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A general method 1s presented for the study of the infrared dynamics in quantum elec-
trodynamucs As an illustrative example the method 1s apphed to the electron form factor The
proof of the famous exponentiation 1s very simple and needs no order by order investigation of
perturbation theory The correct renormalization of the form factor 1s automatically obtained Its
asymptotic behavior at large momentum transfer shows the well-known Sudakov suppression 1n
additon to the explicit infrared divergences. The Sudakov behavior 1s intimately related to the
frared-divergent Coulomb phase via an Omnes representation.

1. Introduction

In this work we present a new method for a consistent treatment of the infrared
behavior in QED. It is based on a hamiltonian which contains the full infrared
dynamics of QED. This hamiltonian is derived from the exact QED hamuiltonian. In
contrast to an earlier treatment of the infrared problem by Kulish and Faddeev [1]
we use a fictitious photon mass A instead of the time ¢ as an infrared regulator. This
allows us to perform explicitly the limit # —» co and thereby we obtain a well defined
unitary S-operator in Fock space. Due to the simple structure of the infrared
hamiltonian we obtain a closed expression for the S-operator no longer involves the
complicated time ordering of the full S-operator. Qur S-operator has a nice physical
interpretation since it creates coherent states which describe a cloud of an infinite
number of soft photons.
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We demonstrate the power of our method by applying it to the calculation of the
renormalized Dirac form factor of the electron. The famous exponentiation [2—11] of
the form factor in the infrared region follows immediately from the exponential form
of the S-operator. We thereby avoid a tedious study of an infinite number of
Feynman diagrams. A diagrammatic interpretation of our result can be given in
terms of three graphs only. These graphs already include the ultraviolet renormaliza-
tion of the exponentiated form factor.

Since we work 1n the time-like region we also get the complex phase of the form
factor which 1s analoguous to the well-known Coulomb phase 1n electron scattering.
It turns out that the Coulomb phase of the form factor 1s identical to the infrared
contribution to the imaginary part of the exact order e? form factor. This allows us
to cast the exponentiated result into the form of an Omneés representation. In the
high-energy limit we obtain for the form factor a double logarithmic suppression in
agreement with the well-known leading logarithmic result [2-11]. This behavior can
be seen to be a direct consequence of the analytic structure of the form factor as
expressed by the Omnés representation.

The method described 1n this paper can also be applied to Yang-Mills theories. A
first step in this direction has been undertaken in refs. [12,13]. We hope that our
treatment of the infrared behavior provides also in quantum chromodynamics a
systematic method to attack the soft gluon problem.

2. The infrared dynamics of QED

Our starting point of the study of infrared properties in QED is the observation
made by Kulish and Faddeev [1] that the infrared structure is completely determined
by the large time behavior of the hamiltonian*. In the interaction picture the
interaction hamiltonian — in terms of free fields — is given by

Hy(r) :fda'XJu(x)A“(x), (1)
with
J(x)= —e:y (x)v¥(x):.
We now decompose the above hamiltonian 1nto
Hy(t)=Hy(1) + H{(1), )

where the infrared hamiltonian A (¢) is defined as the dominant term of Hy(¢) in the
limit z=x% going to infinity. In the Kulish-Faddeev approach where massless

* Thus 15 easily seen from the fact that the U-operator at finite times shows no infrared singularnties, see
eq (6)
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photons are used the infrared singularities appear as singularities in the time ¢. This
means that ¢ plays the rdle of an infrared regulator. Since the evaluation of the
S-operator involves an infinite time limit one obtains an S-operator which 1s no
longer a unitary operator in the usual Fock space but acts instead in the larger space
of coherent states.

If one introduces a fictitious photon mass as done in most of the calculations one
can carry out the time limit and obtains a well-behaved S-operator in Hilbert space.
This leads us to the modification of the Kulish-Faddeev approach where the
decomposition, eq. (2), is performed by giving the photon a fictitious mass. A study
of the large time limut of H(¢) with massive photons leads to the following form of
the spin non-flip part of the infrared hamiltonian H (see appendix A)

Hy(1) = [ dx j(x)4%(x), (3)
where the asymptotic current is found to be
~ P,
W)= &pe(p) 80— 21) (3a)
with the charge density operator

p(p)=—eX[b'(p,r)b(p,r)—d'(p,r)d(p,r)]. (3b)

Here p* = (w, p) denotes the electron /positron 4-momentum, w = {p>+m?, m=
electron mass*. (For details of the notation see appendix A). Eq. (3) has the same
form as in the Kulish-Faddeev approach apart from the fact that A*(x) stands now
for the massive photon field. The infrared hamiltonian H; describes the interaction
of the photon with a quasiclassical electron-positron current. Since the charge
operator commutes with the fermion number operator the current ]; conserves
separately the numbers of electrons and positrons**. Thus the infrared hamiltonian,
eq. (3), describes the absorption and emission of photons and does not contain the
annihilation and creation of electron-positron pairs. This was to be expected since 1t
1s well-known that fermion loops do not lead to infrared singularties. A further
important property of the asymptotic current j;(x) consists in the fact that it
commutes with itself, i.e.:

[J;(x),J:(x/)] =0, for all x, x’. (4)
The infrared structure of QED is completely described by the time evolution

*The mass m and the charge e are the renormalized physical quantities all throughout This 1s
consistent with the classical nature of the current, eq (3a), and follows from the fact that the
U-operator, eq (6), has a multiphicative mass renormalization and needs no charge renormahzation,
1e Zy=1

** Note that the current (3a) 1s diagonal 1n the fermion momentum
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operator U(t) which satisfies the equation
du(s) _
dr

The solution of this equation can be given in a closed form according to a theorem
by Magnus [17]:

0(e) = exp{ =1 [ Byt at,+ 4 (=i [ dns [0 [A(0). Aw)] ) ©)

with U(t,)=1.

This closed non-perturbative expression for the infrared dynamics is equivalent to
the commonly used Dyson expression for U(¢). It has the above simple structure due
to the fact that

—H ()U(1). (5)

[[ﬁl(t])’ﬁl(tz)]’ﬁl(t3)]:0’ (7)
as follows from eq. (4).

The transformation of the Fock space states |{) of the interaction picture by
virtue of U(?) creates a photon cloud around the electrons /positrons present 1n the
state |{'). The new state |{') is given by

=0 (8)
and is a coherent state*. It still lies in the original Fock space as long as the photon
mass is kept unequal to zero.

3. The on-shell electron form factor

We now apply the formalism outlined in sect. 2 to the calculation of the on-shell
electron form factor.

The form factor F(s) is defined by means of the matrix element of the full
electromagnetic current J,(x) =& z[j(x)y#xp(x): between the Fock vacuum and an
outgoing e~ e* coherent state |e et Y**:

lim <e‘61)\e+_(Z)|J,L(0)|0>
= lim (e~ (p)e" (2,)|U(1)4,(0)[0)
= hm (e™(p))e’ (p)|U(1)[e™ (pr)e™ (22))(e™ (1)e™ (£2)1,(0)]0)
=F(s)(e™ (p1)e* (2)14,(0)]0), ©)

2
s=(p,+py), pi=pi=m.

* For a discussion of coherent states see the references given 1n [1] and also ref [14]
** As can be seen fromeq (9) the on-shell vertex function 1n the infrared region has only a vy, term, stnce
the hamiltoman Hy, eq (3), does not contain any spin dependence This implies that the form factor
F(s) 1s the Dirac form factor Fi(s) 1n the usual notation
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Here we have used the diagonality of U(#) with respect to electron /positron number
and their momenta.

If we now project the operator U(r) onto the subspace of one electron and one
positron we obtain the following expression for the form factor:

F(S)=[11T0<0|Uefe+(t;pl,pz)|0>, (10)

where U,-.+(t; p,, p,) has the same form as in eq. (6) but with H (1) replaced by 1ts
projection onto the one electron /one positron subspace:

_P Az, (p/w))t) _+_eP2'A(t’(P2/"-’2)t)

H.-o(t; 1, p2) = o o,

= —eG(¢) +eG(n), (11)

with
£“:(t,&t), n“:(t,&t).
Wy

W,

It turns out that the second term in the exponent of U,-.-(#; p,, p,) 1s a pure
c-number:

Y= [Mde [2an[He o (13 21 22)s Be o (135 21, 1))

o i

:%ezj;tdtzftzdtl{[G(fz)a G(n)] +[G(n,), G(§))]

0 To

“[G(Sz),G(El)]—[G(nz),G(m)]}- (12)

Defining the commutator function d(§{ —n) in Feynman gauge as

d(&—n)=[G(£),6(n)]

pip; P
= e [AE), Am] = D), (13)

we obtain for the expression in eq. (12)
t t
s [dn, [ dn(d(& =) +d(n, — &)
to 1o

—d(§,—&)—d(n,—m)}. (14)

The vacuum matrix element of the first term in U~ - is evaluated by decomposing
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the exponent in its positive and negative frequency parts and applying the Baker-
Campbell-Hausdorff formula (G‘*|0)= (0| G =0):

(0|exp[zefttdtl(G(£|) - G("h))] |0)

= fexp{1e [(6() = 6 (m) + G (&) = 6 (my)) a0y

o

= exp{ =460 [ a1, [ [(6 (&) ~ 6 (ny),
(6&) =6 ()]} (15

Defining another commutator function d‘*(£ —7) in the Feynman gauge as
d(E—n)=[G(£), 6 (n)]

BV
= o [40(0), A0 = E DO —m). (16)

we obtain for the form factor the following result:
F(s)=el™1, (17a)
where

L(p, py) %ezj’ d’z/ d’l{a(tz t)d(&—m) —dP(¢,— "71)+(f“*‘7)}

[o.o]

I(p., py) %e2/0°°dt2/0 A6, (001, — 1,)d(£,— &) —d (&, — £,) + (§0om)) .

(17b)

Here we have chosen the time 7,=0 in order to get the correct in- and outgoing
fermion currents. Thus is explained in detail in appendix B. An explicit evaluation of
the integral I, in eq. (17b) shows that the terms containing d‘* are purely real for
—o0 <s< oo and those containing 4 are purely imaginary and vanish below
threshold, s = 4m>.
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The form factor can be written in a more compact form using the following
relation:

PP

0(r,—1))d(&,—m) —d (& —my) =1 a: wz

1%2

DF(gz_n])

_ 1 P .p2 fd4k elk (&3—m) (18)
(27)* @19 K2—N+i1e’

where Dy 1s the Feynman propagator of the photon in Feynman gauge. We obtain*

. 0 0
Ilzlezpl—plj(; dtzj(; dt1DF(£2_nl)

Wwy
1e? Py P
= — d*k " 19a
(277-)4'[ (k2 =N +e)(k-p, +1e)(k-p,—1€) (152)

[oe] o0 m2 m2
12:%162-/(; dt2j‘; dll{?DF(gz‘gl)+?DF(T]2—T]1)}
1 2

ie? 1 m?
= — — d4k*_—
27)* 2f k2 =N +1e

x{ L —+ ! 2}. (19b)
(k-py+ie)”  (k-p,—1e)

The result for I, coincides with that usually obtained by a rather mvolved investiga-
tion of complicated Feynman diagrams and their final summation in the leading
logarithmic approximation [2-9]. From egs. (19a, b) follows

Il(pl’—pl):IZ(ph—pl)’ (20)
which implies
F(0)=1. 1)

The function F(s) is therefore the renormalized Dirac form factor
F(5s)=Fr(s)=Z,Fyg(s). (22)
For the vertex renormalization constant Z, we get from egs. (17) and (22)
Z,=e 2 (23)

*Ineq (19b) a term proportional to 1 /¢ has been subtracted 1n accordance with a multiplicative mass
renormahization of the U-operator, eq (6)



372 H D Dahmen et al / Infrared dynamics of QED

After carrying out the £° integration in eq. (19a) we obtain for the unrenormahzed
form factor

Fyr(s)=elr=eluthz (24)
where
I,=-— ezaf Ck__pp
(27) zm k-pk-p,
L= (217) .[ZB k—ie kpplllfzp2 (25)
with k=X and B=p,/w, = —p,/w, in the c.m.s. of the electron and positron.

In expression (25) the photon is on shell; therefore energy conservation restricts
the integration over photon momenta k to the range 0<|k|<Vs—4m?. The
integral /,, in eq. (25) is 1dentical to the d‘™ contribution in eq. (17) and is

evaluated as follows:

| VK2 + N + Bk
I
e ASer e N n - i

a l+,3 f(1+A2/(s am?y)~ l/Zd {1n(l+,3u)__1n(l+,3u)
27 1—u 1+u

_ln(::fu)+ln(i;fu)]’ (26)

. _ _ m2 _eZ
k=|k|, B=|Bl=11-4"-, a=_-.

Here we have introduced the photon velocity u =k /Vk*+ A* as integration vari-
able. We finally obtain after the use of several functional relations of £,(x)

_al+p [, 148
=228 {1 —pm o
1+ 1-
—%lnzl_z—[iz(—l+g)+%w2}, (27)

with
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In the limit s> 4m* we get
I,,=——{lm*~——4h— In5— 28
1 n*— n n . (28)

For the mtegral I, , in eq. (25) we obtain in the c.m.s.

Ilz—% 1+82 f\/s —4m? dksz dcos&[ ﬁk +i'zr8(Bkcosf))]
% 1 1

Jk2+ N — Bkcos & yk*+ N + Bkcosd

. 1+B2 s —4m?

= el g [ dke )\2

. s—2m? s—4m?

=1ia In >
ys(s —4m?) A

—%uxln;—z for s> dm?. (29)

Putting the results of eq. (28) and (29) into eq. (24) we get for the large momentum
behavior of the unrenormalized on-shell electron form factor the following result:

a s s A
Furl(s)= exp{— zy—f{lﬁ;;* 4In —~ In —z—m]

+jialn ﬁ} s> dm?. (30)

For the integral /, in eq. (19b) we get

. ﬂ——— dkk? fa [ 1 l
? (2 )3 7 W2+ (k- plz (k-p,)°

_a A I=B. 1+8 28
—*{lnm+ 38 lnlvﬁ In1+ﬁ}

a
o )\ 2
_»;ln—z——r-n—, for s> 4m-. (31)

Egs. (17), (19a,b), (27), (28), (29), (31) give for the renormalized Dirac form factor



374 H D Dahmenetal / Infrared dynamics of QED

the final result

re? d*k ( 2 P2 )2
F(s)=ex — , 32
(=) p{2(27)4fk2—)\2+1£ k-p,+tiie k-p,—1e (322)

F(s)—-exp{ [B(s)ln—}\—+ C(s)]} (32b)
A
s):m exp{a [(lné— l)ln;n——zlnzﬁ]
+3ialn %} , (32¢)
where
B(s)=1 ;BBZ [m %%—m'] -1, (33a)
_ 1487, 21"'3 B 1-g 1+8
C(s)= 3B 11n ,B+Q(1+B)+1+'321n1—,8
_ 2B 2B 2y, 8’
ik 1n1_32], (33b)
m2
B= 1—4T, s>4m

4. Discussion and conclusions

In sect. 3 we have calculated the renormalized on-shell Dirac electron form factor
in the infrared region. Our result for the unrenormalized form factor, eq. (24), agrees
i the space-like region with the famous exponentiation obtained by previous
authors [2—11]. The proofs given by these authors are rather complicated since they
required a detailed study of perturbation theory order by order. The simplicity of the
result suggested an easier derivation which has been given 1n the present work. Our
simple proof was based on a modification of the Kulish-Faddeev approach. The
complicated order by order investigation in perturbation theory has been replaced
by the closed exponential form of the U-operator, eq. (6). Due to this exponential
form of the U-operator we also obtained an exponentiated result for the vertex
renormalization constant Z;, eq. (23), and we therefore got automatically the
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multiplicative vertex renormalization. This led us to the exponentiation of the
complete renormalized form factor (32a) which 1s mamifestly gauge invariant. The
real part of the expression in the exponent is the well-known order e? result for
radiative corrections to electron scattering [15].

The evaluation of the integral in eq. (32a) gave the result (32b), where the infrared
finite functions B(s) and C(s) were given in egs. (33a,b). The infrared-divergent
part in the exponent, (a/7)B(s)In(\/2m), has no imaginary part for s <0 and has
already appeared in Schwinger’s calculation of the radiative corrections [15].

For large s in the time-like region the renormalized form factor behaves as (32¢).
The double logarithmic terms in eq. (32¢) have been found in the leading logarithmic
approximation under the conditions aln?(s/m?)s1 and aln(s/m?)<1. In our
derivation of the form factor no such restrictions are needed. At first sight 1t would
seem that the double logarithmic term In*(s/m?) 1s not correlated to the infrared
behavior. That this term is indeed entirely of infrared origin can be seen from the
imaginary part in the exponent, eq. (32¢), which necessarily leads via analyticity to
the above double logarithm, see eq. (34). This intimate connection between the
double logarithm and the infrared behavior could not directly be seen in previous
investigations since these were carried out in the space-like region where the
imaginary part vanishes. It is interesting to notice that the imaginary part is nothing
else than the well-known divergent Coulomb phase the physical interpretation of
which has always been somewhat unclear. A relation between the corresponding
Coulomb phase in quark-antiquark scattering and the quark-antiquark potential has
been established in ref. [13].

It 1s remarkable that our form factor result has an Omnés representation

a2 8 8 —s—ue

F(s)zexp{%fw El—mﬂ)—}, (34)

where the imaginary part :Im I, = I, , has been calculated in eq. (29).
From eq. (32b) it follows immediately that our renormalized form factor obeys the
infrared differential equation

A 3’;(;) =% B(s)F(s). (35)

which has been shown to hold in all orders of perturbation in ref. [9, 16]. Moreover,
these authors established a Callan-Symanzik type equation for the infrared-finite
form factor %(s):

(_%Jr/g(a)a;—a—l‘(t,a))@'zo, (36)
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where

F(s) Eexp(— %B(s)ln 2—>;E)F(s) = exp(%C(s)) ,

s
t=3In—,
23

mda _2a 2

Bla) =g -=5—+0(a?)

The quantity I" plays the role of a t-dependent “anomalous dimension”. With our
form factor result, eq. (32c), the eq. (36) is fulfilled and we obtain

r(z,a):2%z+o((%)2). (37)

The leading term in eq. (37) agrees with ref. [9].

Furthermore, we would like to point out that the terms in the exponent of the
form factor, egs. (17) and (19), have a simple diagrammatic interpretation. The
integrals of eq. (19) can be obtained by the following infrared graph rules in
momentum space. A fermion propagator 1s represented by 1, since the fermions are
considered to be classical particles. The photon propagator is 1dentical to the usual
Feynman propagator —1g,,(k*> — X +16)~". The electron-(positron)-photon vertex
is given by Fiep,(2k - p)”', where k is the photon and p the fermion momentum.
The integration over internal photon momenta has to be carried out with the
measure (27) ‘d*k. There is a factor 2 for each infrared virtual photon line
corresponding to the two directions that each line might be thought to flow. In
addition another factor 2 is needed for each virtual photon line connecting two
different fermions. This weight factor can be inferred from the apparent symmetry
in eq. (17b). We want to emphasize that these rules are by no means Feynman rules
in the sense of perturbation theory since they do not generate the S-matrix but
rather the logarithm of the S-matrix. Due to the simple structure of the infrared
hamiltonian only diagrams of order e have to be taken into account. For the case of
the form factor considered in this work we are left with three diagrams only,
depicted in fig. 1.

Our starting point of the modification of the Kuhsh-Faddeev approach (as
explained in sect. 2) was the following result derived in this approach for the
unrenormalized electron form factor:

FUR(s):exp{%[—ln-r%lnti-i-%lnz%]+ialni}. (38)

0 m

Here the time ¢ plays the role of an infrared regulator; the time ¢, is arbitrary. With
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P

Fig. 1 Diagrammatic interpretation of the renormalized electron form factor, F(s) = eh™12 eq (17a)

The first diagram represents the integral I}, eq. (19a), and determunes the unrenormalized form factor

Fyr(s) =e’ The second and thurd diagrams represent the integral /5, eq (19b), and determine the vertex
renormalization constant Z, = ¢~/

the relation /¢, = /s /A we realize that the imaginary part in the exponent of eq.
(38) is identical to the one 1n eq. (30) obtained in our approach. This identification
implies for the real part in the exponent of eq. (38)

a s
—In—In—
T m2 m

which 1s identical to the corresponding infrared part in eq. (30). However, it does not
contain the double logarithmic term —(a/4m)In’(s/m?). We observe that the
orniginal Kulish-Faddeev approach produces correctly the infrared-divergent terms
but does not lead to the desired double logarithm.

In this paper we have presented a new treatment of the infrared problem in QED
based on an infrared hamiltonian with fictitious photon mass A, eq. (3). This
hamiltonian leads to a closed expression for the S-operator which is a well-defined
unitary operator in Fock space due to the non-zero photon mass. This S-operator
dresses the electron with a photon cloud in the form of coherent states. This sumple
S-operator allows a rather elegant and consistent treatment of the infrared behavior.
This has been illustrated by applying our method to the on-shell electron form
factor. We thereby immediately obtained the famous exponentiation of both, the
renormalized and unrenormalized form factor. There was no need to carry out an
explicit renormalization procedure. This method constitutes an important improve-
ment compared to the conventional treatment which requires an order by order
study in perturbation theory. The infinite number of Feynman diagrams are re-
placed by the three diagrams shown in fig. 1. The success of our method encourages
us to attack the crucially important soft gluon problems in quantum chromor
dynamics, see ref. [12,13].

One of us (B. Sch.) expresses his gratitude to the directorate and the theory group
of DESY for the warm hospitality extended to him.
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Appendix A
DERIVATION OF THE INFRARED HAMILTONIAN

We are studying the large time behavior of the interaction hamiltonian in the
interaction picture

Hi(1) = [ & (x)4%(x),
where

wx) = —erd (x)y(x):. (A.1)

This study requlres the use of explicit representations of the free field operators:

()= f 3/2 2 {b(P”)“(l”r)e ?x+df(p,r)o(p,rle? *}

=4O (x) +¢(x), (A.2a)

where m 1s the electron mass, w 1ts energy and ¢(*), ¢(7) denote the positive and
negative frequency parts of §; Y = ¥ v°. In the Feynman gauge we have

{a(k,a)sﬂ(k,o)ef’k *+a'(k,0)ei(k, o) x} ,

) 2k° 0=0

(A.2b)

where k° = yk?-+ X and A denotes the fictitious photon mass.
Rewriting the interaction hamiltonian by means of the positive and negative
frequency parts of the electron field,

Hy(1) = —e [ &x: (¥ (x) 70 D(x) + 323 (x)

ORI O )+ O] ), (A3

we obtain for the first term of eq. (A.3)

J @O 44()

d3p’
d’p dk m —(
bi(p,rb(p,ulp, ryulp,r
rrzof(z )3/2 (2 )3/2 2k0 o (p'.r)b(p.r)u(p )Y,L (p.r)

X {a(ks U)E’L(k, 0)6(3)( p’ —p— k)el(w'*w—ko)t

+af(k, o) (k, 0)8P(p' — p+ k)ew oK} (A.4)
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We can perform the p’ integration. This yields us for the energy factors in the time
exponentials for small photon momenta k:

w’—w—kOZ\/(p+k)2+m2—\/p2+m2—k°:~kTP+O(k2),
W =0+ k=y(p—k)+m>—y 2+m2+k0=——k(;)p+0(kz). (A5)

Since 1n the limit # —» co the dominant contribution to the integral (A.4) comes from
k =0 one gets for the spin non-flip part

[ &P O(x)y, g0 (x)4%(x)

~ Efd3pb“(p,r)b(p,r)%f d3k

————{a(k,0)e*(k,o)e 'tk p/oN
e e (277)32k0{

+a'(k,0)e" (k,o)e'k p/or)

(A.6)
Carrying out the same steps for the second term of eq. (A.3) we get
[ g ()34 O (x) a4(x)
m et 7
~ % | &pbi(=p,r)d (p,r)—a(—p,r)yo(p,r)
[t} =00 , s w
3
Xf——————d:‘ {a(—k,0)e*(—k,o)e'@ek r/ox
(27)°2k°
+a'(—k,0)e*"(—k,o)e@erk p/ei (A7)

In the limt |f|—> o0 the time exponentials m egs. (A.6) and (A.7) become
F(k-p/w)—->7Atand QwFk-p/w)t— (2w +A)t. It 1s evident that for A - 0 eq.
(A.6) gives the dominant contribution since w can never vanish for massive fermons.
If the same procedure is performed for the third and fourth term of eq. (A.3) it 1s
found that only the fourth term is leading. We therefore obtain for the spin non-flip
part
- P d’k
H{(t) - H()=3[d = [ ———{a(k, 0)e"(k,o)e "k P/

(0) = () g[ po(p) [ PRy {a(k,o)e*(k, o )e

+a'(k,o0)e" (ko)e'tk P/}

= [ dx j(x)a¥(x), (A8)
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where

J;(X)=fd3pp(p)%8‘3)(x—§t),
p(p)= _ez [bt(p’ r)b(p’r) —dt(p’ r)d(p’ r)] (A'9)
Appendix B

THE ASYMPTOTIC FERMION CURRENTS IN MOMENTUM SPACE

Eq. (A.9) yields for the asymptotic one-electron current the classical electron
current

PN (P) By p
Llx)= SO ewS()(x wt)

P, P P
= —e—fG(t—tO)B(”(x—Zt) - e—fﬁ(— (r— to))8(3)(x—%t)

=/5(x; out) +2(x; in), (B.1)

which we have decomposed into out- and ingoing currents with respect to the time
to- In momentum space we obtain only for the choice #,=0 the correct classical
expression

+iep,

4. otk xfef ... out) —
fd xe't e(x; o) TETS (B.2)

This shows that 1,=0 is the correct initial time for solving the time evolution
equation, eq. (5).

Note added in proof

Although a non-vanishing photon mass A violates gauge ivariance, it is well-known
that 1t does not violate current conservation and the Ward identities of QED, e.g.
Z, = Z,, if one works with Stueckelberg’s lagrangian in the Feynman gauge as we
did n this paper. However, in non-abelian gauge theories like QCD, the introduction
of a fictitious gluon mass leads to serious difficulties, and it is therefore mandatory
to use an infrared regularization which exphcitly preserves the gauge invariance of
the theory. A very elegant and gauge-invariant method is the dimensional regulariza-
tion of 't Hooft and Veltman where Feynman integrals are computed in space-time
dimension n =4 + . To regularize the infrared singularities one requires & > 0.
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We have checked that the results presented in this paper remain unchanged if
dimensional regularization is used along with a physical massless photon. In
integrals over photon momenta one makes the replacement

f d*k _)/ d**ek
(277)3 (2'”)3+£ ’

while the charge e is replaced by ep™*/2, p being an arbitrary mass scale. Then our
result for the electron form factor, eq. (32b), remains the same apart from the
replacement

A 1 - 14
lnzm—> £+2(ln77 y)+lnm,

where y =0.5722... denotes Fuler’s constant. Since the electron mass m sets the
mass scale, it is natural to choose p = m.
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