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Labelling of the physical states of a non-abelian gauge theory on a lattice in terms of local 
observables is considered. The  labelling is in terms of local color electric field observables and 
(separately) local color magnetic  field observables. Matter  fields are also included. Non-local 
observables required when space is multiply connected, are specified. The non-abelian version of 
Stokes'  theorem is considered. Relevance to the cont inuum theory is discussed in detail. 

1. Introduction 

Gauge theories form the underlying framework for both strong and electroweak 
interactions. Therefore it is imperative that we understand their structure as well 

as possible. When considering the observables, they possess a special status among 
all field theory models. The dynamics is formulated in terms of the potentials but 
these are not the observables of the system. Only gauge-invariant quantities are 

observable. It has been shown [1] both in the continuum and the lattice theories 
that the set of all Wilson loops forms a sufficient set of observables of the system. 
But obviously this is not a minimal set. Moreover, large Wilson loops are not local 

observables and it is not evident that a set of local measurements is enough to 
determine the state of the system. The question then arises as to what is the minimal 

set of (local) measurements to be made to determine the state of the system. We 
consider such questions in this paper. 

We begin with the problem of labelling the physical subspace of the Hiibert 

space by gauge-invariant local observables. Our considerations are mostly in lattice 

gauge theories in the hamiltonian formalism [2] because in this way our results 
become precise and we are able to evade a variety of technical difficulties of working 
with the Hilbert space of the continuum theory. (However, we will give a detailed 
discussion of the relevance of our results to the continuum theory.) In sect. 2 we 
consider labelling of the physical states using color electric field observables. For 
this we first label the extended Hilbert space by a color electric field and then 
obtain the physical states by implementing the non-abelian Gauss' law. (For such 
attempts in continuum theory see ref. [3].) Since the color components of the 
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electric field form the generators of a Lie group, the problem reduces to a K'ronecker 
product decomposit ion.  The labelling [eq. (2.22)] finally involves the (N - 1) color 
invariants [for the SU(N)  group] for each space component  of the electric field 
and, in addition, the invariants involving certain covariant derivatives of the electric 
field. (For N > 2, it is also necessary to specify some symmetry properties under 
the interchange of the electric field operators.) We also consider the labelling 
problem when matter  fields are present,  mat ter  being described by the color spin, 
apart  f rom the spin labels and other global quantum numbers.  In case there are 
fields with different global quantum numbers at ' the same point, the labelling involves 
the net color spin of various combinations of such fields. 

In sect. 3 we consider labelling in terms of color magnetic field observables. We 
obtain the generalization of the result in the abelian case where it is sufficient to 
specify two components  of the magnetic field, say Bx and B~. (in 3-space dimensions), 
plus some boundary data on B:. The analogue for the non-abelian theory involves 
invariants of both Bx and B~ and their covariant derivatives along the z-axis. (Some 
boundary data involving B~ are also needed.) We show that in the generic case it 
is sufficient to specify Wilson loops involving at most three adjacent plaquettes. 
By the generic case we mean those states in which the color magnetic fields at 
neighboring points do not have a special relationship to each other, e.g. the covariant 
derivative is not zero. (For a precise definition see the text.) Non-generic states 
are expected to belong to a set of measure zero in the Hilbert space [4] and are 
perhaps not very relevant. Nevertheless, they illustrate the point that sometimes 
non-local observables are necessary in order to specify the state completely. This 
is by now well known [4, 5]. We also consider the labelling when matter  fields are 
present, the matter  field now being described by the configuration space. In the 
generic case this involves observables like ¢*D,,D,,... D~o¢. 

In sect. 3 it is presumed that the space is simply connected. In sect. 4 we consider 
multiply connected regions, relevant for a B ohm-Aha ranov  experiment.  In the 
abelian theory it is well known that a complete specification of the state includes 
the net flux through the hole. We obtain such non-local observables required in 
the non-abelian theory. This involves a set of N 2 Wilson loops going around the hole. 

In sect. 5 we consider the non-abelian Stokes'  theorem. Versions of such a 
theorem have been proposed in literature before [6]. However,  we take a different 
interpretation of what is meant  by Stokes'  theorem. Given gauge-invariant local 
data entirely on some surface spanning a loop, can we reconstruct all observables 
involving the loop? If yes, what is the kind of data to be specified on the surface? 
In contrast, earlier versions of the theorem consider non-local data on the surface. 
They compare  the magnetic fields at different points on the surface by a parallel 
transport  along some arbitrary path. We obtain one kind of local data to be specified. 
Whereas in the abelian case just the magnetic field on the surface suffices, the 
non-abelian case requires certain invariants involving certain covariant derivatives 
of the magnetic field along the surface. 
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All previous sections are concerned with gauge theory on a lattice. One may 

expect most of the results to carry over to the continuum theory basically unchanged. 
But crucial simplifications can occur for the continuum theory. Such issues are 
discussed in sect. 6. 

In appendix A we prove a result used in the text. For the sake of completeness, 
we mention the minimal complete local gauge-invariant data for the classical (lattice) 
theory in appendix B. 

2. Labelling the physical states by local color electric field observables 

Consider a (d + 1)-dimensional lattice gauge theory in the hamiltonian formalism 
[2]. We have a d-dimensional hypercubic lattice labelled by a d-tuple of ordered 

integers, n = {ni}, i = 1 -  d. The coordinate variables are a matrix U ( n i ) ~  SU(N) 
for each link (ni), where i stands for the positive unit vector along ith direction. 

The conjugate variables are E ( n i ) ~  b°U(N) defined at each site n of the lattice. 
Here SPU(N) denotes the Lie algebra of SU(N). The basic equal-time commutation 
relation is 

[ E ( n i ) " ,  ( U (ni)  ) u  ] = ( T ° U  (ni)  )u  , (2.1) 

other commutators being zero. (Unless otherwise specified all our variables will 
refer to the same time henceforth.) In eq. (2.1), a labels the adjoint representation 

and I the fundamental representation. T ° are the generators of the fundamental 
representation of SU(N): 

[T", T ~ ] =/f~t~T ~ . (2.2) 

Thus E generates an infinitesimal group transformation of U on the left. For 
self-consistency (e.g. the validity of Jacobi identities among E °, E ~ and U) we 
require 

[ E ( n i ) " ,  E ( n i )  ~ ] = - i f  , ~ v E ( n i )  v , (2.3) 

so that E ~ obey the commutation relations of - T  °. Note that E "  do not commute 
among themselves in contrast with the continuum theory. 

Given the set E, U we can construct [2] a generator ~',, of infinitesimal right 
transformations: 

~ ( n i )  ° = E(ni)t3 ( U~l~(ni))t~ , (2.4) 

[~'(ni) ~, ( U ( n i ) ) u ]  = ( U ( n i ) T " ) t l ,  (2.5) 

where U (1) is the adjoint representation for U: 

(U~I~)~ o = tr ( T " U T ~ U ~ ) ,  U ~l)~ = U ~l~ , (2.6) 

-~o and E'" commute with each other. ~ as defined above is not hermitian. The 
satisfactory modification is 

~ ( n i )  = U ( n i ) + E ( n i ) U ( n i )  - T 2 , (2.7) 
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where 

Subtraction of T 2 in eq. 

and ~. 
The hamiltonian for our system is 

H = ½g2 2 1 Y. tr (E(ni )  ) + ~ Y. tr (U(ni) U(n + i, j) 
ni l'l'g nii 

x U(n  +j, i )*U(nj)++h.c.) .  

E = T " E " ,  ~ = T " ~ " .  (2.8) 

(2.7) is necessary to have a common spectrum for E 

(2.9) 

This hamiltonian and the commutation relations are invariant under the local gauge 

transformations 

U ( n i ) ~  V ( n ) U ( n i )  V(n  + i) ~ , 

E ( n i ) ~  V ( n ) E ( n i ) V ( n ) * .  
(2.10) 

Note that E(ni )  transforms as though it is located at the site n. This is required 
(e.g.) by the validity of the commutation relations (2.1) among the transformed 
variables. From (2.10) it follows that 

~ ( n i ) ~  V (n  + i ) ~ ( n i ) V ( n  + i ) ' ,  (2.11) 

so that ~(ni)  behaves like an object located at (n +i) .  The transformations (2.10) 
and (2.1 1) are generated by 

G = exp [ i Y~ O~ ~ (E(ni )"  - ~(n - i, i)")] (2.12) 

Since g(n  - i, i)" is E(n  - i, i)" shifted to the site n by a parallel transport along i, 

the difference in the exponent in (2.12) is the discrete version of the covariant 
derivative (DiE(ni))".  We will use this compact notation henceforth. 

The physical states of the lattice theory have to satisfy the (non-abelian) Gauss' 
law: 

¢ ,  

i.e. the physical states must be in the singlet representation of Y.i D~E(ni) at each 
lattice site. To construct such states we will first define an extended Hiibert space. 
Since E~'s  do not commute among themselves, they cannot be simultaneously 
diagonalized. However, since - E " ' s  obey the commutation relations of the SU(N) 

Lie algebra, the states can be labelled by the representation spaces of the algebra. 
A convenient labelling is as follows: 
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(a) N - 1 invariants of SU(N) label the irreducible representations of the group. 
These are 

E ~ E  ~ , 

~. d , o ~ E ~ E ~ E "  , 

Y. d~,o.ycI~,~E'~EOE~E ~, . . . .  
oaB~'~Se 

and are obviously gauge-invariant local variables. These variables characterize the 

Young tableau uniquely and just count the number of boxes in the N -  1 rows of 
the tableau• 

(b) To uniquely label the states of a given irreducible representation construct 
any chain of subgroups 

U(1) × SU(N - 1)/Z(n - 1) ~ SU(N) ,  

U(1) × SU(N - 2)/Z(n - 2 )  = SU(N - 1) /Z(N - 1), 

• ° • 

U(1) c SU(2)/Z(2) .  

The N - 1 invariants of U(1) × S U ( N  - 1) /Z(N - 1), the N - 2  invariants of U(1) x 
S U ( N -  2 ) /Z(N - 2 ) ,  etc. and finally the invariant of U(1) of this chain label all the 

states. These labels are not gauge invariant as they depend on the choice of the chain. 
We denote the labels of type (a) by E ( n i )  k and of type (b) by E ( n i )  A. 

The singlet state ]0) of every E ( n i ) ,  

E ( n i )  ~ 10) = 0 ,  (2.14) 

is obviously gauge invariant. It is the strong coupling vacuum• All states of the 

extended Hiibert space are obtained by applying products of U ( n i ) l j  and U(ni)+m. 

on 10). Our choice of labelling corresponds to characterizing the initial set of indices 
L But this is not sufficient: the final set of indices must also be characterized, so 
that we need the labels of ~ ( n i )  too. However, once the initial set of indices in 

c i~2... U (ni) tlJi U (ni)12j,_ . . . 

has a certain symmetry and antisymmetry property, so does the final set of indices. 
Therefore, the labels of the invariants E ( n i )  k and ~ ( n i )  k are identical• Thus a 

unique minimal labelling of the extended Hiibert space is 

I { E ( n i ) k ( = ~ ( n i ) k ) ,  E ( n i )  A, ~ ( n i ) A } ) .  (2•15) 

We will now obtain a labelling for the physical subspace. Using the Kronecker 
product decomposition, we relabel the extended Hilbert space in terms of ( E ( n i )  - 
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g(n - i ,  i)). The result is 

]{E(ni) k, (D,E(ni)) K, (D~E(ni)) A) (2.16) 

(no sum over  i). (D~E(ni)) K label the irreducible representations obtained from 
the direct product of the representations of E(ni) and g ' ( n -  i, i). They are not 
just the ( N -  1) invariants of the SU(N)  group, except for the case N = 2. When 
N # 2, the same representat ion may appear  more than once in a direct product 
decomposit ion.  To distinguish between such representations we cannot use invariant 
numbers but rather we have to specify symmetry properties under interchanges of 
the labels. A familiar example is provided by the SU(3) case: 

_8x8 = I + 8 * 8 +  1_0_+ 1 0 " + 2 7 .  (2.17) 

The representation 8 occurs twice on the right-hand side. If we denote the two 
representations on the left-hand side by IA) and [B), the two 8's on the right-hand 
side correspond to 

d.o,[A,)IB,) . f..o~lA,)lB,). (2.18) 

and can be distinguished only by symmet ry /an t i symmet ry  under A ~-~B. We will 
not worry about how such distinctions are to be made for an arbitrary group but 
tacitly assume that the label K includes them. 

For d = 2, we again make the Kronecker  product decomposition: 

{E(ni) k, (O,E(ni), K, (~ O~E(ni,) K, (~O~E(ni,)at).  ,2.19, 

The physical subspace is a singtet of (Z, D~E(ni)) and hence easily isolated. The 
condition requires that D1E(nl) and D~E(n2) be in conjugate representations. 
Therefore  it is sufficient to specify the subset k of the labels K [i.e. the SU(N)  
invariants] for just one of them. However,  the labels distinguishing identical rep- 
resentations of the Kronecker  product decomposit ion have to be specified for both. 
Henceforth we will denote such labels by .~. Hence the physical states are labelled 
by 

I{E(ni) k, (DiE(n 1)) k, (DIE(n 1)) ~, (D2E(n2))x}). (2.20) 

We have therefore obtained a labelling by gauge-invariant local observables. 
For d = 3 we have to go one step further. First we combine D~E~ and D2E2 and 

then the result with D3E3. The extended Hiibert space is 

I{ E(n 1) k, (DiE(FIg)) K, (DIE(n 1)-~ O2E(n2)) K. (~i D'E(gli)) K' (~i DiE('Ii))A}) " 

(2.21) 
Thus the physical subspace is 

I{E(ni)k(=~(ni)k), (D,E(ni)) K, (D1E(nl)+D2E(n2))"}). (2.22) 

We could have followed an alternate chain in decomposing the Kronecker  product. 
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For d = 2 we may use 

E ( n l ) + E ( n 2 ) ,  ~ ( n - 1 ,  1)+ ~ ( n - 2 , 2 )  

D IE(n  1) + D 2 E ( n  2). 

Then the physical states are labelled by 

For d = 3 we get 

I{ E(n i )  k, (E(n  ($ (n  - 1, 1)+ ~ ( n - 2 ,  1 ) + E ( n 2 ) )  K, 2)) K, 

Invariance like E(n i )  k, (E(n  1)+E(n2) )  K specify the color flux at a point whereas 

invariants like (DiE(ni))  K and (~(n - 1, 1)+ ~(n - 2 ,  2)) k specify the correlation in 

color electric fields at neighboring points. It is not possible to find a labelling which 
does not require specifying the correlation in color electric fields at adjacent points. 
This is in marked contrast to the labelling in the continuum theory (sect. 6). The 

difference is due to the different commutation relations. 

For U(1) lattice gauge theory, E and ~ are identical and are by themselves gauge 
invariant. The physical Hilbert space is labelled by the electric field on each link 
with the net electric field flowing into each point being zero (Gauss' law), i.e. the 
label is 

[E(ni); a iE(n i )  = 0) .  

Thus for d = 3, the label is ]E(n 1), E(n2))  [plus some boundary data for E(n3)]. 
We remark that our labelling gives an orthonormal basis for the strong coupling 

expansion. It is possible to rewrite the hamiltonian in this space directly. However, 

it is complicated and does not seem to serve any purpose. To search for a hamiltonian 
that is simpler in this space which may have the correct continuum limit is futile. 

We will now include matter fields in the above analysis. As an illustrative example 
we will consider fermions in some representation R of the color group. The form 
of the hamiltonian is irrelevant. We have fermions ~0(n)~.a and $(n)*~.a at each site 
n with 

{O(n )a,a, O(m )~.n} = 6n.m6A.Bg~a.b . 

Here a labels the Dirac components and A the representation space of R. Under 
local gauge transformations 

~O(n)~.A ~ exp ( iO(n)~T~,)ABO(n), .n,  (2.25) 
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where TR are the generators in the representation R. The state 10) defined by 

t~(n),.AlO) = 0 (2.26) 

in addition to (2.14) is still gauge invariant. The extended Hilbert space is now 

constructed by applying ~(n):  in addition to U(ni )  and U*(ni) on 10). Thus the 
matter fields are characterized by the states of the representation R and by the set 
of Dirac indices at each site. We thus have the additional labels 

T ( n , p )  k , T ( n , p )  A , (2.27) 

where p = 1 . . . . .  P labels the Dirac components (and other global quantum num- 
bers). Again considering the Kronecker product we get an equivalent set 

T ( n , p )  k , 

(T(n ,  1 ) + T ( n ,  2)) K, (T(n ,  3 ) + T ( n ,  4)) K . . . . .  

T ( n , p )  , T ( n , p )  . . . . .  (2.28) 

We will now combine Y.p T(n,  p) with ~,~ D~E(ni) to get 

I E(n i )  k, (DiE(ni))  K . . . . .  

T ( n , p ) k , ( T ( n l ) +  T (n2) )  K . . . . .  T ( n , p )  , (2.29) 

K A 

P P 

Gauss' theorem in presence of matter fields is 

Y. DiE(n i )  + Y. T(n,  p) = 0 ,  (2.30) 
i p 

so that the physical states are labelled by 

E(n i )  k, (DiE(ni))  K, ( D I E ( n  17 + D 2 E ( n 2 ) )  K , 

K h 

Thus the matter fields are characterized in a gauge-invariant way by their color 
spin and by the net color spin of various subsets of such fields at a given point with 
different (Lorentz) spin components (and possibly the indices of global symmetries). 
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3. Labelling the physical states by local color magnetic field observables 

The extended Hilbert space in terms of the link-variables is simply the configur- 
ation space ]{U(ni)}). For the physical states we require 

exp( iYO(n)Y.  DiE(ni))l )= ]  ) .  (3.1) 

Since 

exp(i~O(n)~i DiE(ni))l{U(ni)})=l{W(n)U(ni)W(n+i):}) , (3.2) 

where V = exp iO. T, we can form such states simply from the extended Hilbert 
space by averaging over the gauge transformations at each lattice site: 

] ) = ~  I ~V(n)]{V(n)U(ni)g(n + i):}), (3.3) 

where ~V(n)  is the group-invariant measure.  Thus the physical states may be 
characterized by the equivalence class 

[{U(ni)}) ~ I{ V(n)U (ni) V(n + i):}). (3.4) 

In order to label this equivalence class in terms of gauge-invariant quantities we 
first consider a representative member  of each equivalence class obtained by a 
complete gauge fixing. As the boundary plays a crucial role, we choose a finite 
lattice with free boundary conditions. We first consider the case of a simply 
connected region, a cube to be specific. For d = 2 we may choose V(n)'s such that 
all U(n2)  are t ransformed to 1 as also all U(n 1) on one edge [which we will denote 
by n 2 = 0  (fig. 1)]. V(n) at 0 (to be denoted by n =0 )  is still not chosen. This 
f reedom is equivalent to the equivalence of the gauge-fixed set under a global 
gauge transformation since we may make a global transformation without altering 
any of the links chosen to be 1. Thus the physical states are characterized by the 
equivalence class 

]{U(n 1)}; n2 ~ 0 ) - I { O U ( n  1)O'}, n2 ~ 0).  (3.5) 

It will prove to be useful to rewrite this class as 

I{U(n)}) modulo a global t ransformat ion,  (3.6) 

where 

U(n) = U(n 1)U(n +e2, 1)* (3.7) 

are the plaquette variables. Now we do not have the restriction n2 ¢ 0. Note that 
we have used an anti-clockwise orientation for our plaquette variables starting 
from the "smallest"  plaquette coordinate (where n l is defined to be smaller than 
n2 if n~ i -n2 ,  < 0  for the smallest i for which this quantity is non-zero). 
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¥ 
X~ X 2 

W~ ~I 2 

V1 ¢2 

J~ J2 

0 X 

Fig. 1. Gauge fixing in the 2d case. 
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The class invariants in eq. (3.5) has the form tr (U(n 1)'~"~U(ml)'~m~...). Such 

objects can be readily rewritten in a gauge-invariant form by a suitable insertion 
of U(n2) variables. Our problem is to label the equivalence classes in eq. (3.5) by 
class invariants which, when rewritten in a gauge invariant form, are local. We will 
see below that a lattice with just three plaquettes contains all the features of the 
general problem. We will therefore first consider 1-, 2- and 3-plaquette cases: 

1-plaquette world. The physical Hilbert space may be labelled the equivalence 
class 

and hence by the eigenvalues 

Ai : e / ° '  , 

I u ) -  I o u o ' ) ,  (3.8) 

] - IAi  = 1 ,  i = 1 . . . . .  N .  ( 3 . 9 )  
i 

These eigenvalues are obtained as the roots of the equation 

,~N {ui,~N ,+~{u2},~,,,_2 +(-1)  '~ . . . . .  {u,'~}=0, 
N~ 

where 

(3.10) 

{U} -- tr U,  

{U2]= (tr U ) 2 - ( t r  (U2)), 
(3.11) 

{U "+ ~} = {U}{Ur}-r({U} tr (U r) - t r  (Ur+~)). 

Thus the physical states are completely labelled by 

Itr U ' ;  r = 1 . . . . .  (N - 1)) (3.12) 

for SU(N). [For U(N), r = N should also be included.] Any observable of the form 
tr U ~ can be evaluated in terms of tr U' ,  r = 1 . . . . .  N - 1, using eq. (3.10) with A 
replaced by U. (A better set is tr B', r = 2 . . . . .  N where U = exp iB. Now we have 
( N -  1) real variables.) 

2-plaquette world. Now the physical states are labelled by two matrices U, V with 

]U, V)-II2U£2", OVI2'). (3.13) 
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We may choose /2  to diagonalize U. For a generic case (i.e. the eigenvalues of U 

all distinct) this fixes/2 up to the set of diagonal SU(N) matrices. We may use this 
freedom to make the first non-zero, non-diagonal element in each row (except the 

first row) of V real and positive. Denoting such a matrix by V', we have to find 
the minimal set of class invariants that completely determine the set {A, V'}, where 
A is the diagonalized form of U. In special cases, e.g. when a set of eigenvalues 
of U coincide, there is more arbitrariness in /2 and V can be further reduced to 
a special form. We will show in appendix A that the set tr U ' V  ~ with r, s = 

0 . . . . .  ( N - l )  and r + s  S O  is sufficient to fix up the equivalence class uniquely. 
For special cases this set may overspecify the data: e.g. when A = 1, the equivalence 
class is simply labelled by the eigenvalues of V and hence by just (N - 1) invariants. 
However, given our set such special configurations can be readily recognized. 

3-p laque t te  worM. Now the states are 

Iu, v, w>-l/2u/2:, /2v/2 /2w/2:). (3.14) 

In the generic case,/2 is chosen to bring the set {U, V} to the standard form {A, V'} 

as before. Then W has to be completely specified with respect to this set. Since in 

the generic case the set 

U r V  ~, r , s = l  . . . . .  ( N - l ) ,  (3.15) 

forms a linearly independent basis in the vector space of N × N matrices, all we 

have to do is to specify the inner product of W with respect to this basis. Therefore 

we need the set 

t r ( U ' V ~ W ) ,  r , s = O  . . . . .  ( N - l ) .  (3.16) 

For special configurations this is not sufficient. In the extreme case when U = V, 
the set (3.15) is not linearly independent. (This can be stated in a gauge-invariant 

language.) In this case our system reduces to the 2-plaquette case and we have to 

specify the set tr U ' W  ~, r, s = 0 . . . . .  ( N  - 1). 
We remark that the variables we have specified in 2- and 3-plaquette cases are 

not the least constrained one can think of. Thus, e.g., in the 2-plaquette case we 
have only (N 2 -  1) real variables to be specified whereas we are using (N 2 -  1) 

complex numbers to describe them. Specifying the modulus of our set does not 
suffice, because there are many discrete solutions even in the generic case. Instead 

consider (in the 2-plaquette case) 

t r ( U ' ) ,  t r ( V r ) ,  t r ( U V ) ' ,  t r ( U Z V )  ", . . . .  t r ( U  N 1V)r, (3.17) 

where r = 1 . . . . .  (N - 1 ). This system can be equivalently described in terms of the 

traces of the hermitian matrices BT, defined by U ~ V  = exp iB,,  etc. Though this 
set appears to be a sufficient set, we have not been able to provide a formal proof. 

In the 3-plaquette case, we have used N z complex variables whereas again we 
need just (N 2 -  1) real variables to fix W in terms of U and V. In this case we 
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may  use the  set 

tr  ( W ' ) ,  tr  ( V W )  r , tr  ( V2 W) r , . . . .  t r  ( V"~'- ~ W) ' , t r  ( U W )  r , (3.18) 

which can also be specif ied in t e rms  of t races  of he rmi t i an  matr ices .  

Back to the 2d worM. W e  c h o o s e / 2  to d iagona l i ze  U~ and  to br ing  V~ to the  

s t anda rd  form V] (fig. 1). Then  all invar iants  involving U~, V~ and Wt are  o b t a i n e d  

as in the  3 - p l a q u e t t e  case f rom tr U]  V] and  tr  U ~ V ~ W I ,  r, s = 0  . . . . .  ( N - 1 ) .  

(This is in the  gener ic  case.) Since V'I and  W~ are  now known,  we may  d e t e r m i n e  

X~ c o m p l e t e l y  froin the  set tr V] W~XI. In this way at mos t  th ree  successive 

p l aque t t e s  are  involved  in the  gauge - inva r i an t  da t a  that  a re  specified.  To c omple t e ly  

d e t e r m i n e  the matr ix  U2, we may  use the  set tr  V]U~U2 and for V2 the set 

tr U~ U~ V2. Al l  these  t races  can be rewr i t t en  as local gauge  invar iant  var iab les  by 

su i tab le  inser t ion  of U(n2 ) .  

W e  now cons ide r  special  cases. If U~ = V~, as discussed ear l ie r  we need  tr  V] W~. 

On  the o the r  hand,  if a successive set of p l aque t t e  var iables ,  say W~, X~, Y~ . . . . .  Z~ 

are  ident ica l  (which can readi ly  be given a gauge  invar iant  meaning) ,  then  to 

d e t e r m i n e  the next  p l aque t t e  var iab le  A~ c o m p l e t e l y  we need the set tr V~ W~A~. 
If W~ and A~ are  s e p a r a t e d  by macroscop ic  dis tances ,  this k ind of gauge - inva r i an t  

da t a  is non- loca l .  Thus  unde r  special  condi t ions ,  non- loca l  da t a  b e c o m e  unavo idab l e  

[4, 5]. H o w e v e r ,  such special  conf igura t ions  form a set  of measu re  zero  [4]. W e  

r e m a r k  tha t  with the  da ta  for the  gener ic  case it is poss ib le  to recognize  w he the r  

special  conf igura t ions  are  p re sen t  and  then  m a k e  fur ther  m e a s u r e m e n t s  to com-  

p le te ly  d e t e r m i n e  the conf igura t ion .  

3d world. W e  first specify  a c o m p l e t e  gauge  fixing. On each n3 = cons tan t  p lane  

we choose  the  gauge  as in the  2d case. W e  still have the  f r e e d o m  of local gauge  

t r ans fo rma t ions  a long  the line O Z .  W e  choose  these  to m a k e  all the  l inks of the  

line 1. W e  are  still left  with the  gauge  f r e e d o m  at O which is equ iva len t  to a g lobal  

gauge  t r ans fo rma t ion .  Thus  the  physical  s ta tes  may  be labe l led  by the class 

[U(n 1), n2 # 0; U ( n 3 ) ,  n~, F/2 # 0) m o d u l o  a g lobal  gauge  t r a n s f o r m a t i o n ,  (3.19) 

or,  equ iva len t ly ,  the  p l aque t t e  var iab les  

IU(n)3,  U(n)~;  U(n)2, n2 = 0) m o d u l o  a g lobal  gauge  t r a n s f o r m a t i o n .  (3.20) 

In (3.20), U(n)~, for example ,  refers  to a p l aque t t e  var iab le  in the  2-3 p lane ,  n 

refer r ing ,  as ear l ier ,  to the " sma l l e s t "  p l aque t t e  coo rd ina t e  with the  o r i en ta t ion  
fixed by the  r i gh t -hand - sc r ew  rule.  

It is now easy  to cons t ruc t  the  min imal  set of local da t a  needed .  On each 

n3 = cons tan t  or  n~ = cons tan t  p lane ,  we use the  set of var iab les  as in the  2d case. 

The  U2 p laque t t e s  in the  p lane  n2 = 0 are  again fixed with respec t  to the  line O Z  

as in the  2d case. Since we do  not  have the f r e e d o m  of g lobal  t r ans fo rma t ion  in 

eve ry  n3 = cons tan t  p lane ,  we have to fix two p l aque t t e s  on each n3 = cons tan t  p lane  
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Fig. 2. Plaquettes used to fix U~. 

with respect to the lower planes. For this we use variables like tr (U'3"W~U3) (see 

fig. 2). 
We remark that our local variables correspond to invariants like tr (B~D~B'3) 

and tr (B~D)B'I). Thus it suffices to specify invariants involving B1 and B3 separately 
(along with covariant derivatives along y-direction). Invariants involving B2 or 

combinations of Bi's are then completely determined. This is analogous to the U(1) 
case in which it suffices to specify only 12 and 23 plaquette variables (and boundary 
data on 31 plaquettes). 31-plaquette variables then get determined from 

l-I Uolaqu~,t¢ = 1 (3.21) 
b o x  

(which is the lattice analogue of ~r • B = 0). 

Inclusion of matter fields. We will now consider the minimal data that is to be 
specified when matter fields are present. In sect. 2 the physical states were labelled 

by electric field invariants and it was natural to describe the matter fields by their 
color spins. Since we are now labelling the states by the configuration space variables, 

it is natural to describe matter also by configuration space. We will therefore 
consider a scalar field q~(n)a in a representation R of the color group, A being the 
color label. The extended Hilbert space is now labelled by [U(ni),, ¢(n)A). An 
analogous consideration [7] for fermions requires the use of coherent states and 
anticommuting c-number fields at each lattice point. We will not treat this case here. 

The physical states are again obtained by averaging over the gauge transforma- 
tions at each site. We will again consider a representative of each such state obtained 

by a complete gauge fixing. We first concentrate on the generic case. The gauge is 
chosen with respect to the link variables as earlier. In the pure gauge case with 
SU(N) as the local gauge invariance, the residual global transformation is fixed 

only up to a Z ( N - 1 )  global transformation. However, as the link variables are 
invariant under such a transformation, it is irrelevant. When matter fields transform 
non-trivially under the centre of the gauge group this is no longer true. To be 
specific we will consider matter in the fundamental representation of SU(N). (It is 
easy to extend the results to the general case.) In this case we choose the residual 
Z ( N  - 1) global transformation such that 

0 <<- 0 < 27r/N, (3.22) 

where 0 is the phase of the first non-vanishing component of ~(0). (In case ~(0) = 0 
we have to choose the matter field at some other site.) We have to now specify 
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the matter fields completely with respect to the gauge-fixed link variables using 
local gauge-invariant combinations. 

To specify ~(0) (up to a phase) we may use local gauge invariants such as 
q~(0)* u~A~o(O) where U~a~'s are along loops beginning and ending at 0. The minimal 
set of U"~'s needed would appear to be N but this set allows more than one (but 

a finite number of) solutions. Even in the simplest case of 2-component real ¢, 
there are in general four solutions corresponding to the four points of intersection 
of the two conical sections involved. In the generic case an additional condition 

will suffice. However, solving for ~0(0) is in general difficult. But by specifying N 2 
variables corresponding to N 2 matrices U ~A~ linearly independent in the space of 

N x N matrices, it is easy to obtain the N x N matrix ~o(())*¢(0) i by inversion. We 
also remark that the matrices U ~A~ should not be simultaneously diagonalizable. 
This rules out repetitions of the same loop in choosing U 'A~. It also shows that 

when the gauge-field configuration is degenerate [5] in a macroscopic region, 
non-local variables are needed to fix W(0). 

For a moment we presume that the overall phase of ¢(0) is also known. Then 

the matter field ~0 at a neighboring point is easily fixed by using the local observables 

¢(0)*U~n~0 where U"~'s are along paths joining the two points involved. Now a set 
of N variables suffices, with the requirement det D ~ 0 where D,~ = (¢(0)~U"~) i. 
Note that this is a gauge-invariant condition. 

In this way matter fields at successive sites may be fixed in terms of the previous 
ones. Since there is still an ambiguity in the overall phase of q~(0), this ambiguity 
carries over to all the sites. To fix this phase we have to specify a local variable 
such as the phase of the determinant 

det (q~(0), 4,(1)o, ~(2)o . . . . .  d,(N - 1)0), (3.23) 

where the columns of the determinant are formed of the matter vectors indicated, 

and ~0(i)o stands for the parallel transport of ~0(i) to the site 0 along a specified 
path. This only fixes the phase modulo an element of Z(N - 1) but this is sufficient 
because of eq. (3.20). 

4. Minimal data for the B o h m - A h a r a n o v  experiment 

Till now we considered simply connected regions of space. We will now consider 
the changes affected when the space in which observations are made is multiply 
connected. We begin with a rectangular hole cut into a finite rectangular 2d lattice 
and fix a gauge completely as before (fig. 3). All the y-links as well as the x-links 
on the x-axis are made 1. In addition all the x-links on the line CD can be chosen 
to be 1 except for one, say C'C. All other links have to be completely specified up 
to a global gauge transformation. In the abelian case the 1-plaquette variables 

U U U U  were sufficient for the simply connected regions. This set is not enough to 
fix the link C'C in the present case. It is necessary to specify a Wilson loop going 
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p"p' p' 

Fig. 3. L ink  v a r i a b l e  on  C ' C  c a n n o t  be  g a u g e d  
to one .  
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Fig. 4. L ink  va r i ab l e s  t ha t  c a n n o t  be  g a u g e d  to  

o n e  o n  o n e  s u r f a c e  of  a ho le  a r e  l e t t e red .  

around the hole, e.g. the loop AB C DA.  Thus a complete specification of the state 
requires a specification of the magnetic field enclosed in the hole. That this has 
observable effects is well known [8]. 

In the non-abelian case, we need many more variables to specify the link C'C. 
In the generic case a minimal set is tr ( u r v ' w ) ,  0<~ r, S <~ (N - 1), where U = loop 

B'B"P"P'B', V = loop B'P 'PBB' ,  W = loop BCDAB.  These gauge-invariant data 
are sufficient for the non-abelian B o h m - A h a r a n o v  effect. Specifying at least N 2 -  1 
loop variables going around the hole is unavoidable. 

We will now consider the three-dimensional case. If the hole is such that the 
region is not simply connected, then again it is necessary to specify Wilson loops 
going around the hole exactly as in the two-dimensional case. On the other hand, 
if the space is simply connected, this is not necessary. Some local boundary data 
on the hole is sufficient. To be specific we consider a box-like hole (fig. 4). With 
the gauge fixing, we have to specify all the links marked in fig. 4 on one face of 
the hole. The z-links marked (a) are specified using Ux plaquettes as usual. The 
z-links marked (b) are specified using at most three Uv plaquettes at a time. E.g. 
the z-link b0 is specified via the y-plaquettes labelled 1, 2 and 3. The x-links 
marked (c) are specified again with the y-plaquettes,  but now arranged along the 
z-direction. For the link co for instance, we use the plaquettes 4, 5 and 6. These 
boundary data correspond to invariants of D~B~. and of D~By, r = 0, 1, 2 . . . . .  on 
a face of the hole. 

5. Non-abelian Stokes' theorem 

In the abelian theory, Stokes'  theorem relates the Wilson loop variable to the 
magnetic field on some surface bounding the loop: 

exp ( i ~c A ,  dx") = exp ( i fs F,,~ dtr~ ) . (5.1) 

The analogue for the non-abelian theory is to specify some minimal local data on 
a surface which enables us to compute  the Wilson loop variable for the contour 
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Fig. 5. The dotted lines are the base lines chosen. 

bounding it. With the experience gained in sect. 3, it is easy to obtain the data to 
be specified. For this we first give a complete gauge fixing for an arbitrary non- 
selfintersecting open surface. We begin with the d = 2 case. 

Consider a connected section of an x-line (i.e. a line parallel to the x-axis) 
intersecting the surface. We will call this base line 1. Consider connected strips of 
plaquettes along y-lines intersecting the base line and lying on the surface. These 
form a (connected) region to be called region 1 (fig. 5). Consider some other x-line 
intersecting part  of the surface exterior to region 1. A connected part of this line 
lying on the surface but exterior to region 2 will be called base line 2. Region 2 is 
defined with respect to this base line as before. We continue this procedure until 
the regions cover the entire surface. Our  choice of gauge corresponds to choosing 
all the y-links to be unit matrices as also all the x-links on each base line (fig. 5). 
In case the surface is multiply connected, one of the link variables (e.g. b) on some 

of the base lines cannot be gauged to one. Finally there is the freedom of global 
gauge transformation. 

Starting with region 1 the free links are successively fixed with respect to the 
base line using Wilson loops involving at most three plaquettes at a time (generic 
case) as in sect. 3. In each successive region, two of the links, e.g. links (a) in fig. 5, 
have to be completely fixed using some of the plaquettes of the regions already 
covered. But for this, other link variables are fixed as for region 1. In case of 
multiply connected regions, the link variables on the base line which is not gauged 
to one has to be fixed by specifying N 2 Wilson loops around the corresponding hole. 

Once such gauge-invariant data on the surface are specified, it is easy to recon- 
struct the link variables with a complete gauge fixing and thereby the Wilson loop 
for the contour bounding the loop. 

In the case of d = 3, we consider sections of the surface in various z = constant 
planes. In general we encounter  disconnected regions and lines in each plane. In 
each plane the gauge is chosen as for d = 2. There is a f reedom of global gauge 
transformation for each disconnected region in each plane. This completes the 
gauge fixing. 

The data are specified for each disconnected region in each z = constant plane 
as for d = 2. The plaquettes connecting two adjacent planes are fixed as follows: 
two plaquettes with the smallest (x, y) coordinates are fixed with respect to the 
z-plane below. Then all the plaquettes connected to these are successively fixed 
using three neighboring plaquettes at a time. This is repeated for each disjoint set 
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Of plaquettes perpendicular to the z-plane.  Moreover,  it is necessary to fix two 
plaquettes from each disjoint section in each z-plane with respect to the lower 
sections. 

Thus given any surface bounding a given contour and enough gauge-invariant 
data on such a surface, Wilson loops of the form tr c" (where c" corresponds to n 
traverses of the contour) can be calculated. We get the same values for this 
observable,  whatever surface we choose. We may therefore use these variables to 
define non-abelian magnetic fluxes [9] through an open surface as the N phases 
O~[c] (with 0<~ 0~ <27r)  of the eigenvalues of c. We may use these fluxes to provide 
a gauge-invariant criterion for the (N - 1) varieties of monopoles  in a SU(N)  gauge 
theory recently proposed by 't Hooft  [10]. To know the monopole  types at a given 
point, we surround the point by a small sphere and parametrize the sphere by 
mapping it onto a unit square S whose boundary is identified with a point p on the 
sphere (our construction works only for the continuum theory): 

S = {(s, t), 0~<s, t<~l}.  (5.2) 

We may now construct a sequence [6] of loops c(s), 0 ~ s  ~ 1 corresponding to the 
points s = const, on S which begin and end at P and which sweep out the sphere 
as s changes from 0 to 1. This gives us N functions {0,(s)} where 8i(s) are the fluxes 
associated with the contour c[s]. 8,(s) are arranged to be differentiable functions 
of s by suitable ordering of the eigenvalues and by suitable additions of multiples 
of 2~-. Then for any smooth gauge field configuration 

0,(1) = 2~rni, i = 0, +1, +2 . . . . .  (5.3) 

and ni determines the monopole  number  of type i. 

6. Comments  and conclusions 

Our aim in this paper  was to understand certain questions of principle in 
connection with non-abelian gauge theories: labelling the physical states in terms 
of local observables both of color electric field and color magnetic field; the number  
and type of non-local variables to be specified when space is multiply connected; 
the local gauge-invariant data to be specified on a surface to be able to reconstruct 
observables connected with the contour bounding the surface etc. 

Though our labelling in terms of the color electric field observables was the 
minimal possible, the parameters  involved are not all independent  of each other. 
Thus given the Casimir invariants of E(n, i) and ~(n - i, i) for some (n, i), those 
of DiE(n,  i) are not altogether independent.  Neither is the hamiltonian simple in 
terms of these variables. The same is true for the case of magnetic field observables. 
In this sense, labelling by the gauge-dependent  potentials has unquestionable 
advantage. Nevertheless, our efforts have the advantage of telling what is the 
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minimal set of measurements needed to completely specify the physical states of 

the system. 
Our labelling in terms of the color electric field provides a set of products of 

Wilson loop operators which operating on the strong coupling vacuum generate a 

complete set of orthonormal states. 
All our considerations were in gauge theory on a lattice. We may now raise the 

question of the relevance of our results to the continuum theory. The continuum 

theory may have simplifications not to be seen in the lattice theory. In fact in the 
continuum theory the color components of the electric field commute among each 
other (at equal times) whereas this is not true in the lattice theory. Therefore the 
states of the extended Hilbert space can be labelled simultaneously by the color 

components: i{E(x)~}). (Our analysis is heuristic in what follows. We will not worry 

about the care to be taken in defining the Hilbert space.) As usual the physical 

states are obtained by averaging over the gauge transformations: 

Thus the physical states are simply characterized by the equivalence class 

{E(x/i; E(x)i  ~ V(x )E(x ) ,V(x )~} ,  

and from sect. 3 it follows that the minimal set of class invariants characterizing 
this class is tr (E (x)~E(x)~) and tr (E(x)~ E(x))E(x)3) ,  r, s = 0 . . . . .  (N - 1 ), r + s ~ 0 

(in the generic case). Thus the labelling now is altogether different from what it is 
in the lattice theory even in the content. It is not necessary to specify correlations 

of the color field at the neighboring points. It is impossible to find a corresponding 
labelling in the lattice theory. On the other hand the continuum theory must have 
a labelling similar to that of the lattice theory. 

The above labelling in the continuum theory, in terms of the electric field may 
raise the hope that a similar labelling may exist in terms of the magnetic field in 
the continuum theory. There would then be E ~  B symmetry at the level of the 
physical Hilbert space. However, it is well known [10] that the color magnetic field 
by itself (without covariant derivatives) does not uniquely characterize the potential 

up to a gauge transformation so that the possibility is excluded. 
Many of our results for the magnetic case are directly known in the continuum 

theory, e.g. ref. [5]. The new results in the present paper are the specification of 
the minimal number of derivatives required, the boundary data to be employed, 
data expressed in terms of gauge-invariant quantities, inclusion of matter fields, etc. 

We have also found that for the non-abelian case it is necessary to specify not 
only the magnetic field (invariants) but also certain of its covariant derivatives 
(along the surface) to be able to compute the Wilson loop for the boundary of the 
surface. For the continuum theory, there is a more natural procedure for specifying 
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the  da t a  on the surface.  The  surface  can be m a p p e d  on to  a unit  square  and the 

da t a  specif ied as in the  2d case. 

I have  benef i t t ed  f rom a crucial  discussion with Professor  G.  Mack.  I thank  Dr.  

P. Weisz  and Professor  H. Joos  for  careful ly  r ead ing  the  manusc r ip t  and  for  helpful  

suggest ions .  

A p p e n d i x  A 

C o n s i d e r  the  equ iva lence  class 

{U, V; (U, V)~(DU12*, 12VI"2~'), U, V,//E SU(N)}. (A.I) 

Then a minimal set of class invariants characterizing this class completely is 

t rUrV ' ,  O<~r,s<~N-l, r+s#O. (A.2) 

To see this we choose a representative matrix of each class as follows: £2 [eq. (A. I)] 
is chosen to diagonalize m. In the generic case this fixes/'/up to a diagonal SU(N) 
matrix. (Non-generic cases considered later.) Let A be a matrix diagonalizing V: 

V = AMA ~, A ~ U(N). (A.3) 

If A is a solution, so is A[2', where/'2' is a diagonal U(N) matrix. We now fix .(2 

and .O' completely by requiring 

A ,~, Ai ,  (i = 1 . . . . .  N )  = real  pos i t i ve .  

If some  of the  e l emen t s  a re  zero  (a non -gene r i c  case) we choose  the  first n o n - z e r o  

e l e m e n t  in the  co r r e spond ing  row or  co lumn to be real  posi t ive.  W e  have 

tr U r W  ' = ~. A 7~IA,jl 2 (A.4)  

where  A~ a n d / z  i (i = 1 . . . . .  N )  are  the e igenva lues  of U, V to be d e t e r m i n e d  f rom 

( A . 2 )  for r = 0,  s = 0 respect ive ly .  W e  have the add i t iona l  iden t i ty  

N = E IA,,I 2. (A.5) 
i.i 

We have (the Van-der-Monde determinant) 

N 

[det D(,i~ (r~}] = I-I (hi--h,)N(/z~--l . t i )  N, (A.6)  
i.i= 1 
( i~j)  

where  

D,ii~ ~'~' = A d.t i ,  

so that  in the  gener ic  case we may  invert  (A.4)  and  (A.5)  to get  IAiil. 

(A.7)  
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Fig. 6. T h e r e  a re  two  cho ices  for  04 l and  0~). 
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We see that we have N or thonormal  vectors A', i~= A~i with A (l), and A")~ real 
positive and with IA'",I specified. We will show how A(i l  i may be completely 
recovered• The ~ N ( N -  1) (complex) orthogonality equations are all independent.  
Each (complex) equation imposes two constraints. In fact each condition requires 
that the vectors A(i~A~k~ (j and k ~ j  fixed, i = 1 . . . . .  N)  in the complex plane 
form a closed N-polygon (fig. 6). Moreover,  the base of the polygon (corresponding 
to i = 1) is specified to be along the real axis. Therefore  if we fix 0] . . . . .  0,~,-2 there 
are at most two solutions for 0N- ~ and 0,~ (fig. 6). 

This way we may undertake to express the phases 0,~ (where A i i =  JA~il exp iOii) 

successively in terms of other phases (up to the discrete ambiguity). For example,  

the orthogonality of A '1' and A (i~ ( j >  1)  is used to express 02i and 03, ( / ~  1) in 
terms of the other phases. Next the orthogonality of A ''~ ( / '>2 )  and A ~2~ is used 
to eliminate 04i and 05i ( /= 1 . . . . .  N).  This procedure finally leads to solutions 
for 0~j making use of just ~(N - 1)2 (for N = odd) orthogonality conditions for any 
choice of the discrete ambiguities. We have to now use the remaining ½ ( N - 1 )  
conditions to eliminate this discrete ambiguity. We have not found a general proof 
that such ambiguities are uniquely resolved. But in all concrete examples this has 
been found to be the case. We have also not found any invariances (in the generic 
case) in the orthogonality equations which allow more than one solution (apart 
f rom the complex conjugate solutions which are resolved because the eigenvalues 
of V are known). 

We will now consider non-generic cases. If a set of eigenvalues of U coincide, 
then the diagonalizing matrix .(2 has more arbitrariness. Thus if the last rn eigen- 
values coincide, we may use SU(N)  matrices of the form (kl ~ k 2  ~ " " " ~ kN-,,)  

kl 

k2 

k N  -m 

m x m  
i 

to further bring A to a special form. To be specific, we require the corresponding 
m x rn submatrix of A to have the upper-tr iangular  form with the diagonal elements 
real positive. 

Now it is only possible to obtain JA,ii 2, i < N - m  and Y~:,,~_,, IAiil 2 from eq. 
(A.4). We may now repeat  the previous arguments for the special form of A,, we 
have, to show that A,j is fixed (up to at worst some discrete ambiguities in the phases). 
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Appendix B 

MINIMAL COMPLETE SET FOR THE CLASSICAL THEORY 

In the classical theory the configurat ion at any ins tant  of t ime is descr ibed by 

the potent ia ls  A~(x, t) and their  conjugates  E,(x ,  t) (in the c o n t i n u u m  case). 

However ,  configurat ions which are gauge equiva lent  are physically indis t inguish-  

able. Therefore  we have again to describe the configurat ion by quant i t ies  that are 

locally gauge invariant .  In contrast  to the quant ized  theory,  both the electric and  

magnet ic  field variables have to be s imul taneous ly  specified to describe the state 

completely.  As in the previous sections we will make  the p rob lem simpler  and well 

defined by discretizing the space. We will fix a gauge complete ly  as in sect. 3. Now 

in addi t ion  to the free link variables,  the electric field variables E ( n ) ,  = E ( n ) ~ T "  

have to be specified at each lattice site. For  this we simply specify the min imal  

Wilson loop variables cons idered  in sect. 3 and in addi t ion the gauge- invar ian t  set 

tr (U~ U ~ E ( n i ) ) ,  0 <~ r, s <- ( N  - 1), r + s ~ 0 (in the generic case). Here  Ul  and U2 

are two distinct local loop variables beg inn ing  and ending  at the site n. This 

addi t ional  set of variables cor respond to quant i t ies  like tr (E(x)~B(x); lD'k2B(x)~  ~) 

in the con t i nuum theory.  

Since any gauge- invar ian t  quant i ty  can be expressed in terms of our  local set, it 

is possible to ob ta in  a closed set of first-order evolu t ion  equa t ions  for our  gauge-  

invar ian t  variables - in principle.  However ,  the usefulness of such equa t ions  is 

ques t ionable .  
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