormalized FF is now given 
by the expression 

[FF] 'a ' '= Z : , 4 ' ( 1 - ( ~ )  24~-2)(FoFo)'+ 2yp2(a = 0 ) ( ~ )  21 - " (~9oiDotOo) • 

(3.11) 
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The generalization to several flavours is straightforward, one just substitutes 

(¢~oi/~o0o) by )-'-i (¢~0,i/~000,). Eq. (3.11) shows that FF is no longer multiplicatively 
renormalizable but mixes with iODO. Only when the equations of motion are used 
(on the mass shell), where this operator  is zero, as well as iO"(0%,d,), do we recover 
the result of sect. 2, 

[FF] (41 = 2 ~ ) ( 1  _ ( ~ ) 2  ~e)(F.F.)  , (3.12) 

and FF is still multiplicatively renormalizable.  
It is clear from eq. (3.11) that in presence of massless quark fields 3(a)[FF]" 

is no longer renormalization group invariant, whereas it is still true for/3(a)[_FF]. 
Notice the appearance of a gauge-parameter  dependent  anomalous dimension 

in eq. (3.11). This is not surprising, since even in the background field gauge one 
expects that somewhere  something gauge dependent  has to show up, since quantiz- 
ation always requires the breaking of gauge invariance. On the mass shell, however,  
as expected on physical grounds, this gauge dependence disappears. 

4. Massive quark fields 

There is now a third set of operators  which enters the game, tni~ito r For one 
flavour one then has to consider the three operators  O~=--~iFF', O~=- 
- ~ ( D  + ira)tO" and 03 ~ imOtO', where the second one vanishes when the equations 
of motion are used and the third one is multiplicatively renormalizable and unrenor-  

malized to all orders in perturbation theory, eq. (1.3). For the renormalization of 
FF we will have to compute 

01 Zl10'1',, + ZI20~,, " = + Z l s O s . , ,  (4.1) 

which, for m = 0 has to reproduce the results of sect. 3. Since the renormalization 
constants are mass independent  we already know Z'ffl ~ and Z~2 ~ from the previous 
section. It only remains to compute -~ls. 

To do so we will consider 

( i / /01 l/~ > = Z l  i <(//01~o~> + ZI .Z I2< I [ I02 , ,~  ) 4- Z~:ZI3<to03,,6), (4.2) 

with the notation 

02.  =- -(#~(D,, + im.)gJ)o -= Z v '  O~. ,  

0~,,--= im.(¢~O)~ -- 7 - '  ~ "  (4.3) 

The Feynman rule for an insertion of 02., of zero momentum into a quark propagator  
of momentum p is 

i (p - too), (4.4) 
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and of 030 into a quark propagator is 

imo . (4.5) 

Let us start at the one-loop level. The calculation of <4~O°o~> corresponds to the 
diagram of fig. 3, but it is now not zero because of the non-vanishing quark mass. 

. --(2).  
Indeed it is given by t~ o (p , a  =0)  which from eqs. (A.11) and (A.4) has the 
divergent part 

3',.1 0"0 1 
- imo  ~ -  *r e (4.6) 

As Z~2 does not start with 1 we do not need to calculate (4JO2o~). Finally the 
calculation of (~O3o4~) is given by fig. 5 and recalling that an insertion of imo is 
equivalent to -moO/Omo, the result is imo(a/amo) ,~02)(,v, a = 0), the divergent part 

~2)  of which is given from eq. (A.9) by the divergent part of imo -,o, (p2) which, as 
before, is again given by eq. (4.6). Putting this together one finds 

Z~23 ~ = %"___2 0" 1 ,  (4.7) 
2 , r e  

where, as in sect. 3, the renormalized operator  O~ is defined by the condition that 
Z~3 starts directly with the poles in e, or equivalently by eq. (3.7). 

From eq. (4.1) our result is up to one-loop level 

[FF]~2)- ( 0" 3_~.~) - o i l  mo(~otbo)" (4.8) = 1 - - -  (FoFo)-2y , , , t  
77" 77" E 

and FF is no longer multiplicatively renormalizable. We can easily build a renor- 
malization group invariant expression from eq. (4.8). Consider 

(2) 0"0 - , { 0 " ~ 2 1 - -  
~3~0"*r [FF]~2)'=~3~--(FoFo) -~3~y"~ \ ] emO(d/oOo) , (4.9) 

and from eq. (1.3) 

'~m I 
0'(2) m ( 2 ) [ 6 ~ ] ( 2 ) "  = '~ml 

7/" 

and summing both expressions 

(2) (2) 
18, 0" 

"/7" 

" 1 / a \  2 1 

(4.10) 

[FF] ~2~ + %,, - -  0" m12~[~b]~2)-=;~3 ' ao (FoFo) '+y. , ,  0"0 mo(~b,,) ' .  
7/" 17" 

Fig. 5. Diagram contributing to (~(m$4,)~) ~2~. 

(4.11) 
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This proves both the renormalization group invariance and the non-renormalization 
of this expression, which is precisely the lowest order trace anomaly, eq. (1.5). 

In order to perform the two-loop computation only (~O°o4~) has to be computed 
up to two loops. There are as before 11 topologically different diagrams which 

.,.,, . t.-, ( 4 )  

contribute at this level. Their result is exactly the two-loop part of z t z  o (p, a = 0). 
Its divergent part can be traced back from eqs. (A.9)-(A. 12) and (A.4). It is, being 
careful in subtracting the two-loop contribution which comes from the coupling 
constant renormalization of the one-loop contribution, 

2 i [ r n o ( - ( ~ ) 2  3'm2+ ( ~ 2  Tm,('Ym 1-/~1)) + (p -  mo)(~)2 TF2(a =0)] 
4e \~'1 8e 2 4--e- . (4.12) 

With this and putting together eqs. (3.10) and (4.4)-(4.8) we find from a careful 
analysis of eq. (4.2) that 

Z ~  Y,.l ff 1 ~- 7,,,2(ot'~ 2 1 (o~'~ 2 31"/~1 
2 ~- e 2 \ ~ ]  ~ - - \ ~ ]  ~ (4.13) 

This then leads to our final result: 
2 2 

[FF]'a}- = Z : ' ( 1 -  ( ~ )  4 ~ ) ( F ° F ° ) ' + 2 T F 2 ( o = 0 ) ( ~ ) l ( ~ ° ( i ' ~ ° - r n ° ' O ° " e  

(4.14) 

e \Tr /  e - ~ ) m o t w o W o )  • 

The generalization to several flavours is again immediate; one only has to sum over 
them. 

An analysis like that done in eqs. (2.10)-(2.12), but more laborious, allows one 
to prove that the expression 

2 ( 4 )  1[/31 "°g (2)" ['~ml /Of(2)" 2" 
4- a"'lr a~. +3,,,2/--~-- ) ]m'4'[t00] '4' (4.15, 

is renormalization group invariant. It is precisely the first two terms of the trace 
anomaly, eq. (1.5). 

On the contrary, one can easily prove the equality 

1[ [ o,., 

(4.16) 

which shows the non-renormalization of this expression, which, however, is not 
renormalization group invariant. In fact, eq. (4.16) gives a multiplicative renormal- 
ized expression involving [Fb-'] with renormalization constant 1. 
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5. Conclusions 

We have studied the renormalization of FF in the background field gauge up to 
second-order  perturbat ion theory. The diagrammatic technique we have used allows 
one to go easily to third order;  however, no new qualitative features come in and 
from the quantitative point of view both y,,3 and YF3 are unknown. 

Let us shortly recall our main results together with some facts known from the 
general theory of the renormalization of gauge-invariant operators  in the back- 
ground field gauge [ 11 ]. 

Mixing: In pure QCD FF is multiplicatively renormalizable. It mixes with iODO, 
ia"(03g,~) and m ~ ,  if quark fields are included. Only the mass operator  is left if 
the equation of motion can be used. 

Gauge invariance: Although all these operators  are gauge invariant, those which 
vanish when the equations of motion are used appear  with gauge-parameter  
dependent  anomalous dimensions. In order to obtain physically meaningful matrix 
elements the equations of motion have to be used. 

Renormalization group invariance: The renormalization group invariant 
expression built from the renormalization of FF is precisely the trace anomaly, 
and requires the use of the equations of motion. 

Non-renormalization: We have found expressions of a structure similar to the 
one of the trace anomaly which do not get renormalized but are, precisely because 
of this, p.-dependent.  

Anomalous dimension : The anomalous dimension of FF we have found for pure 
Q C D  is also correct for the complete theory. This is due to two facts: that m~O is 
multiplicatively renormalizable and that FF does not enter into the renormalization 
of gauge-invariant operators  which vanish when the equations of motion are used. 

Diagonalization then leads to our result. 
Background field technique: These results have been found in the Landau 

background field gauge without doing a single Feynman integral computation.  In 
any other gauge one would have had to calculate a very large amount  of two-loop 
integrals and, depending on the gauge, include several more operators.  

Phenomenology: The leading non-perturbat ive effects will be parametr ized by 
the physical vacuum expectation values of the renormalization group and gauge- 
invariant operators  

<m, [6W, , ]> ,  • (5 .1 )  

PCAC allows estimates for the first of these [19]; however, one does not know a 
safe value for the second because all the analyses have been performed for (/3 [FF ]> 
in the belief that it is renormalization group invariant. This difference might be 
important specially in studies of quark masses including non-perturbat ive correc- 
tions [20]. We will come back to these problems and others related to the operators  
product expansion elsewhere. 
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Appendix 

The renormalization of the background field, the coupling constant, the quark 
field and the quark mass is given by 

A(~,, - 71 /2A" - L A .'~ ~ ,  a o  = Z , ~ a ,  ~0o, = ZIF/2~bi ,  m o ,  = Z , , m i ,  (A. 1) 

in any flavour independent renormalization scheme. The subscript 0 denotes bare 
quantities. We will follow the MS scheme [15] and work in the background field 
gauge, where 

Z A  = Z~-~ 1 . (A.2) 

The anomalous dimensions are given by 

( ° ) '  
3 ' x = l z ~ - l n Z x =  ~, ~ ~'xi, 

1 3 = 2 e - l z ~ - ~ l n Z , = 2 e + i ~ l  y~ [3~ 

(A.3) 

X = A, F, m and 2e = n - 4 ,  n being the number of dimensions. Then the following 
expressions follow: 

2e \zr ]  4 e '  

Z o = I  . . . .  
~" 2e \Tr/ 4e 2 \Tr/ 4 e '  

Z F =  I + a-- Y V l  
zr 2 e  + ~-e 2- \ ~ 1 4 e '  

(A.4) 

2 2 

Z,,, = 1 +---rra y,~ 1 + ( ~ ) 2 e  y,~ 1 (7,, 1-/3 l ) 8 e _ ~  + (~)__3"24e 

The coefficients are known to one-loop order: 

/31 = - ~61C2(G) + ~ N , ,  

3 3',, ~ = ~: Cz(R), (A.5) 

a 

YFI  = ~ C2(R), 
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and to two-loop order [21, 22, 23]: 

/32 = --~7 C2 (G) + ~ C 2 ( G ) N ~ + ~ C 2 ( R ) N f ,  

y,,:  = 3C~ (R) + ~C2(R)C:(G) - ~C2(R)Nf, (A.6) 

- 2 5  1 
3'F2 = ( .~+~a + ~ a 2 ) C 2 ( R ) C 2 ( G ) - ~ C 2 ( R ) N f  - 3 2 16C2 (R) , 

where  C 2 ( G ) = N ,  C2(R) = ( N  2 -  1 ) / 2 N  for co lour  S U ( N ) ,  Nt is the number  of 
f lavours and a is the gauge  parameter .  The  coeff ic ient /3~ has also been  c o m p u t e d  
recently,  but we  do  not  need  it [24]. 

If the background  field se l f -energy  tensor  is written as 

t l l , b  (p)  = i ( p "  p - p2g"~)6~bH (p2) , (A.7) 

the renormal iza t ion  of the se l f -energy  is given by 

1 ~-/-/(p2) = ZA(1  + Ho(p2) ) .  (A.8) 

If the quark se l f -energy  matrix is written as 

-i--v (P) = -i[m•l(p2) + (ff _ m)~ '2 (pZ) ] ,  (A .9 )  

the renormalization proceeds according to 

1 -,,~2(p 2) =Z¢(1 - Zo:(p2)), (A.10) 

and 

with 

1 - ~2( P 2) + ,~,( P 2) = Z4( 1 - Zoo( p 2) q_ ,~01 ( P 2)), (A.11) 

Z 4 = Z m Z  F . (A. 12) 
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