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A general method is presented for the study of the infrared dynamics an quantum elec- 
trodynanucs As an illustrative example the method as applied to the electron form factor The 
proof of the famous exponentlatlon as very simple and needs no order by order mvesttgat~on of 
perturbataon theory The correct renormallzauon of the form factor as automaucally obtained Its 
asymptotac behawor at large momentum transfer shows the well-known Sudakov suppression m 
addmon to the exphcxt infrared dwergences. The Sudakov behawor xs intimately related to the 
mfrared-dtvergent Coulomb phase via an Omn~s representation, 

1. Introduction 

In this work we present a new method for a consistent treatment of the infrared 
behavior in QED. It is based on a hatmltonian which contains the full infrared 
dynamics of  QED. This hamiltonian is derived from the exact Q E D  hamaltonian. In 
contrast to an earlier treatment of the infrared problem by Kulish and Faddeev [1] 
we use a fictitious photon mass ~ instead of the time t as an infrared regulator. This 
allows us to perform explicitly the limit t --, oo and thereby we obtain a well defined 
unitary S-operator in Fock space. Due to the simple structure of the infrared 
hamiltonian we obtain a closed expression for the S-operator no longer involves the 
complicated time ordering of the full S-operator. Our S-operator has a nice physical 
interpretation since it creates coherent states which describe a cloud of an infinite 
number of soft photons. 

'On leave of absence from Fachbere~ch Phystk, Umversxtat Slegen, Germany 
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We demonstrate the power of our method by applying it to the calculation of the 
renormalized Dirac form factor of the electron. The famous exponentiation [2-11] of 
the form factor in the infrared region follows immediately from the exponential form 
of the S-operator. We thereby avoid a tedious study of an infinite number  of 
Feynman diagrams. A diagrammatic interpretation of our result can be given in 
terms of three graphs only. These graphs already include the ultraviolet renormaliza- 

tion of the exponentiated form factor. 
Since we work in the time-fike region we also get the complex phase of the form 

factor which is analoguous to the well-known Coulomb phase in electron scattering. 
It turns out that the Coulomb phase of the form factor is identical to the infrared 
contribution to the imaginary part  of the exact order e 2 form factor. This allows us 
to cast the exponentiated result into the form of an Omn6s representation. In the 
high-energy limit we obtain for the form factor a double logarithrntc suppression in 
agreement with the well-known leading logarithmic result [2-11]. This behavior can 
be seen to be a direct consequence of the analytic structure of the form factor as 
expressed by the Omn~s representation. 

The method described in this paper can also be applied to Yang-Mills theories. A 
first step in this direction has been undertaken in refs. [12, 13]. We hope that our 
treatment of the infrared behavior provides also in quantum chromodynarmcs a 
systematic method to attack the soft gluon problem. 

2. The infrared dynamics of QED 

Our starting point of the study of infrared properties in QED is the observation 
made by Kulish and Faddeev [1] that the infrared structure is completely determined 
by the large time behavior of the hamiltonlan*. In the interaction picture the 

interaction hamiltonian - in terms of free fields - is given by 

with 

Hi(t ) -- f (1) 

* This is easdy seen from the fact that the U-operator at flmte times shows no infrared singularities, see 
eq (6) 

j (x) = -e :q7 

We now decompose the above hamiltonian into 

H (t) = Jqi(t) + H i ( t ) ,  (2) 

where the infrared hamil tonian/4i( t )  is defined as the dominant term of Hi( t  ) in the 
limit t = x  ° going to infinity. In the Kulish-Faddeev approach where massless 
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photons are used the infrared singularities appear as singularities in the time t. This 
means that t plays the r61e of an infrared regulator. Since the evaluation of the 
S-operator involves an infinite time limit one obtains an S-operator which ts no 
longer a unitary operator in the usual Fock space but acts instead in the larger space 
of coherent states. 

If one introduces a fictitious photon mass as done in most of the calculations one 
can carry out the time limit and obtains a well-behaved S-operator in Hilbert space. 
This leads us to the modification of the Kulish-Faddeev approach where the 
decomposition, eq. (2), is performed by giving the photon a fictitious mass. A study 
of the large time linut of Hi( t  ) with massive photons leads to the following form of 
the spin non-flip part of the infrared hamil tonian/ t i  (see appendix A) 

/~i(t) = f d3x ~(x)A~(x), (3) 

where the asymptotic current is found to be 

J~(X) = f d3po(p)P"~(3'(x--P--t) 
60 \ ~0 

(3a) 

with the charge density operator 

O(P)  = - - e ~  [b t (p ,  r)b(p, r)-dr(p, r)d(p, r ) ] .  (3b) 
r 

Here p"  = (~0, p)  denotes the electron/positron 4-momentum, ~0 = (p2 + m 2 ' rn = 
electron mass*. (For details of the notation see appendix A). Eq. (3) has the same 
form as in the Kulish-Faddeev approach apart from the fact that A"(x) stands now 
for the massive photon field. The infrared hamlltonian/~t describes the interaction 
of the photon with a quasiclassical electron-positron current. Since the charge 
operator commutes with the fermion number operator the current j~ conserves 
separately the numbers of electrons and positrons**. Thus the infrared hamiltonian, 
eq. (3), describes the absorption and emission of photons and does not contain the 
annihilation and creation of electron-positron pairs. This was to be expected since it 
is well-known that fermion loops do not lead to infrared slngularties. A further 
important property of the asymptotic current j~(x) consists in the fact that it 
commutes with itself, i.e.: 

" t X t [2(x),j~(x)]=O, for all x, . (4) 

The infrared structure of QED is completely described by the time evolutmn 

* The mass  m and the charge e are the r enormahzed  physacal quant t t l es  al l  th roughout  Tins  as 
consis tent  wxth the classical  na ture  of the current ,  eq (3a), and  follows f rom the fact that  the 
U-operator ,  eq (6), has  a mul t lphca t lve  mass  renormalazataon and  needs no  charge renormahza t lon ,  

~e Z3 = 1 
** Note  that  the current  (3a) is d iagonal  m the fermaon m o m e n t u m  
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operator U(t) which satisfies the equation 

d U ( / )  __ l t T i i ( t ) U ( t )  " (5 )  
dt 

The solution of this equation can be given in a closed form according to a theorem 
by Magnus [ 17]: 

U(t)=exp{-tfilYti(tl)dt,+½(-i)2fldt2fti2dtl[IYIi(t2),IYti(tl)]}, (6) 

with U(to)= 1. 
This closed non-perturbative expression for the infrared dynamics is equivalent to 

the commonly used Dyson expression for U(t). It has the above simple structure due 
to the fact that 

[ [ /~I ( /1) ,  /~I( 12)], /~I(13)] ~- 0, (7) 

as follows from eq. (4). 

The transformation of the Fock space states [~> of the interaction picture by 
virtue of U(t) creates a photon cloud around the electrons/positrons present m the 
state 1~>. The new state [(> is given by 

I ( )  = (8) 

and is a coherent state*. It still hes in the original Fock space as long as the photon 
mass is kept unequal to zero. 

3. The on-shell electron form factor 

We now apply the formalism outlined in sect. 2 to the calculation of the on-shell 
electron form factor. 

The form factor F(s) is defined by means of the matrix element of the full 
electromagnetic current J,(x) ~ ~(x)~,,g,(x): between the Fock vacuum and an 
outgoing e -  e + coherent state I e e + )**: 

lim (e- (pl)e+ (p2)lJ~(O)lO) 
t~oo 

= lim ( e - ( p , ) e + ( p 2 ) [  U(t)J~(O)lO ) 

= hm ( e - ( p l ) e + ( p 2 ) [  U(t)le-(pl)e+(p2))(e-(pl)e+(P2)lJ~(O)[O ) 
t~O0 

= F(s)(e- (p,)e+ (Pl)lJ~(O)[O), 
-b 2 

s = ( P l  P 2 )  , 2__ 2__ 2 Pl --P2 -- m . 

(9) 

* For a discussion of coherent states see the references gwen m [1] and also ref [14] 
** As can be seen from eq (9) the on-sheU vertex function m the infrared region has only a "r~ term, since 

the harmltoman/I i ,  eq (3), does not contam any spin dependence This lmphes that the form factor 
F(s) is the Dlrac form factor Fl(S ) m the usual notatton 
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Here we have used the diagonality of U(t) with respect to electron/positron number 
and their momenta. 

If we now project the operator U(t) onto the subspace of one electron and one 
positron we obtain the following expression for the form factor: 

F ( s ) =  l i m ( 0 l U  e e+(t; p , ,p2)10) ,  (10) 

where U~-e+(t; Pl, P2) has the same form as m eq. (6) but with/4i( t)  replaced by its 
projection onto the one electron/one positron subspace: 

with 

/4e e+(t ;  Pl,  P2) = - -e  
p, .  A(t,  (p|/O) 1 ) t )  p2 " A( t, ( p2/to2)t ) ~-e 

I ¢'02 

= --eG(~) + eGO1), 

to~ ! w 2 ! 

It turns out 
c-number: 

½(-t)2fldtafi2dt,[IYIe-e+(t2; P,,  P2), He e+(t,; P, ,  P2)] 

= ke2f'dt2f'2dt,([O( 2), O(n,)] + [O(n2), 
to g0 

-- [G(~z),G(~,)]  - [ G ( ~ 2 ) ,  G(nl ) ]} .  

Defining the commutator function d ( ~ -  7) in Feynman gauge as 

d(~ - n) --[G(~),  G(n)]  

- PfP~ [A,(~),  A,(n)  ] = t  Pl "P2 D(,~ - -  n) ,  
¢.01~ 2 ¢,01092 

we obtain for the expression in eq. (12) 

½e f'dt2f'2dt,{d( 2-n,) + d(n2- 
to to 

- - d ( ~ 2 - - ~ l ) - - d ( n 2 - - ' l ~ l ) ) "  

(ll) 

that the second term m the exponent of Ue-e+(t; p~, P2) lS a pure 

(12) 

(13) 

(14) 

The vacuum matrix element of the first term m Ue-e+ is evaluated by decomposing 
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the exponent in its positive and negative frequency parts and applying the Baker- 
Campbell-Hausdorff  formula (G(+)I0) = C0] G (-) = 0): 

(O[exp ( w f£ dtl( G( ~, ) -- G( Th ) ) } lO) 

= (Olexp(tef£(G(-)(~l)-G('(B1) + G(+)(~,)-G(+)(BI))dt,} [0) 

=exp(-½(te)Z f/odtzf/odt,[(G(-~(~2)-G(-)(,2) ), 

(G(+)(~I) -- G(+)(nl))]  } • (15) 

Defining another commutator  function d ( + ) ( ~ -  7/) in the Feynman gauge as 

d~+~(~- n) -[6~-~(~), a(+~(n)] 

_ P,e2 [A~-~(~), A:+~(n)] = ,P '  "P2D~+~(~ - n), (16) 
091092 ~1~2 

we obtain for the form factor the following result: 

F(s) = e ' , - h ,  (17a) 

where 

I,(p,,p2)=ke 2 dr2 dtl(O(t2-t ,)a(~2-n~)-c#+~(~2-n,)+(~n)},  

I2(Pl, P2)= ½e2foO°dt2foO°dt,(O(t2 - t , ) d ( ~ 2 -  ~1)- d(+)(~J2 -- ~1) -~- ( ~ n ) } .  

(178) 

Here we have chosen the time t o = 0 in order to get the correct in- and outgoing 
fermion currents. Tbas is explained in detail in appendix B. An explicit evaluation of 
the integral I t in eq. (17b) shows that the terms containing d ~+) are purely real for 
--oo < s <  oo and those containing d are purely imaginary and vanish below 
threshold, s = 4m 2. 



H D Dahmen et a l /  Infrareddynarmcs of QED 371 

The form factor can be written in a more compact form using the following 
relation: 

O( t2  - -  tl  ) d ( ~ 2  - -  ~ 1 )  - -  a ( + ) ( ~ 2  - ~ 1 )  = l p l  p 2  
~ 1 ~ 2  

l P~SP--2fd4kk ~k(t2-~') (18) 
( 2 ~ )  4 ~10")2 - -  )k 2 -~- 18 ' 

where D v Is the Feynman propagator of the photon in Feynman gauge. We obtain* 

p . oo 

I , = ' e z ~ P Z f o  dtzfo dt ,Dv(~2-Tl , )  

_ feZ fd4k PI"P2 
(2,,,r) 4 ( k2 -X:+ze ) (k . -p - - t~ - t e ) ( k .p2 - t e )  ' 

(19a) 

.o0 . ~  ( m  2 m 2 
I2=½te2j~ dt:J; d t , ~ 2 D v ( ~ 2 - ~ , ) + - ~ 2 D r ( ~ : - , ,  ) 

J 0 0 ~('~1 

ie 2 1 f m 2 
d4k 

(2./r) 4 2 J k 2 - -  )k 2 --~ le 

× f  1 1 } (19b) 
(k .p, + (k "P2 

The result for I I coincides with that usually obtained by a rather revolved investiga- 
tion of complicated Feynman diagrams and their final summation in the leading 
loganthnnc approximation [2-9]. From eqs. (19a, b) follows 

I,( pl ,  - p , )  = I2(pl ,  - p , ) ,  (20) 

which lmphes 

F(0) = 1. (21) 

The function F(s) is therefore the renormahzed Dirac form factor 

F(s)  = FR(s ) = Z,FvR(S ) . (22) 

For the vertex renormahzatlon constant Z I we get from eqs. (17) and (22) 

Z l = e I2. (23) 

* In eq (19b) a term proporuona l  to 1 /e  has been subtracted m accordance with a multlpllcauve mass 
renormahzat lon of the U-operator, eq (6) 
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After carrying out the k ° integration in eq. (19a) we obtain for the unrenormahzed 
form factor 

FuR(S) = e 6 = e It '+I'2, (24) 

where 

e 2 
I l l  -- f d3k Pl "P2 

(2~r) a d 2 k 2 ~  k'Ptk'P2' 

_ e____~ 2 f d~kk_ P1"P2 I12 (25) 
(29) 3 J 2 ~ -  - i e  k.plk .p2'  

w i t h  k 2 =  ~k 2 and ~ =pl/~ol = --p2/0~2 in the c.m.s, of the electron and positron. 
In expression (25) the photon is on shell; therefore energy conservation restricts 

the integration over photon momenta k to the range O~[k[<~gts-4m 2 . The 
integral I l l  in eq. (25) is identical to the d ('-) contribution in eq. (17) and is 
evaluated as follows: 

a l + f l z f ~ ,  dkk 
I1 1 = ~ 2f l  "0  k 2 _1_ ~ 2  

f ~ + X 2  +ilk 
- -  In 

_ a 1 + f12 l.(i+~2/(s_4m2))_)/Zdu( ln (1  + flu) In(l + flu) 
2fl Jo ~ 1 - -u  l + u  

ln(1 -- flu) + ln(1 -- flu) I 
(26) 

1 - -u  l + u  J ' 

k - - l k l ,  
m2 e 2 

/~-I t31= 1 - 4 -  a = - - .  s ' 4~r 

Here we have introduced the photon velocity u = k / ~  as integration vari- 
able. We finally obtain after the use of several functxonal relations of fz(X) 

a l + f l 2 f ,  l + f l  ~k 
/11 - - ' ~  2-fl ~m 1 _-]--~ In 2-- ~ 

with 

(1_.) } 1 + fl _ f2 + -~Tr 2 (27) - k i n 2 1  - ' 

fiE(X) = __fo xln(1 --Z) dz 
Z 
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In the limit s >> 4m z we get 

s 
x , , = - - - 4 ~  h'~ - 4 1 n - ~ l n  . (28) 

For the integral Ij 2 in eq. (25) we obtain in the c.m.s. 

f l  I [ 1 +_ i~.8(flkcos v~)] _ a  l + f 1 2 / ~ - f ~ T ~ d k k 2  dcos~  e f l k c o s ~  II 2 ~r 2 "o 

X 
1 l 

(k 2 + X2 _ Bk cos 0 ~ + X 2 + ~k cos o 

1 + B 2 r ~  4m ~ k 

s - 2m 2 In s - 4m 2 
= ½ia ~ / s ( s_am2)  h2 

, s (29) --,~m In ~ for s >> 4m 2 • 

Putting the results of eq. (28) and (29) into eq. (24) we get for the large momentum 
behavior of the unrenormalized on-shell electron form factor the following result: 

FuR(s ) ---- exp -- ~ ln2~-- T -- 41n ~ In 

+ ½ t a i n t } ,  s>>4m z • (30) 

For the integral I z in eq. (19b) we get 

e z m2fvrs -~4~  d k k  2 [ 1 ~ 1 
I 2 -  (2~r) 3 2 ,o 2 k 2 ~ - ~  f d 2  ( k . p , )  2 ( k . p z )  2 

_ . a  In - - I n  - I n  

-o -a In ~ for s >> 4m 2 . (31) 
rr 2 m '  

Eqs. (17), (19a, b), (27), (28), (29), (31) give for the renormalized Dirac form factor 
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the final result 

F(s)=exPl 2(2~)" f k2--X~---+,~ k.p, +,~ k.p~-,~ ' 

ln  m- 'ln2s m   
s>>am 2 

+½mln~22}, 

where 

B(s) l+fl2[ l + f l  1 2 ~  In 1----~-l~r - 1, 

C(s)-l+f12[ ' 2 1 + f l  ( 1 - - f l )  1--fl l + f l  2B ¼m +l--+-sln 

2/3 2fl f 1 2 ]  
l + f l 2 l n  l + f l  {~r2--½t~rln 1----~J 

/3= f f l  -4m2s ' s>4m2" 

(32a) 

(32b) 

(32c) 

(33a) 

(33b) 

4. Discussion and conclusions 

In sect. 3 we have calculated the renormalized on-shell Dirac electron form factor 
in the infrared region. Our result for the unrenormalized form factor, eq. (24), agrees 
in the space-like regmn with the famous exponentlation obtained by previous 
authors [2-11]. The proofs given by these authors are rather complicated since they 
required a detailed study of perturbation theory order by order. The slmphcity of the 
result suggested an easier derivation which has been given in the present work. Our 
simple proof was based on a modification of the Kulish-Faddeev approach. The 
complicated order by order investigation in perturbation theory has been replaced 
by the closed exponential form of the U-operator, eq. (6). Due to this exponential 
form of the U-operator we also obtained an exponentlated result for the vertex 
renormahzation constant Z~, eq. (23), and we therefore got automatically the 
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multiplicative vertex renormalization. This led us to the exponentlation of the 
complete renormalized form factor (32a) which is manifestly gauge invariant. The 
real part of the expression in the exponent is the well-known order e 2 result for 

radmnve corrections to electron scattering [15]. 
The evaluation of the mtegral in eq. (32a) gave the result (32b), where the infrared 

fimte functions B(s) and C(s) were given in eqs. (33a, b). The infrared-divergent 
part in the exponent, (a/~r)B(s)ln(X/2m), has no imaginary part for s < 0 and has 
already appeared m Schwinger's calculanon of the radiative corrections [15]. 

For large s in the time-like region the renormalized form factor behaves as (32c). 
The double logarithmic terms m eq. (32c) have been found in the leading logarithmic 
approximation under the conditxons c~lnZ(s/m2)~ 1 and aln(s/m2)<< 1. In our 
derivation of the form factor no such restrictions are needed. At first sight it would 
seem that the double logarithmic term lnZ(s/m 2) is not correlated to the infrared 
behawor. That this term is indeed entirely of infrared origin can be seen from the 
imaginary part in the exponent, eq. (32c), which necessarily leads via analyticity to 
the above double logarithm, see eq. (34). This intimate connection between the 
double logarithm and the infrared behavior could not directly be seen in previous 
invesugations since these were carried out in the space-like region where the 
imaginary part vanishes. It is interesting to notice that the imaginary part is nothing 
else than the well-known divergent Coulomb phase the physical interpretation of 
which has always been somewhat unclear. A relation between the corresponding 
Coulomb phase in quark-antNuark scattering and the quark-antlquark potential has 

been established in ref. [13]. 
It ~s remarkable that our form factor result has an Omnhs representation 

{s /-~ ds '  I_m I~(s') } 
F ( s ) = e x p  4 m  2 St St S__l  e , 

(34) 

where the imaginary part t Im I 1 = I 12 has been calculated in eq. (29). 
From eq. (32b) it follows immediately that our renormalized form factor obeys the 

infrared differential equation 

OF(s) _ ~B(s)F(s), X OX (35) 

which has been shown to hold in all orders of perturbation m ref. [9, 16]. Moreover, 
these authors established a Callan-Symanzlk type equation for the infrared-finite 

form factor °Y(s): 

0 ) ~ =  0, (36) ( - ~ +  B(a)a~--~-F(t,a) 
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X F ( s ) - - - - e x p - - C ( s )  f f ( s ) - - e x p -  B(s)ln~-~m ~r ' 

t = l l n  s__~- 
m 2 ' 

m da 2 a ~_O(a2). 
d m  - 3 

The quantity F plays the r61e of a t-dependent "anomalous dimension". With our 
form factor result, eq. (32c), the eq. (36) is fulfilled and we obtain 

F(t,a)--2-~t+O((-~)2). (37) 

The leading term in eq. (37) agrees with ref. [9]. 

Furthermore, we would like to point out that the terms in the exponent of the 
form factor, eqs. (17) and (19), have a simple diagrammatic interpretation. The 
integrals of eq. (19) can be obtained by the following infrared graph rules in 
momentum space. A fermion propagator is represented by 1, since the fermions are 
considered to be classical particles. The photon propagator is identical to the usual 
Feynman propagator - tgt,~(k 2 - X 2 + re) -1. The electron-(positron)-photon vertex 
is given by ~-tep,(2k . p ) - l ,  where k is the photon and p the fermion momentum. 
The integration over internal photon momenta has to be carried out with the 
measure (21r) 4d4k. There is a factor 2 for each infrared virtual photon line 
corresponding to the two directions that each line might be thought to flow. In 
addition another factor 2 is needed for each virtual photon line connecting two 
different fermions. Tins weight factor can be inferred from the apparent symmetry 
in eq. (17b). We want to emphasize that these rules are by no means Feynman rules 
in the sense of perturbation theory since they do not generate the S-matrix but 
rather the logarithm of the S-matrix. Due to the simple structure of the infrared 
hamiltonlan only diagrams of order e 2 have to be taken into account. For the case of 
the form factor considered in tins work we are left with three diagrams only, 
depicted in fig. 1. 

Our starting point of the modification of the Kuhsh-Faddeev approach (as 
explained in sect. 2) was the following result derived in this approach for the 
unrenormahzed electron form factor: 

F u R ( S ) = e x p  - - lnm-~ ln~o+½ m 2] -~0 " (38) 

Here the time t plays the r61e of an infrared regulator; the time t o is arbitrary. With 
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Fag, 1 DlagrammaUc lnterpretaUon of the renormahzed electron form factor, F(s)= e 6 - 1 L  eq (17a) 
The first diagram represents the integral I~, eq. (19a), and determines the unrenormahzed form factor 
FuR(s ) = e It The second and third diagrams represent the integral I2, eq (19b), and determine the vertex 

renormahzatlon constant  Z 1 = e-I2 

the relation t / t  o = (S-/X we reahze that the imaginary part  in the exponent of eq. 
(38) is identical to the one m eq. (30) obtained in our approach. This identification 
implies for the real part  in the exponent of eq. (38) 

--~ In s In X 
V - ,/r m 

which is identical to the corresponding infrared part  in eq. (30). However, it does not 
contain the double logarithmic term -(a/4~r)ln2(s/m2).  We observe that the 
original Kulish-Faddeev approach produces correctly the infrared-divergent terms 
but does not lead to the desired double logarithm. 

In this paper  we have presented a new treatment of the infrared problem m QED 
based on an mfrared hamiltonian with fictitious photon mass X, eq. (3). This 
hamiltonian leads to a closed expression for the S-operator which is a well-defined 
unitary operator in Fock space due to the non-zero photon mass. Tins S-operator 
dresses the electron with a photon cloud in the form of coherent states. This simple 
S-operator allows a rather elegant and consistent treatment of the infrared behavior. 
This has been illustrated by applying our method to the on-shell electron form 
factor. We thereby immediately obtained the famous exponentiation of both, the 
renormalized and unrenormalized form factor. There was no need to carry out an 
explicit renormalizatlon procedure. This method constitutes an important improve- 
ment compared to the conventional treatment which reqmres an order by order 
study in perturbation theory. The infinite number of Feynman dmgrams are re- 
placed by the three diagrams shown in fig. 1. The success of our method encourages 
us to attack the crucially important soft gluon problems m quantum chromo r 
dynamics, see ref. [12, 13]. 

One of us (B. Sch.) expresses his gratitude to the directorate and the theory group 
of DESY for the warm hospitality extended to him. 
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Appendix A 

DERIVATION OF THE INFRARED HAMILTONIAN 

We are studying the large time behavior of the interaction hamdtonian in the 
interaction picture 

Hi( t )  = f d3x j .(  x )A"( x ), 

where 

j , ( x )  = -e :q7  (x)y , ,P(x) : .  (A.1) 

This study requires the use of explicit representations of the free field operators: 

dap ~ 2 ( b ( p , r ) u ( p , r ) e - W X + d t ( p , r ) v ( p , r )  e'px} 
(27r) 3/2 r=l,2 

- + q / - ) ( x ) ,  ( A . 2 a )  

where m is the electron mass, oa its energy and q/+), ~(-) denote the positive and 
negative frequency parts of q,; ~7 = ~p+y0. In the Feynman gauge we have 

3 
d3k 1 ~] (a(k ,o)e~(k ,o)e  'k X+at(k,o)e~,(k,o)e'k x}, 

=a/" (2Tr) 3 2k° o=o 
AN(x) 

(A.Zb) 

where k ° =  v/k 5 + A2 and A denotes the fictitious photon mass. 
Rewriting the interaction harmltonian by means of the positive and negative 

frequency parts of the electron field, 

t ) = - e l  d3x: { ~( + )( x )yJ/~ + )( x ) + f~+)(x)yu~P(-)(x) 

+~(-)(x)~,  ~b(+)(x)+ ~ ( ' ( x ) y . ~ b ( - ) ( x ) ) : A " ( x ) ,  (A.3) 

we obtain for the first term of eq. (A.3) 

f d3xf(+)(x)Y, tP(+)(x)A"(x) 

r2, f d3P d3p ' d3k m b t (p , , r , )b (p , r )K(p , , r , ) y ,u (p , r  ) 
• ,o (2rr) '/2 (2rr) 3/2 2k° 

× {a(k,  o)e~(k, 0 ) 6 ( 3 ) ( p ' - p  - k)e '(~" '~-k°" 

+ a t ( k ,  o)e'*(k, 0)6(3)(p" - p  + k)e  '(~' '~+k°"}. (A.4) 
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We can perform the p '  integraUon. This y~elds us for the energy factors in the time 
exponentials for small photon momenta k: 

o 9 , _ w _ k O = ¢ ( p + k ) 2 + m 2 ¢ p 2 + m 2 k O _  k ' p  + O(k2)  ' 
£d 

¢ o ' - ~ o + k ° : ¢ ( p - k ) Z + r n Z - ¢ p 2 + r n Z + k  ° - k ' p  + O(k2) .  (A 5 )  

Since in the hnut t ~ oo the dominant contnbut~on to the integral (A.4) comes from 
k = 0 one gets for the spin non-fhp part 

f dax ~(+)(x)'y~#(+)(x)A~(x) 

d3k 
-~ ~ u  w~Jd3pb*(p'r)b(p'r)~" J (2~r)32ko{a(k'a)e~(k'o)e ,(kp/,o)t 

+at(k,  o)e~*(k, o)e '(k p/,~),}. 

Carrying out the same steps for the second term of eq. (A.3) we get 

(A.6) 

f d3xfV~+)(x)v,+( )(x)A,(x) 

E o f d3p b+(-p, r')d*( p , r ) -~  f f ( - p ,  r')Tuv(p,r) 
Itl ~°° r, r', 

.//" d3k {a(_k ,o)e , (_k ,o)e , (2~ k p/~), X 
(2~r)32k ° 

+a*( -k ,  o ) e " ( - * ,  o)e  '~2'~+* P/')'}. (A.7) 

In the hmlt I t [ - - ~  the time exponentials m eqs. (A.6) and (A.7) become 
(k .p /w)t  --, = ?~t and (2w ~- k .p /w)t  --, (2w w ~)t. It is evident that for X ~ 0 eq. 

(A.6) gives the don'nnant contribution since ¢0 can never vanish for masswe fermlons. 
If the same procedure is performed for the third and fourth term of eq. (A.3) it is 
found that only the fourth term is leading. We therefore obtain for the spin non-flip 
part 

I¢,(,) : a (r)=E f d po(p) f d3, (a(k,o)El~(k,o)e_t(kp/~)t 
o (2~r)32k ° 

+at(k,  o)e~*(ko)e,(k p/~)t} 

=f d3x (A.8) 
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where 

H D Dahrnen et al / Infrared dynamtcs of QED 

p ( p )  = - e ] ~  [b*(p, r)b(p, r) -dr(p,  r)d( p, r ) ] .  
g 

(A.9) 

Appendix B 

THE ASYMPTOTIC FERMION CURRENTS IN MOMENTUM SPACE 

Eq. (A.9) yields for the asymptotic one-electron current the classical electron 
current 

~e(x)=(e-(p)~(x) le-(p))  = _e~(3) (x  Pt ) 
(e ( P ) l e -  ( p ) )  ~0 

= -e~O( t - - t ° )80) (x -p t )  --eP~o(--(t-t°))~O)( ~o 

- -Te X. = J ; ( , o u t )  re . +Jf,(X, in),  (B.1) 

which we have decomposed into out- and ingolng currents with respect to the time 

t o. In momentum space we obtain only for the choice t o = 0 the correct classical 
expression 

f T-iep~, d4xe,k x.'e(x, out -- (B.2) "J~, ,m ) k 'p±te  

This shows that t o = 0 is the correct initial time for solving the time evolution 
equation, eq. (5). 

Note added in proof 

Although a non-vanishing photon mass ~ vmlates gauge mvariance, it is well-known 
that it does not violate current conservation and the Ward identities of QED, e.g. 
Z l = Z 2, if one works with Stueckelberg's lagranglan in the Feynman gauge as we 

did m this paper. However, in non-abelian gauge theories like QCD, the introduction 
of a fictitious gluon mass leads to serious difficulties, and it is therefore mandatory 
to use an infrared regularization which exphcitly preserves the gauge invariance of 

the theory. A very elegant and gauge-invariant method is the dimensional regulanza- 
tion of 't Hooft and Veltman where Feynman integrals are computed in space-time 
dimension n = 4 + e. To regularize the infrared singularities one requires e > 0. 
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W e  have  checked  tha t  the  resul ts  p r e s e n t e d  in this  p a p e r  r e m a i n  u n c h a n g e d  if  

d i m e n s i o n a l  r egu la r i za t ion  is used  a long  wi th  a phys i ca l  mass less  p h o t o n .  In  

in tegra l s  o v e r  p h o t o n  m o m e n t a  o n e  m a k e s  the  r e p l a c e m e n t  

f d3 k d3+~k 

(2rr )  3 (2~r) 3 + ' '  

wh i l e  the  cha rge  e is r ep laced  b y  e/~ - ' / 2 , / *  be ing  an  a rb i t r a ry  mass  scale. T h e n  o u r  

resul t  for  the  e l ec t ron  f o r m  fac tor ,  eq. (32b),  r ema ins  the  s a m e  a p a r t  f r o m  the  

r e p l a c e m e n t  

)t 1 ~_l(ln 7 r _ , / ) + l n / ~  
In 2 m  --" - ~ -  m ' 

w h e r e  -/ = 0 . 5 7 2 2 . . .  deno te s  Eu le r ' s  cons tan t .  S ince  the  e l ec t ron  mass  m sets the  

mass  scale, i t  is na tu r a l  to c h o o s e / ~  = m. 
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