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After the introduction of rotation-invariant auxiliary variables, the integration over all
rotation-variant variables (spins) in the O(4) symmetric two-dimensional Heisenberg ferromagnet
can be performed. The resulting new hamiltonian involves a sum over closed loops. It is complex
and invariant under U(1) gauge transformations. Riihl’s boson representation is used to derive
the result.

1. Introduction

Duality transformations have proved to be a useful tool in the investigation of
ferromagnets and gauge theories with abelian symmetry group. One of their main
ingredients consists of the introduction of suitable auxiliary variables in order to
perform the integration over the rotation and gauge-variant field variables. These
rotation or gauge-invariant auxiliary variables then play the r6le of random variables
in a new system of statistical mechanics. The aim of this paper is to answer the
question whether an analogous formulation can be found for non-abelian theories
— if inevitable even with a not necessarily positive measure instead of a Gibbs
measure. (In the abelian case one obtains positive measure only for “ferromagnetic”
systems.)

As a simple example of a theory with non-abelian global symmetry, the O(4)
symmetric Heisenberg ferromagnet in two dimensions is studied. Its partition
function is reformulated in terms of SU(2) variables and expanded into characters.
Then, following Riih!’s investigation of SU(N) invariant lattice field theories [1, 2],
the integration over the field variables is carried out using the Bargmann space
realization of group representations of SU(2) [3]. One advantage of this formalism
is that no vector coupling coefficients arise and the summation over the irreducible
unitary representations of SU(2) may be performed explicitly. This causes the
rotation-invariant U(1) content of the initial SU(2) variables to reappear, U(1)
being the maximal torus of SU(2). Thus, only the rotation-variant variables are
eliminated.

* Supported by Deutsche Forschungsgemeinschaft.
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450 A. Holtkamp | Heisenberg ferromagnet

The group integration implies the introduction of new rotation variant spins.
They are C” variables with quartic interaction. With the help of rotation-invariant
complex variables this is brought into quadratic form so that a gaussian integration
can be carried out.

The expansion of the resulting determinant leads to a system of closed loops.
The new hamiltonian is complex and invariant under U(1) gauge transformations.
It is even possible to formulate the theory as a local gauge theory where the gauge
group is a semi direct product of U(1) and the Weyl group of SU(2). This gauge
invariance reminds one of the equivalence between the O(3) symmetric Heisenberg
ferromagnet and the CP' lattice model, as the latter exhibits a local U(1) symmetry
not visible in the Heisenberg model [4]. Perhaps this hidden U(1) invariance is a
common feature of O(N) symmetric Heisenberg ferromagnets?

As intended, the new system of closed loops is formulated entirely in rotation-
invariant variables. The elimination of gauge freedom has proved crucial in the
investigation of the 3-dimensional U(1) gauge theory [5] where mass generation
turned out to be a perturbative effect in the dually transformed system. So one
may hope that this work will be a first step towards a useful duality transformation
for theories with non-abelian symmetry group.

In contrast to other methods of introducing rotation-invariant variables (see ¢.g.
[6]), our method is also applicable to non-abelian lattice gauge theories, as will be
shown for SU(2) gauge theories in a forthcoming paper.

2. The model

The euclidean action L(s) of the O(4) symmetric Heisenberg ferromagnet in two
dimensions is a function of spins s, eS® which are attached to the sites x of a
two-dimensional quadratic (or hexagonal) lattice A = Z*:

L(s)=B X s sy, (2.1)
b={xy)
where b is a link between nearest neighbor vertices x, y € A. The partition function
of the system is given by
d45x 2 L(s)
Z=| 11 —=8@E—1)e"". (2.2)

xeA

Periodic boundary conditions are assumed.

The links are oriented in alternating order, as shown in fig. 1. Consequently, the
sites of the lattice fall into a set A; of starting points of links and a set A; of end
points. Then all links are labelled by b ={(xy) with x € A;, y € A;.

Making use of the isomorphism between S* and SU(Q2):

S1+isy s3tis,

seSs<—>u=( )eSU(Z),

—853+ iS4 S1— iSz
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Fig. 1.
the action can be rewritten as
L(u)=% L(uy), (2.3)
b
with
L(uy) =3B tr uy,
» (2.4)
Up=u, , if b={(xy).
The partition function now reads
Z =J' [Tdu, e, (2.5)

where du is the Haar measure on SU(2).

3. Integration of the field variables

The action being a class function, e“™ can be expanded into characters of

irreducible unitary representations of SU(2) which are labelled by half integers

j=0,3,1,...:

e =Y ep(u) . (3.1)
7
The expansion coefficients are given by

. 2
Cj=(2]+1)EIZj+1(B)’ (3.2)
with the modified Bessel functions I,
Expanding the characters one gets

Z=[Mau TS e, £ D) Dltim (). (3.3)
x b ju my,mip,

The integration over the group variables will be done in the Bargmann space
formalism used by Riihl (for details see [1, 3]). It amounts to introducing a Hilbert
space of complex analytic functions which is a reducible representation space for
SU(2) that contains every unitary irreducible representation of SU(2) once.
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The representation matrices are of the form

D{nm' (Ll) = (U{rt’ Tuv];n')

- [ du(2) du@)8h K s 2, )b 2, (3.4)
where
du(z)=— dx;dy,e " V=dzdze "
m i=1,2

Z1 2 .
z=<z>eC , z; =x; +iy;,
2
. T
K(u;z z)y=e* """

j+tm_j—-m

()= 22
O G G —m) T

The variables associated with m are denoted by ¢, the others by z.
The partition function is now

z= j M 1 { [ a0 du(zn) duie,) dutzny)

b=(xy)

XZ C]'b Z , Elr"r)lb ({b,x)K(ux; {b.xa Zb,x)vl;‘rjt{,(zb,x)
Te

X D8 (20 K (155 200 L) G (3.5)
By means of the formula [1]
+ . Nn2j
5 21 ()0 (2" =(—Z(—2§)?—E Q'(z, 2 (3.6)

the summations over m, m’ can be performed:

Z=[NduDr@2) T {260 60)Q0s 200

b=(xy) Ljy
XK (U Lorer 200K (315 Zbys Loy) 5 (3.7)

with the abbreviation

Du(¢ z)= l;[ due(Co.x) du(2,x) du (Lo,y) du(z,y) -

The integrals over the group elements u are evaluated with the help of the formula

J-du exp (}; zf(uTzl-)) =5i;§dv exp (—%+v ¥ (zﬁez})(z?a_lzf)) ) (3.8)

(i)

Summation is over unordered pairs (if), i.e. (12) and (21) are not counted separately.
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The result is
i —1/v
z =J H[—dvx e } Du(¢, 2)
L2

X H Z C}'},Qib({b,x; {b.y)oih(zb.ys zb,x)

b jb

X H €Xp [Ux Z (éb,.xE{b',x)(ZZ,xs —12;,)()]

xeA; (b,b)rx

-1
X exp[o, T (oezundine 2] (3.9)
veAs (b,b)Ay

(b, b') A x denotes an unordered pair of links touching at the site x.

4. Formulation of the partition function in terms of rotation-invariant variables

By introducing rotation-invariant auxiliary variables, the quartic terms in the
exponent can be brought into quadratic form:

+ 1+ 1 T —1yt+5
eu({ie{i)(zi £ 1z]. ) — _J‘ dTI dﬁ e ni e§ie{ir’+uzfs ‘z,.'n ) (4.1)
mJc

We associate a complex variable

Mbb' = ~No'b (4.2)

with each pair of distinct links (b, b’) that touch at a site.
The partition function is now

z =j Do Du(n) Du(Z, 2)

X l;[ Z cfboih(gb,x’ (b,y)ojb(zb,y9 Zb,x)

x € A;

1 -1 -
x I exp [i( Y ({ox€lo xMor + Uazp € Z;’,xnbb’)]
b,b)Aax

<1l et ¥
(b,b’

yeAs bay

-1 -
({;,yg g;,ynbb' + Uyzb,yezb'.ynbb')} ’ (4'3)

where

H -
Duv=]]=—duv, e V",

x 21T

1 o
Du(n)= [l —dney dijsy e ™
(b,b) T
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The product [, ,,, runs over unordered pairs, whereas the sum ¥, .., in the exponent
is now over ordered pairs of links. This is compensated by the factor 3.
The projector Q' can be represented by a complex contour integral [1]

i 1 dr e
4 = —— TZ%Z
Q(z’z)—zwi§7_2j+1e . (4.4)
Thus
Q/(2,2)Q/(G ) = s §dr dy ™75
(27ri)
X[(T,rr)—2i—1_(7_7_;)2j+1] . (45)

The term proportional to (r7')>*" does not contribute to the integral but is inserted

to make the summation over j feasible. The sum to evaluate is

B(n=Y ¢(r 7 =77,

If |7| is chosen equal to unity, 7 =e"’?, then
B(r)=-2i Y ¢;sin (2j+ 1)3¢ = —i sin3¢ ¥, c;x;(u)
i j

[ 1 L
=—-2isinzp e o

u being a rotation by the angle of ¢:

eitp/2 0
““\o e
Analytic continuation leads to

Bir)=(1—r) e®270. (4.6)
T
Essentially, the link variable 7, = 7,71, corresponds to the invariant rotation angle
of the SU(2) element u,. This means that some U(1) variables, U(1) being the
maximal torus of SU(2), survive, whereas the rotation-variant parts of the field
variables are integrated out.
The partition function now reads

Z = [ D Duin) Du(z 2)
dr, dri,

% H B(TbT{;) eszlt,yzb.x+7k'>{l:vx{hvv

b (2i)

1 + -1_+ —
x [1 exp [E Y (Loxelo Moy + UxZpxE Zb',x‘flbb')]
xeA; (b,b')Aax

x 1 exp []E z ({;,ye‘lgg’,yﬁbb’+Dyzb,yezb’,ynbb')]- 4.7)

y€As (b,b)Ay
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The formula of the reproducing kernel for the Bargmann space [1, 3],
[auere@n=re, 4.8)

allows one to perform the integrations over z,, and ¢, , with x € A;, y € A¢. This
amounts to the substitution

- -
Zb,x > TbZb,y s Loy = Tolox -

Afterwards, each link carries just one z and one (.
With the notation

D'u(f, z)= l;[ du () du(ze) ,
ZbEZb,yy (bng,xs
the result is

dr, drb

z= jDu Dy (n) D' (L, 2) 35 [ G Blrurt)

1 - _
X ] exp [i Y ({oeloMon + U ToTZh € lzlj’nbb’)}

xe Ay (b,bYAx
1 -1 —
x [ exp [5 Y (torilve (tt’nbb"i'vyzbezb"rlbb’)]- (4.9)
yeEAs (b,b)ny

We define antisymmetric matrices A, A’ and «, «', the elements of which are
labelled by the links of the lattice.

Mbb' » if (b, b') A x for any x € A;,
Aoby = ’
0, otherwise ;
{rﬁ,réfﬁbb' , if (b,b") Ay for any y € Ay,
Kpby = .
0, otherwise ;
, {vmbbr , if (b,b) Ay for any ye A,
Ay = '
0, otherwise ;
, {UbeTb'ﬁbb’ ) if (b,b’)Aax for any xe A;,
Kpy = .
0, otherwise .

Application of the formula [1, 7]

J [Tdu(zi) exps Y(ziezdy+z7 e "zfky)=det (1-Ak)™", (4.10)
k ij
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valid for antisymmetric matrices A and «, leads to

dTb dTb

Z = JDU D,u,(n)&ﬂ > B(7,74) det (1 — A) Tdet(1—A'k)7E.

(4.11)

At this stage, the partition function involves only rotation invariant variables.

5. Loop expansion

The formula
det (1—Ak) ‘=g 720 (5.1)

can be used to derive a loop expansion. The circular path of the line integrals over
7 variables should be chosen such that no cut of the logarithm is crossed. Since
x” >0 when 7, 7' 0, this is possible, but it requires that the n-integrations are
performed after the r-integrations only. Keeping this restriction in mind, we may
expand

det(1-Ak) '=exp ¥ —tr (A)". (5.2)
n=1H1
The contributions to (Ax)" can be represented by graphs composed of 2n double
links which belong alternatingly to points of A; and A;. Therefore, the graph of
lowest, i.e. second, order is a plaquette.
Consider an oriented closed path C of order nc, consisting of double links (by, b,),

(bz, ba) + + - (bay, by). The algebraic expression corresponding to C involves
n(C)Enblbz(xl)ﬁb2b3(y2) ot ﬁbz,.bl(YZn) s (5.3)
T(C)=To,Th, *** Thy, - (5.4)

The same path C appears in (A'«’)", but 7, is replaced by 7, up(x) by 7oy (x) and
each site carries a factor v,.
The determinants are thus replaced by the loop expansion

_ _ 1
det (1—Ak) 'det(1—A'k")"" =expzn—[T'(C)n(C)+T(C)ﬁ(C) 11 vx] . (5.5)
Cc lic xeC
The sum extends over all oriented closed paths C that visit sites of A; and A;
alternatingly, i.e. no spikes like L are possible. Paths which contain the same
double links but start at different sites are not identified. After the variable
transformation

ToUy 1/2
( " ) Now{X) xeA;,
Mo (x) > _1/2
(T:,Ux> mow(x), x€Ay,
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setting |70,/ 75| = 1, and integration over 7', we finally arrive at
d7 . 1 -
Z = J Dv Du(n) § [[z—=B(#) exp Y —r(C)v(C)n(C) +7(C)], (5.6)
b 27Ti C nc

where

#O=1] &7, o©=1]] v.?,

beC xeC

and 7(C) is the complex conjugate of n(C).
We are thus led to a system of closed loops and a hamiltonian which is complex
and, surprisingly, invariant under U(1) gauge transformations:

Tow(x) > nbb'(x)gb(X)gb'(X) .

Inserting

B(r)=Ycr 7!
i

into the partition function (5.6) we may integrate over all variables, thus reproducing
the standard high-temperature expansion. In the usual derivation of this expansion
one has to deal with Clebsch—Gordan series, and Clebsch-Gordan coefficients are
involved in the computation of complicated graphs. They do not appear here.
Instead, our method amounts to counting all paths which may be built out of a
given set of links.

6. Formulation of the Heisenberg ferromagnet as a local gauge theory

One could think of regarding the phase of 7, as a parallel transporter of a
lattice gauge theory on a lattice whose sites are our links (see fig. 2). However,
this is not possible because the 7 satisfy the antisymmetry condition (4.2) instead
of Ny (x) = Myu(x). Therefore the parallel transporter would not go over into its
inverse under reversal of the direction of the link.

@

Fig. 2.
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However, it is possible to transform our system into a local gauge theory with a
nonabelian but solvable gauge group Z,®U(1) =T*. Separating the n phase

n=rd, 9=e*,
Du(n)=Du(r) D9,
with
—72 ,
Du(r)= |1 3ror droy €770
(bb")
1
D¢= H —d<Pbb"
(bb’)27T

the partition function reads

Z= J Dv D7 Du(r) D& exp (Z L7-(C)U(C)r(C)[19(C) +c.c.]> . (6.1)
C Hc

If we define 2 X 2 matrices

el )
bb 0 5\,]3' ’

which are elements of the maximal torus T=U(1) of SU(2) we may write
HC)+c.c.=tret(C), HC) = top, (X110, (¥2) * 16, (V2n) - (6.2)

The Weyl group W =T*/T of SU(2), where T* is the normalizer of T, consists of
two elements

W={1,7},

where

We may thus write

HC) = (—1) "y, (X 1) Tlogb, (¥2)7 * * * Thoy b, (V2n )T (6.3)

We regard the variables tr € T* as the new variables of our system. They show the
desired behavior under U(1) gauge transformations:

(tT)ob = Eolor 86T = gb(tT)bb’gt:’l s geT, (6.4)
(7)o = (t7) 5 - (6.5)
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We introduce T* variables
Upty = lop' T b teT, oell, r}. (6.6)
In contrast to 7,y they satisfy
-1
Upby = Upb - (6.7)

The partition function in terms of these new variables is

(=1)%

C

z =J' D'u Do Dy (r) D7 exp (z HO)(CO)r(C) tr u(C)) (68
C

where

D'u= [] dupyd:(tov) -

(bb")

du is a Haar measure on T%, viz.

[dure=[ar 5 ruo,

o=1,7
and
8q( )'{1’ oo u=to'
oAM= 0, fo'#co, '

The exponential is invariant under T* transformations so that each configuration
which is obtained from the original one by a W transformation

1 1
Upy >0 pUby O oefl, 7},

gives the same contribution.
The allowed configurations are determined by the gauge-invariant constraints

8+ (Up, 5, UbsbsUbsp,) = 1, for each triangle ;
81(Ub, b, Ub,bs Ubsb,Ubs, ) = 1, for each quadrangle ,

if we start on a quadratic lattice.
Thus we arrive at the partition function of a lattice gauge theory with local T*
invariance:

z =J Du Do D (r) Dr exp (z (™
C n

HOu(OF(C) tr u(C)> (6.9
with

Du=2"""[1 duww [18,(wuw) [1 8:1(uuuu),
<

(bb") A

where N is the number of sites of the original lattice.
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My thanks are due to Prof. G. Mack for the idea to this work and many instructing
discussions.
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