
Nuclear Physics B205 [FS5] (1982) 449-460 
© North-Holland Publishing Company 

THE 2-DIMENSIONAL 0(4 )  SYMMETRIC HEISENBERG 
FERROMAGNET IN TERMS OF 

ROTATION-INVARIANT VARIABLES* 

Annette HOLTKAMP 

II. Institut fiir Theoretische Physik der Universitdt Hamburg, Germany 

Received 11 September 1981 
(Revised 1 February 1982) 

After the introduction of rotation-invariant auxiliary variables, the integration over all 
rotation-variant variables (spins) in the 0(4) symmetric two-dimensional Heisenberg ferromagnet 
can be performed. The resulting new hamiltonian involves a sum over closed loops. It is complex 
and invariant under U(1) gauge transformations. Riihl's boson representation is used to derive 
the result. 

1. Introduction 

Duality transformations have proved to be a useful tool in the investigation of 
ferromagnets and gauge theories with abelian symmetry group. One of their main 
ingredients consists of the introduction of suitable auxiliary variables in order to 

perform the integration over the rotation and gauge-variant field variables. These 
rotation or gauge-invariant auxiliary variables then play the r61e of random variables 
in a new system of statistical mechanics. The aim of this paper is to answer the 
question whether an analogous formulation can be found for non-abelian theories 

- if inevitable even with a not necessarily positive measure instead of a Gibbs 

measure. (In the abelian case one obtains positive measure only for "ferromagnetic" 
systems.) 

As a simple example of a theory with non-abelian global symmetry, the 0(4) 
symmetric Heisenberg ferromagnet in two dimensions is studied. Its partition 
function is reformulated in terms of SU(2) variables and expanded into characters. 
Then, following Riihl's investigation of SU(N) invariant lattice field theories [1, 2], 
the integration over the field variables is carried out using the Bargmann space 
realization of group representations of SU(2) [3]. One advantage of this formalism 
is that no vector coupling coefficients arise and the summation over the irreducible 
unitary representations of SU(2) may be performed explicitly. This causes the 
rotation-invariant U(1) content of the initial SU(2) variables to reappear, U(1) 

being the maximal torus of SU(2). Thus, only the rotation-variant variables are 
eliminated. 

* Supported by Deutsche Forschungsgemeinschaft. 
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450 A. Holtkarnp / Heisenberg ferromagnet 

The group integration implies the introduction of new rotation variant spins. 
They are C 2 variables with quartic interaction. With the help of rotation-invariant  
complex variables this is brought  into quadratic form so that a gaussian integration 
can be carried out. 

The expansion of the resulting determinant  leads to a system of closed loops. 
The new hamiltonian is complex and invariant under  U(1) gauge transformations. 
It  is even possible to formulate the theory as a local gauge theory where the gauge 
group is a semi direct product of U(1) and the Weyl group of SU(2). This gauge 
invariance reminds one of the equivalence between the 0(3)  symmetric  Heisenberg 
fer romagnet  and the CP 1 lattice model,  as the latter exhibits a local U(1) symmetry 
not visible in the Heisenberg model  [4]. Perhaps this hidden U(1) invariance is a 
common feature of O(N)  symmetric  Heisenberg ferromagnets?  

As intended, the new system of closed loops is formulated entirely in rotation- 
invariant variables. The elimination of gauge f reedom has proved crucial in the 
investigation of the 3-dimensional U(1) gauge theory [5] where mass generation 
turned out to be a perturbat ive effect in the dually t ransformed system. So one 
may hope that this work will be a first step towards a useful duality t ransformation 
for theories with non-abelian symmetry group. 

In contrast to other methods of introducing rotation-invariant  variables (see e.g. 
[6]), our method is also applicable to non-abelian lattice gauge theories, as will be 
shown for SU(2) gauge theories in a forthcoming paper.  

2. The model 

The euclidean action L(s )  of the 0(4)  symmetric Heisenberg fer romagnet  in two 
dimensions is a function of spins Sx ~ S 3 which are attached to the sites x of a 
two-dimensional quadratic (or hexagonal) lattice A c ~,2: 

L(s)=/3 E sx.sy ,  (2.1) 
b=(xy)  

where b is a link between nearest  neighbor vertices x, y ~ A. The partition function 
of the system is given by 

f d4sx - 2 
Z = 1-[ - - - T S ( $ x  - 1) e L(s) . (2.2) 

x ~ A  "B" 

Periodic boundary  conditions are assumed. 
The links are oriented in alternating order, as shown in fig. 1. Consequently, the 

sites of the lattice fall into a set Ai of starting points of links and a set A, of end 
points. Then all links are labelled by b = (xy) with x ~ Ai ,  y C Af.  

Making use of the isomorphism between S 3 and SU(2): 

$ ES3~.~U = ( Sl+iS2  s 3 + i s 4 ) ~ S W ( 2  ) 
\ - s 3  -J- is4 s1 - is2/ 
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Fig. 1. 

the action can be rewritten as 

with 

L(u) = Y'. L ( U b )  ) 
b 

L(Ub) = ½fl tr U b ,  

--1 UB =UxUy , i f b = ( x y ) .  

The partition function now reads 

Z=fHdu, e L'), 

where du is the Haar  measure on SU(2). 
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(2.3) 

(2.4) 

(2.5) 

3. Integration of the field variables 

The action being a class function, e L~u) can be expanded into characters of 
irreducible unitary representations of SU(2) which are labelled by half integers 
1 = o , ~ , I  . . . .  : 

e(0/2~ t r  u = ~ ,  CjXj(U) .  (3.1) 
i 

The expansion coefficients are given by 

c i = (2 j+  1)~I2j+l(fl) ,  (3.2) 

with the modified Bessel functions I,. 
Expanding the characters one gets 

f O jb ]b 1 Z =  UdUx~b~Ch,  y /,iCgb~l~(/~x)D/,/~l~/~tb(~,~y ) . ( 3 .3 )  
• mb,m ~ 

The integration over the group variables will be done in the Bargmann space 
formalism used by Riihl (for details see [1, 3]). It amounts to introducing a Hilbert 
space of complex analytic functions which is a reducible representation space for 
SU(2) that contains every unitary irreducible representation of SU(2) once. 
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The  representa t ion  matrices are of the form 

i i J Dmm,(u )=(v . .  Turin,) 

= f d/x(z) dlx(z')f i~(z)K(u; z, z ' )v~,(z ' ) ,  (3.4) 

where  

- -  --x2 2 e_Z+z d/x(z )  12 I-I dxidyie ' Y'=-dzd2 
Tg i=1,2 

z = ~ C 2 , zi = xi + iyi, 
Z2 

K(u ; z, z') = e z'+("Tz~ 

/+rn i-m 
/)~n(Z) = Z l  Z2 

[(j  + m ) ! ( j -  m)! ]  1/2" 

The  variables associated with m are deno ted  by ~', the others  by z, 
The  part i t ion funct ion is now 

Z =  ff ~ dux H { I  d/z(~'b'x)d/X(Zb,x)d/x(ffb,y)d/X(Zb,y) 
b=(xy) 

X~Cib ~ ~b(~b,x)K(u~;~b,x, Zb,~)vin~4(Zb,~) 
]b rob,rob 

-fh -1 } 
• fib y)V/~b (fib y) • ( 3 . 5 )  XVm~,(Zb,y)K(uy ,Zb,y, , 

By means  of the formula  [1] 

52 -i ~ (z +z')~J v,,,(z )v,,,(z') = - -  - Or(z, z') (3.6) 
., (2/')! 

the summat ions  over  m, m'  can be per formed:  

I X { cjbO ('b'x'(b'Y)QJb(Zb'y'Zb'x) Z =  [ I d u x D / x ( C , z )  [I  • ';' 
b=(xy) Jb 

X K ( U x ;  g"b,x, Zb,x)K(uT1; Zb,y, ~'b,y) , (3.7) 

with the abbreviat ion 

D/z (5, z) = [I  d/x ((b.x) d/x (Zb.x) d u  (~'b,y) d/z (Zb.y) . 
b 

The  integrals over  the group e lements  u are evalua ted  with the help of the formula  

I d u e x p ( ~  / +, T , , \  i ~ d v e x p ( _ l + v 5 2  (Z,EZ;)(ZTE_Iz;)) ( 3 . 8 '  z i  tu z~))=~--~ .*~ . 

Summat ion  is over  uno rde red  pairs (ij), i.e. (12) and (21) are not  counted  separately.  
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The result is 

Z =  I i 

Jb 0 jb Z X I ~ Z C j b O  (~'b,x, ~"b,y) ( b.y, Zb,x)  
b Ib 

x H exp[vx  Y. 
xEAi (b.b')^x 

x ~ exp [vy E 
yE,tf (b,b')A y 

1 + -1  + ) J  
(~b,xE~b',x)(Zb,x E Zb',x 

+ - - i  + ) ]  J (Zb ,yEZb ' ,y ) ( (b .y  E ~'b',y 

(b, b') A X denotes an unordered  pair of links touching at the site x. 

(3.9) 

4. Formulation of the partition function in terms of rotation-invariant variables 

By introducing rotat ion-invariant  auxiliary variables, the quartic terms in the 
exponent  can be brought  into quadrat ic  form: 

+ 1+ l l c  eV~C'~cJ)(=' ~ z, ) = ~ dr/dr~ e -"~ e ¢'%"+~'+~ ~ .  (4.1) 

We associate a complex variable 

r/bb' = --r/b'b (14.2) 

with each pair of distinct links (b, b') that  touch at a site. 
The parti t ion function is now 

where 

Z = f Dv D/x (r/) DU((,  z) 

x I] Z CibOih((b.x, ¢U,,)O;b(Zb,,, Zb.x) 
b ]b 

[1 + _ ] 
x 1-[ exp ~ + Zb,,xr/bb, ) (~'b,xE'~"b,,x'~bb,-t- UxZ b,xe 

xEA i (b,b')Ax 

[I  + - '  ÷ - ] x 1-I exp Z (~b,y E ~'b',yr/bb' "1- VyZb,y~'Zb,.yr/bb, ) , (4.3) 
YEAr (b,b')^ y 

i 
Dv = H z--  dvx e - 1 / v ~  , 

x .d, 77" 

1 
Dtz(n)  = I-[ --dr/bb' dT~bb' e -r~bb'~bb' • 

(b.b') 77" 
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The product l-[(b,b') runs over  unordered pairs, whereas the sum Y-(b,b') in the exponent  
is now over  ordered pairs of links. This is compensated by the factor 2 x-. 

The projector  OJ can be represented by a complex contour integral [1] 

1 £ d r  ,z+~' 
0 i ( z , z ' ) = ~ i  y r--~7-~e . (4.4) 

Thus 

1 ~ e,CZ+Z,+,r,~+ U Oi (z, z')Oi (~, (') = ( ~ D  2 dr dr' 

X [(TT') -2 j -1  --  (TTt)2j+I] . (4.5) 

The term proport ional  to ( r7 ' )  2i+1 does not contribute to the integral but is inserted 

to make the summation over / '  feasible. The sum to evaluate is 

B( 'F)  ~ E  Cy( T-2 j -1  --  T21+l) • 
i 

If ]r I is chosen equal to unity, ~ =--e i'~/2, then 

. 1 B(r )  = - 2 i  Y ci sin (21 + 1)½¢ = - i  sm ~q~ ~ cj,vj(u) 
/ J 

• 1 eL(U) , = - 2 i  sin ~q~ 

u being a rotation by the angle of q~: 

u = ( e l 0 / 2  e_i0,p/2) . 

Analytic continuation leads to 

B0-) = ( 1 - , ) e  (w2)(~+1/'' . (4.6) 

Essentially, the link variable 4b------ rb~'; corresponds to the invariant rotation angle 
of the SU(2) element  Ub. This means that some U(1) variables, U(1) being the 
maximal torus of SU(2), survive, whereas the rotat ion-variant  parts of the field 
variables are integrated out. 

The partition function now reads 

= I Dv D ~ ( n )  D/z (4", Z Z) 

X - -  ~ / ~  ~TbTb) e "rbzb,vzb,~+rbl~b,xg~h,v 

+ 1 +  ] 
x I-[ exp ~, (l'~b,xel~b',xTlbb'-}-l)xZb,xE Zb',x'l~bb') 

xEAi (b,b')AX 

(~'b,y~" ~b' y'l~bb'-~" VyZb,yeZb,,y'r/bb,) . (4.7) 
y~Af (b,b')Ay 
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The  formula  of the reproducing  kernel  for  the Bargmann  space [1, 3], 

f dp.(z ')  = f ( z ) ,  (4.8) e~'Z ' f (z  ~) 

allows one  to pe r fo rm the integrat ions over  Zb.x and ~rb.y with x e Ai, y e af .  This 
amounts  to the substi tut ion 

--! 
Z b , x  " )  37bZb,y , •b,y "~ T b ( b , x  • 

Afterwards ,  each link carries just one  z and one (. 
With the nota t ion 

D'U ((, z) = 1-I du  ((b) d/z (Zb), 
b 

Z b  ~ Z b , y ,  ( b  ~ ~"b,x , 

the result is 

x I] exp Y, ((be(b, rlbb,+Vx'rbT"b,Zbe Z b ' T / b b '  ) 
x e A i  (b,b')AX 

. . . . . .  . . . .  ] 
[ T b T " b ' ~ b E  ~ b ' T / b b ' - ~  VyZbeZb'rlbb') . (4.9) 

y~Af  (b,b ')^ y 

We define ant isymmetr ic  matrices ,~, 2t' and x, K', the e lements  of which are 
labelled by the links of the lattice. 

/~tbb' = / T]bb' ' if (b, b') ^ x for any x ~ Ai ,  

/ 0 ,  otherwise ; 

/ TbTb 'T~bb '  ' if (b, b') A y for any y • Af ,  
K b b ' =  [ 0 , otherwise ; 

t I "UYT~bb' ' if (b, b') A y for  any y • Af,  
/~ bb '  = [ 0 , otherwise  ; 

' / Vxrb~'b'~bb', if (b, b') ^ x for  any x c Ai,  
Kbb' = / 0 ,  o therwise .  

Appl icat ion of the formula  [1, 7] 

f l-idlz(Zk) l ~ . ( Z i F . Z j l ~ i  ] + 1 + "~ + z j e  z i K i l ) = d e t ( 1 - M ¢ )  -1 ,  (4.10) exp 
k 6 
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valid for antisymmetric matrices Z and x, leads to 

f ~ r~ d r b  d r ~  . . . .  Z =  Dv D/x(n) lbl ~ O  trbrb) det (1 

A. Holtkamp / Heisenberg ferromagnet 

--AK) 1 det ( I_A,K, ) - I .  

(4.11) 

At  this stage, the partition function involves only rotation invariant variables. 

5. Loop expansion 

The formula 
det (1 - AK)  -1  = e - t r  In (I-~.K) (5.1) 

can be used to derive a loop expansion. The circular path of the line integrals over 
r variables should be chosen such that no cut of the logarithm is crossed. Since 

K~')o 0 when r, r ' ~  0, this is possible, but it requires that the n-integrations are 
performed after the r-integrations only. Keeping this restriction in mind, we may 
expand 

det (1 --AK) -1 =exp  Y~ l t r  (,~K)" . (5.2) 
n ~ l  F/ 

The contributions to (AK) n can be represented by graphs composed of 2n double 
links which belong alternatingly to points of Ai and At. Therefore,  the graph of 
lowest, i.e. second, order is a plaquette. 

Consider an oriented closed path C of order n o  consisting of double links (bl, b2), 
(b2, b3) • • • (b2,, bl). The algebraic expression corresponding to C involves 

T~(C) ~ nbxb2(Xl)T'Tb2b3(Y2) " " " Tlb2nbl(Y2n), ( 5 . 3 )  

r ' ( c )  ~- r'b,~;2 . . .  r ; 2 .  (5.4) 

The same path C appears in (h'K')", but r~ is replaced by rb, nbb'(X) by 0bb'(X) and 
each site carries a factor v,. 

The determinants are thus replaced by the loop expansion 

(1 --/~kK) -1 det (1 --A'K') -a = e x p • l [ r ' ( C ) n ( C ) + r ( C ) O ( C )  I-[ Vx]. (5.5) det 
C F/cL x~C J 

The sum extends over all oriented closed paths C that visit sites of Ai and Af 
alternatingly, i.e. no spikes like _L are possible. Paths which contain the same 
double links but start at different sites are not identified. After  the variable 
transformation 

nbb (X) -~ 

1/2 

nbb ' (X)  

k \  rb J 
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setting I r b V d G [ =  1, and integration over  r ' ,  we finally arrive at 

Z =  I Dv Dlx(rl) ~ ~b ~ B ( T r b ) e x p  y lr(C)v(C)[rl (C)+~l(C)] ,  (56)  
C n c  

where 

. 1 /2  ~(c)--- [I ~1/2, v ( c ) -  l-I ,;~ , 
b e C  x ~ C  

and 9(C) is the complex conjugate of r/(C). 
We are thus led to a system of closed loops and a hamiltonian which is complex 

and, surprisingly, invariant under U(1) gauge transformations: 

"r/bb,(X ) -+ "rlbb,( X ) gb ( X ) gb,( X ) . 

Inserting 

B ( r )  = Y cir -2i 1 
i 

into the partition function (5.6) we may integrate over all variables, thus reproducing 
the standard high- temperature  expansion. In the usual derivation of this expansion 
one has to deal with Clebsch-Gordan  series, and Clebsch-Gordan  coefficients are 
involved in the computat ion of complicated graphs. They do not appear  here. 
Instead, our method amounts to counting all paths which may be built out of a 
given set of links. 

6. Formulation of the Heisenberg ferromagnet  as a local gauge theory 

One could think of regarding the phase of r/bb' as a parallel t ransporter  of a 
lattice gauge theory on a lattice whose sites are our links (see fig. 2). However ,  
this is not possible because the ~7 satisfy the ant isymmetry condition (4.2) instead 
of T/bb'(X ) = T/b,b(X ) .  Therefore  the parallel t ransporter  would not go over into its 
inverse under reversal of the direction of the link. 

i 

: i z 

Fig. 2. 
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However,  it is possible to transform our system into a local gauge theory with a 
nonabelian but solvable gauge group Z 2 ® U ( 1 ) =  T*. Separating the ~7 phase 

rl = r O  , O ---~ e i~ , 

D/x (r/) = Du( r )  DO,  

with 

the partition function reads 

2 r b b  , d r b b '  e D/z(r)-~ ~ ! -r~b, 
(bb') 

DO=- lq 1 d~Pbb', 
(bb') Z. "T/" 

Z - f  Dv D r  D ~ ( r ) D O  exp ( ~  c ~1 r(C)v(C)r(C)[O(C) +c.c.])  . (6.1) 
H C  

If we define 2 × 2 matrices 

tbb, = 1.~b b, ' 

which are elements of the maximal torus T = U(1) of SU(2) we may write 

O(C)+c.c.  = tr t (C),  t ( C ) = - t b l b : ( X l ) t * 2 b 3 ( Y 2 ) ' ' "  tb*:,bl (Y2,) • (6.2) 

The Weyl group W = T * / T  of SU(2), where T* is the normalizer of T, consists of 
two elements 

W = {1, ~}, 

where 

1-=T,  ? = - T r ,  

r corresponds to complex conjugation: 

TtT  -1  = t * ,  

We may thus write 

-I 
T =--T. 

t(C) = (--1)~Ctb~b2(Xa)rtb2b3(y2)r " " • 7 " t b 2 . b l ( Y 2 n ) r .  (6.3) 

We regard the variables tr e T* as the new variables of our system. They show the 
desired behavior under U(1) gauge transformations: 

( t r ) b b '  "+ g b t b b ' g b ' r  = g b ( t T ) b b ' g b  '1 , g e T ,  (6.4) 

(tr)bb' = (tr)b'~. (6.5) 
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We introduce T* variables  

Ubb' ~- /bb'o-bb' , t c T ,  or e {1, r} .  (6.6) 

In contras t  to ~bb' they satisfy 

-a (6.7) Ubb' ~--" /gb'b • 

T h e  par t i t ion  funct ion in t e rms  of these new variables  is 

Z =  I D ' u  D v  D/x ( r ) D r  exp ( c  ~ ( -1)~c  r ( C ) v ( C ) r ( C ) t r  u(C)) , (6.8) 
n c  

where  

D'u-- 1-I dUbb'~r(Ubb')" 
(bb') 

du is a H a a r  measu re  on T*, viz. 

f duf(u) = 

and 

f dt ~ f(to'), 
o-=1.~- 

1, if o-' = o-, 
u = to-'. 

6~(u) = 0, if o" ~ o-, 

The  exponent ia l  is invar iant  under  T* t r ans fo rmat ions  so that  each  configurat ion 
which is ob ta ined  f rom the original one  by a W t r ans fo rma t ion  

--1 E {1,  r } ,  /Abb, -')'o-bUbb, o-b ' ~ O" 

gives the same  contr ibut ion.  
The  al lowed configurat ions are de t e rmined  by the gauge- invar ian t  constraints  

(~ , r ( / , /b lbeb/b2b3b/b3b, )  = 1,  for  each tr iangle ; 

~l(Ublb2/,/beb3/gb3b4/~/b4bl ) ~- ] , for  each q u a d r a n g l e ,  

if we start  on a quadra t ic  lattice. 
Thus  we arr ive at the par t i t ion  funct ion of a lattice gauge  theory  with local T* 

invar iance:  

I (~c(-1)nc~'(C)v(C)r(C)tru(C)), (6.9) Z = D u  D v  Dtz(r)  D r  exp nc 

with 

Du = 2 - 2 N  I] dbtbb' 1-I 8~.(Ut2U) I-[ ~ I ( U U U U )  , 
(bb') ~. 0 

where  N is the n u m b e r  of sites of the original lattice. 
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My thanks are due to Prof. G. Mack for the idea to this work and many instructing 
discussions. 
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