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An exact relation is established between an SO(3) lattice gauge theory model without 
monopoles, and a corresponding SU(2) model. Elimination of the monopoles (and their strings) 
leads to a substantial lowering of the entropy of thin vortices and a corresponding decrease of the 
string tension for low/~. This is revealed by approximate calculations of the vortex free energy and 
is confirmed by Monte Carlo data. The value of the physical transition temperature to "hot gluon 
soup" is also lowered considerably. 

1. Introduction and summary of Monte Carlo results 

Four-dimensional pure SU(2) lattice gauge theory can be interpreted as a Z 2 
(gauge) theory with monopoles and fluctuating coupling constants [1,2]. Condensa- 
tion of these monopoles and/or the associated Z 2 strings can lead to phase 
transitions [1,3-8]. In the present paper we investigate what happens if both the 
monopoles and Z: strings are eliminated from the model (by giving infinite energy 
to the strings). Such a modification does not affect the formal continuum limit. 

We consider a 4-dimensional hypercubic lattice A made of sites x, links b, 
plaquettes p, cubes c, and hypercubes h. The boundary of a plaquette is sum of 
four links, etc. Let / ~ :  {U(b) E SO(3)} be an SO(3) lattice gauge field on A and 
choose representatives U(b)E SU(2) of the cosets U(b)~  SO(3)= SU(2)/Z 2 in a n  

arbitrary way. A gauge group SO(3) admits monopoles whose magnetic charge is 
added rood (2) because the fundamental group 7rl(SO(3)) = Z 2. Translating the well 
known definition of monopoles in the continuum [9] to the lattice (see appendix A) 
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one defines [1]* 

p c ( D ) =  1-I s ignt rU(Op)= -+1 E Z  2 (1.1a) 
pE~c 

for every 3-dimensional cube c. The product runs over the six plaquettes in the 
boundary of c. pc(U) is independent of the choice of representatives U(b), and 
depends therefore only on U, because it is invariant under the substitution U(b) 
U(b)7(b) with "/(b)= - 1 .  A conserved magnetic current j~vx(x ) E F 2 = {0, 1} is now 
defined by 

Pc = expi~rj~,vx( x ). (1 . lb) 

c = cube with comers x, x + e~, x + e, + e . . . . . .  x + e x. At a given time the mono- 
poles are in the spacelike cubes c where pc(U) = - 1. (The definitions generalize to 
S U ( N ) / Z  N in the obvious way. Orientation of plaquettes has to be watched if 
N ~> 3.) The world lines of the monopoles are closed loops on the dual lattice. In an 
SU(2) theory the same definition (1.1) is used (i.e. the monopoles are the monopoles 
of the SO(3) gauge field that is obtained from the SU(2) gauge field by forming 
cosets.) The monopoles are now attached to Z 2 strings that carry energy [1, 10]. They 
consist of plaquettes where 

signtr U(ap) = - 1. (1.2) 

The world sheets of the Z 2 strings are 2-dimensional surfaces on the dual lattice. 
They are either dosed or bordered by monopole loops. 

In order to put our work into perspective, we briefly review what is known about 
the above-mentioned phase transitions. 

The prototype of a phase transition associated with Z 2 string condensation occurs 
in Wegner's pure Z 2 gauge theory [1 l, 12]. Such a transition was also proven to exist 
in an SU(2) model in which the monopoles were eliminated by a constraint (MP 
model) [13]. Its transition point was determined by Monte Carlo computations 
by Brower, Kessler and Levine [5]. Our Monte Carlo data presented in fig. 1 con- 
firm that it is associated with condensation of Z 2 strings. The result for 1 -  
(signtr U(Op)) behaves very much like the internal energy of Wegner's Z 2 model. 

Monte Carlo evidence for phase transitions associated with monopole condensa- 
tion in SO(3) models was found by Halliday and Schwimmer and by Greensite and 
Lautrup [3,4]. Brower, Kessler and Levine [5] have shown that the monopole density 
in the standard SU(2) model with Wilson action rises rapidly in the vicinity of its 

*Notat ion:  If C is a path composed of links b l ' -  bn then U(C)= U(b,) - . -  U(bl). In particular 
U(8p)=  U ( b 4 ) . . .  U(b 0 for a plaquette p with boundary ~p=15 consisting of oriented links 

b I . , -  b 4. 
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Fig. 1. Monte Carlo data for 1-(signtr U(Op)) in the SU(2) MP model (3.11). The calculations were done 
on a 34 lattice. 

"rapid transition" from weak to strong coupling, and they proposed that this 
transition is due to condensation of monopoles together with their strings. 

One can suppress monopoles by adding a suitable second term L 2 to the standard 
SU(2) action of Wilson, 

L l = ½fl~ tr U(Op). (1.3) 
P 

m 

One can either choose L 2 = Ec)tpc(U) as in ref. [5], or L 2 = action for an SO(3) 
theory [6-8]. The phase diagrams of such theories with two coupling parameters 
were studied with the Monte Carlo method by Brower, Kessler and Levine [5], 
Bhanot and Creutz [6], and Caneschi, Halliday and Schwimmer [7]. First-order 
phase-transition lines are found that are associated with either condensation of 
monopoles, or of Z 2 strings, or of both. Condensation of monopoles enhances the 
order parameters (monopole density • 2) 

J ~ =  1 - (Pc(U)) ,  (1.4) 

while condensation of Z 2 strings in an SU(2) theory enhances the order parameter 
[7] 

/7=  1 - (eb(U)) ,  % =  1-[ s igntrU(0p) .  (1.5) 
pEO*b 

The product runs over the six plaquettes p that have b in their boundary. These 
order parameters were computed by Caneschi, Halliday and Schwimmer [7]. In this 
way they were able to elucidate the nature of the observed phase transitions. 

One of the observed first-order phase-transition lines has a jump of bo th /7  and 2~ 
and projects towards the point in the two parameter plane which corresponds to the 
"rapid transition" in the standard SU(2) model with action L1, fl ~ 2.2, but it stops 
before reaching it [6, 7]. A peak in the specific heat C v of the standard SU(2) model 
at fl = 2.2 was observed by Lautrup and Nauenberg [14]. Lang et al. [15] pointed out 
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Fig. 2. The specific heat C v of the standard SU(2) model with Wilson action (1.3), computed on a 6 4 

lattice. The line represents the finite size scaling polynomial fit of Nauenberg, Schalk and Brower to their 
data for the internal energy. For further explanation see text. 

that it may represent a 3rd order phase transition (a change in slope of /~-2Cv) .  In 
fig. 2 we present Monte Carlo data of our own for f l - Z c  v. They are more accurate 
and from a larger lattice than data available before. Each data point is determined 
from the fluctuations in internal energy during 20 000 or more sweeps through the 6 4 

lattice, using the heat bath method. The statistical errors were determined by 
dividing into M subsamples of about 400 sweeps each. They represent the mean 
square deviation of the averages over individual subsamples divided by f M .  The 
result is consistent with a third-order phase transition but it does not establish it 
since a smooth curve could also be drawn through the points. Moderate agreement is 

found with the fit of Nauenberg, Schalk and Brower [16] to their data for the 
internal energy. This fit obeys finite size scaling and reduces to a polynomial fit for 
infinite lattice size. High-temperature series appear to favor the absence of any phase 
transition in the standard model [17]. A tentative explanation of the absence of a 
(first-order) phase transition is that small monopole loops become abundant before 
the monopoles are liberated, and their liberation ( =  condensation of Z 2 strings) 
becomes thereby thermodynamically insignificant. The new theory of first-order 
phase transitions of Dobrushin, Shlosman and Koteck~ [18] and the work of refs. 
[7, 19] offer some promise that a better understanding will soon be reached. 

In the formal continuum limit, the SU(2) lattice action L l becomes equal to the 
Yang-Mills action for a gauge theory in continuous euclidean space-time [20] 
because U(0p) --, 1 as a random variable when/3 --, o¢ [1]. We see from this that the 
monopoles and Z 2 strings can be eliminated by a constraint s i g n t r U ( 0 p ) - -  = + 1 
without affecting the formal continuum limit. We call the resulting model a "positive 

plaquette model ". 

Similarly, monopoles in the SO(3) theory with Wilson action can be eliminated by 
a constraint Pc -= 1 without affecting the formal continuum limit because pc(U) = 1 if 
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Fig. 3. (a) Monopole density and (b) internal energy in the SO(3) model with 'lagrangian ~3fltr U-(~p), 

compared with (c) the internal energy of the corresponding monopoleless SO(3) model (2.1). 

U is locally close to a pure gauge• The formal continuum limit of the theories with 
gauge group SU(2) and SO(3) is the same. 

Neither of these constraints violates gauge invariance of the models in question• 
On the basis of the above discussion of the nature of observed phase transitions we 
expect that elimination of the monopoles in the SO(3) model eliminates its phase 
transition, and the elimination of Z 2 strings and monopoles in the SU(2) models 
eliminates the "glitch" in its internal energy at the "rapid transition point" fl ~ 2.2 
[12]. This is indeed the case. In fig. 3 we compare Monte Carlo data for the internal 
energy of an SO(3) model with and without monopoles. The monopole density ½M is 
also shown. Calculations for the SU(2) case were done by Brower, Kessler and 
Levine [5]. 

It is, in fact, not necessary to consider the constraint SU(2) and SO(3) models 
separately• In sect. 2 we establish an exact and explicit relation between such models• 
All observables, including in particular the expectation value of the Wilson loop [20] 
for fractionally charged static quarks can be transcribed from the positive plaquette 
SU(2) model to the corresponding monopoleless SO(3) model. The relation (2.14) for 
the Wilson loop is a simplified and more explicit version of a formula that was 
obtained by one of us in ref. [21]. It is very instructive and will elucidate both the 
topological origin of confinement and its basis in the peculiar locality properties of 
(classical) gauge field theories [33]. 
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Chessboard estimates imply [1] that the probability 

prob(tr U(0p) < 0) < const • e -~/13 (1.6) 

in the standard SU(2) model, so that the density of Z 2 strings goes to zero 
exponentially in units of (lattice spacing) -3, when fl ~ oo. But this is insufficient to 
guarantee that they become unimportant dynamically, because the string tension 
and mass squared in units of (lattice spacing) -2 are also expected to tend to zero 
exponentially. None of the existing proofs of confinement at strong coupling (small 
fl) applies to the positive plaquette model. In fact, we do not even have a proof for 
the special case fl = 0. Moreover, if one eliminates the Villain monopoles [22] in a 
3-dimensional U(1) lattice gauge theory by a constraint, then linear confinement 
goes away (because the result is nothing but ordinary non-compact electrodynamics 
[23]). Therefore, one might start to get worried whether elimination of monopoles 
and Z 2 strings might not destroy confinement. Theoretical arguments based on our 
present understanding of the mechanics of confinement for large fl [24] imply that 
this should not happen. Nevertheless it seemed desirable to study the question by 
Monte Carlo computation. 

The result of such computations is shown in figs. 4-6.  We consider lattices A of 
size n t × n3s with periodic boundary conditions, and loops C x that wind through A as 
shown in fig. 7. Let 

L ( x )  = tr U(Cx). (1.7) 

n t  I can be interpreted as a physical temperature in units of (lattice spacing) - l .  A 
deconfining phase transition to "hot gluon soup" [25] with L ( x ) v  a 0 is expected to 
occur when n t is lowered. Fig. 4 shows that such a transition does indeed occur, but 
the transition temperature n t  1 is lowered dramatically compared to the standard 

I<L>I pos. p[aq. mode[ 

• 123x 9 
.2 • 123x6 latt ice 

. 1 2 3 x 4  

0 1. ~ . 

3 of Fig. 4. The order parameter (L(0)) in the positive plaquette model (2.2a, b) for different sizes n t X n s 
the lattice. The value of nt I where (L(0)) reaches zero can be interpreted as a physical transition 

temperature to "hot gluon soup" (in units of lattice spacing a- 1 ). 
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Fig. 6. The string tension for the positive plaquette model (2.2a, b) compared with Creutz' Monte Carlo 
data for the string tension of the standard SU(2) model with Wilson action (1.3). The line represents the 
fit by eqs. (4.2), (4.3a), with the values of ao,fll which give the best fit to the Monte Carlo data for 81,/8fl 
(fig. 8) in the standard model. Raising /31 to 2.09 would give a perfect fit. We attribute this small 

discrepancy to systematic errors in the determination of a in [27]. 

Fig. 7. The paths used in defining the order parameters and correlation functions (L(0)) and (L(x)L(O)). 
See text before eq. (1.7). 
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SU(2) model, for the range of values of the coupling parameter fl where we have 
data. In the standard model the transition occurs at n t ~ 2 when fl = 1.8 [26]. In fig. 
5 we show the potential V(r) between two static quarks as a function of their 
distance r, for two values of fl and with n t  t below the transition temperature. It is 
defined by [26] 

V(r)  = - n t ' l n 4 ( L ( x ) L ( O ) ) ,  for x =  (0,0, r ) .  (1.8) 

It looks linear within the errors. This supports the belief that the confinement has 
not been destroyed. Assuming that V(r) can be fit by a linear function of r down to 
r = 1 one can determine the string tension a by 

a = V ( 2 ) -  V(1). (1.9) 

The result is shown in fig. 6. For comparison we show the old data of Creutz [27] for 
the string tension a in the standard SU(2) model. One sees that the string tension is 
considerably lower in the positive plaquette model, for fl ~< 1.5. Calculation of a for 
larger fl would have required lattices of impractical size, because of the low value of 
the physical transition temperature. (This problem cannot be avoided by considering 
Wilson loops, either.) Therefore, and to our great disappointment, we were not able 
to determine the string tension for larger values of fl as would have been necessary 
to see whether and how fast the string tension of the positive plaquette model 
approaches that of the standard model. We can only say that the approach is not as 
fast as one might have hoped, given the popular belief that one is close to the continuum 
limit of the standard SU(2) model as soon as one has passed the "rapid transition ". 

Now, we come to the theoretical arguments. Let us first straighten out the analogy 
with the U(1) theory. The analog of our monopoles (1.1) in a U(1) theory would be 
Glimm-Jaffe monopoles [28] rather than Villain monopoles [22]. The Villain mono- 
poles are defined in terms of auxiliary variables that exist in some models. Eliminat- 
ing them destroys the U(1) gauge invariance and leads to a gauge theory with gauge 
group R = universal covering of U(1). Villain monopoles can also be defined in the 
SO(3) model of Halliday and Schwimmer [3]. Eliminating them produces the 
standard SU(2) model which is known to have confinement at strong and inter- 
mediate coupling. In conclusion, analogy with U(1) theory produces no sound 
argument that elimination of monopoles should destroy confinement. 

The effective Z 2 theory of quark confinement [24] explains confinement for large 
fl as a consequence of condensation of vortices of thickness d>-dc(fl ), with 
dc( f l ) /a  --, oo exponentially as fl ~ oo (a = lattice spacing), whereas thinner vortices 
freeze out. The Z 2 strings are a special kind of thin vortex of thickness 1 lattice 
spacing. Using the effective Z 2 theory, and the simplest of approximations to 
compute the free energy of thin vortices, the suppression of the string tension ct at 
low fl can be explained quantitatively. This will be shown in sect. 3. The calculations 
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suggest that there are important correlations between vortices and monopoles, because 
elimination of monopoles cuts down the entropy associated with internal structure of 
the vortices*. It is tempting to speculate that the same kind of correlation exists 
between fat vortices and fat monopoles. The fat monopoles are defined by the same 
formula (1.1 a) except that U(Op) is replaced by the parallel transporter around the 
boundary of a square P of larger side length (-- a plaquette of a block lattice) see [1]. 

In the last section of this paper we take the opportunity to present some new 
Monte Carlo data for the vortex free energy [29]. They add to those presented in our 
first paper [30]. Its conclusions are unchanged. 

2. Exact relation between models with gauge group SO(3) and SU(2) 

In this section we will establish an exact relation between monopoleless SO(3) 
models and corresponding "positive plaquette" SU(2) models. 

Our SO(3) models without monopoles have Gibbs measure 

1 ] 
d / ~ ( U ) = ~ l - [ d U ( b ) e x P b  ~(U(0p))  ~ 0 ( p c ( U ) ) ,  (2.1 a) 

with 

E (V)  =½B[( t rV+ 1 ) ' / 2 -  2], (pos. square root), (2.1b) 

or 

E(V)  = l f l [ t r V - -  3], for VE SO(3). (2.1c) 

dU is normalized Haar measure on SO(3), and tr is here a trace of real orthogonal 
3 X 3 matrices. Evidently the models are SO(3) gauge invariant. Expectation values 
of observables if(U) are defined by 

< f>soo> =fdg (J)F(U ). 

The corresponding SU(2) models involve variables which are 2 X 2 matrices U(b) E 
SU(2). Their Gibbs measure is given by 

dff(U) = ~  1-[ dU(b)exp ~(u(ap)) , 
b 

(2.2a) 

* Samuel has argued before that monopoles are important for confinement, especially for gauge group 
SU(3) [42]. But his monopoles are defined differently and we are at present unable to say what the 
relation might be. 
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or 

E(V) = 1½fl[tr V -  2], 

E(V) = t ~fl[(tr V)2- 4], 
t. - ~ ,  

if t rV>  0, (2.2b) 
otherwise, 

if tr V> 0, (2.2c) 
otherwise. 

Expectation values of observables F ( U )  are defined by 

<F )so(2) =fdt~(U)F(U). (2.2d) 

Validity of the exact relation between these SU(2) models and the SO(3) models (2.1) 
will require matching boundary conditions. For the SU(2) model it is required that 
the boundary conditions are invariant under substitutions U(b)~ U(b)v(b) with 
7(b) = --+ 1, for b E ~A. Thus we may impose either free boundary conditions, or 
periodic boundary conditions for cosets U(b) (but not for U(b) themselves), and the 
same boundary conditions for the SO(3) model. 

Now we will transcribe expectation values of observables from this SU(2) model 
to the SO(3) model. The relation is simple for (gauge-invariant, local*) observables 
F ( U )  = F ( U )  which depend on U only through cosets U ~  SO(3)= SU(2)/Z2, so 
that they can be regarded as observables of the SO(3) theory in a natural way: 

(F)su(2)-- (if>so(3)" (2.3) 

We proceed to the proof of this relation. From the Kronecker decomposition of 
the Kronecker product of two 2-dimensional representations of SU(2) it follows that 

(trV) 2-- t rV+  1. 

Consequently 

~(V ) = E(V),  if t rV~  > 0. (2.4) 

* Local means here that F should not depend on U(b) attached to links b in the boundary 0A of the 
(finite) lattice A. 
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We note also that the SU(2) models (2.2) have no monopoles. By definition, the 
monopoles are the monopoles of the SO(3) gauge field U that is obtained from U by 
forming cosets. Since U(b) is a representative of/7(b) it follows that 

pc(U) = II signtrU(ap)--= 1, (2.5) 
pEBc 

because the measure (2.2) has in its support only gauge fields U with tr U(Op) > 0. 
Because of relation (2.4) the expectation value (F)sv(2) takes the form 

(2.6) 

We introduce the normalized Haar measure on Z 2 

fd-/( .--)=½ E ( ' " ) .  (2.7) 
y = ± l  

The corresponding 8-function is 8('/) = 1 + -/. It satisfies fd-/8(-/)f(-/) =f( l ) .  We 
will make use of identities of the form 

fsu(z)dVf(V)=f d V f  d-/f(V-/). (2.8) 
SO(3) Z 2 

They are obtained by making a variable substitution V -  V-/, and averaging over -/. 
The relation (2.8) then follows from invariance of the Haar measure; fd-/f(V-/) 
depends on V only through the coset K Our choice of boundary conditions admits a 
variable substitution U(b) --, U(b)-/(b) in (2.6). Averaging over -/(b) we obtain 

(F)su(2)=z-If ~b d'(b)exp[ ~p ~(U(Sp))]F(U) 
×2-N°f n d-/(b) 1"Is(Y(~p)sign tr U(Op)). 

b 

Np is the number of plaquettes in A. Integration over Z:  gauge fields -/(b) is 
equivalent to integration over Z 2 field strengths o(p), subject to the constraints 
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imposed by the 2nd Maxwell equations. Thus 

× f H do(p)~l(a(p)signtr U ( 0 p ) ) ~  8(p~0ca(p))  

: He 

= 2 - u p + U c ( Z / Z ) f  d~ (U)F(U ). (2.9) 

The partition functions are defined so that ( 1 ) =  1. Specializing to F = i f =  1 we 
conclude that 2-NP+N°(Z/Z)= 1. Relation (2.9) therefore reduces to (2.3). Proof 
completed. 

We wish to extend our relation to observables which are not of the simple form 
F = F(U). It will suffice to consider the Wilson loop expectation value for fractional 
charge. 

Given a closed loop C which consists of links b 1 . . . . .  b n, the parallel transporter 
U(C) around C is the ordered product U(bn) • • • U(bl). Let Xt be the character of the 
21+ 1 dimensional representation of SU(2). Then xt(U(C)) is the Wilson loop 
observable for static quarks of charge l. It depends only on U if and only if l is 
integer. It will be instructive to consider fractional and integer I at the same time. Up 
to eq. (2.12) below our discussion will be general, without reference to particular 
models. 

We will introduce new variables o(b)=  ---1 and W(b)~ SU(2) with trW(b)/> 0. 
They are functions of the original variables U(b') with the following properties 
[21,311. 

(1) Locality: W(b) and o(b) depend only on U(b') on links b' in a neighborhood of 
one lattice spacing of b, and W(b) depends in fact only on cosets U(b) E SO(3) -- 
S U ( Z ) / Z  2. 

(2) Gauge invariance: W(b) are gauge invariant, whereas a gauge transformation 
of the variables U(b) induces a Z 2 gauge transformation o(b) ~ o~(x)o(b)o~(y)-i for 
b = ( x , y ) ,  with ~0(.)= +-1. Therefore the field strength o ( 0 p ) = o ( b 4 ) - - . o ( b l )  
(product over links on the boundary of a plaquette) is gauge invariant. 

(3) Completeness: There exists a gauge transformation S(. ) (dependent on U) such 
that 

W(b)o(b) = S(x)U(b)S(y)- ' ,  for b = (x, y ) ,  (2.10) 

and tr W(b)/> O. 
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Properties (1) and (2) will be summarized by saying that W(b) and o(~p) are local 
gauge invariants. One says that a vortex soul passes through the plaquette p if 
o(3p) = - 1. Vortex souls form closed 2-dimensional surfaces on the dual lattice, in 
4 dimensions. For weak coupling 13- n these vortex souls have a topological interpre- 
tation analogous to the zero of the Higgs field in a Nielsen-Olesen vortex [32], see 
sect. 10 of ref. [21]. 

Properties (1)-(3) above do not fix the variables W, o uniquely. To get an explicit 
definition one must choose a local gauge [33] (a generalization of what is called a 
unitary gauge in Higgs models). An example will be given at the end of this section. 
It will therefore in general depend on the choice of local gauge where a vortex has its 
soul. (This explains the name "soul": one does not know very precisely where it is, 
but vortices can be counted by counting souls.) The formulae below are, however, 
valid for any choice since they only depend on the above properties. 

Consider a loop C which is boundary of a surface E. From eq. (2.10) and the 
property of characters XI('yV) -- 72txl(V ) for 7 = -+ 1 it follows that 

~ c f x ' ( W ( C ) ) p  l'I o(Op) f o r / = ½ ,  3 . . . . .  

x t (V)  = [ x , ( W ( C ) ) ,  z (2.11) 
for l - -0 ,  1,2 . . . . .  

x/(W(C)) is a sum of products of local gauge invariants that are localized near the 
path C. For instance, 

X1/2(W(C)) = t r W ( C ) =  ]~ W~,~.(b,)-.. W,2~,(b,) (2.12) 
~I " " " Otn 

if C is composed of links b l . . - b  n. In the case of fractional charge there appears 
another factor which is not of this form. It counts the number of vortex souls that 
wind around C. It has been verified by G6pfert [34] to all orders of the high-temper- 
ature expansion in the standard SU(2) model that (XI/z(W(C))) is perimeter-law 
behaved, and that (X1/2(U(C)))~ (1-Io(Op)) up to a perimeter-law behaved factor, 
so that the probability distribution of vortex souls determines the string tension. For 
those local gauges that were considered in [34], (1-Io(Op)) depends on the choice of 
local gauge only through a (in some cases oscillatory) perimeter-law behaved factor. 

Now we return to our special models (2.2). The Gibbs measure (2.2) is supported 
on configurations U with sign tr U(Op)--= 1. Therefore it follows from eq. (2.10) that 

o(~p) ---- signtr W(Op), for models (2.2). (2.13) 

As a result 
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m 

By property (1), W depends only on cosets U. Therefore we may now apply eq. (2.3) 
to obtain our final result. If l is integer, Xt is a character of an SO(3) representation 
and we may identify xI(V)= xt(V).  Thus finally, for any surface -" with boundary 

C, 

f(x/(W(C)) pE[I " sign tr W(aP))so(3), 

( x, (v(c))  )s.(:) = [ (x,  (w(c) )  )soo) = ( x, )soo), 

for l = ½, ~ . . . . .  

f o r / =  O, 1,2 . . . . .  

(2.14) 

Ilsigntr W(0p) is independent of the choice of E because of the constraints of the 
model which eliminate monopoles. This follows from eq. (2.13), since lip E 0ca(0 p) = 1 
for o(0p) = lib~apa(b) (2nd Maxwell equation). 

Finally we exhibit an example of a local gauge. To construct W, it suffices to 
specify the gauge transformation S(x) in (2.10). Since tr W(b)/> 0 this fixes o ( b ) =  
sign tr S (x )U(b)S(y) -  1. Let Pij(x) be the plaquette protruding from corner point x 
in positive tj direction. Then one may define the magnetic field matrix B(x)---- 

(Bak(x)) by 

U(Pij( x ) ) = A + i X "raBak( x ) , 
a 

(o'k = 123 or cyclic). (2.15) 

ra are Pauli matrices. One can now define if(x) E SO(3) by the decomposition 

B(x)=ff(x)P(x) ,  (2.16) 

where the 3 × 3 matrix P is required to be either positive or negative semidefinite. 
S(x) is chosen as the representative of the coset S(x)  with t rS(x)I>0.  S(x) is 
uniquely defined for almost all gauge fields U, and W, o are therefore well-defined 
random variables (on a finite lattice, and also in general by an argument based on 
the Markov property, compare [35]). It is easy to verify that properties (1)-(3) above 

are satisfied. 

3. Predictions of the effective Z 2 theory of confinement 

The model (2.2a, b) differs from the SU(2) MP model by the absence of Z 2 strings, 
and from the standard SU(2) model by the absence of monopoles as well as 
Z 2 strings. The world sheets of these Z 2 strings consist of plaquettes p in A where 
sign tr U(0p) = - 1. They are closed surfaces on the dual lattice A* in the MP model, 
whereas in the standard model these surfaces may be either closed or have a 
boundary which is world line of a monopole. It consists of cubes c in A ( =  links in 

A*) with Pc = - 1. 
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The closed Z 2 strings are a special kind of "thin" vortices. They have a thickness 
of only one lattice spacing. At small 13 they condense in both models (MP and 
standard) and this can be exploited to prove confinement. In the SU(2) model (2.2) 
the Z 2 strings are eliminated by a constraint. Therefore, we expect a reduction of the 
string tension at small/3. But we do not expect that confinement will be destroyed 
completely, because "fat" vortices can take over and confine static quarks in the 
same way as they do in the standard model at low/3 where the Z 2 strings are frozen 
(because they cost too much energy which cannot be compensated by their config- 
urational entropy). 

To obtain somewhat more quantitative information we appeal to the effective Z 2 
theory of confinement which was described in ref. [24]. In this theory, an effective Z 2 
coupling constant/3eft(d) is introduced which determines the chemical potential of a 
vortex of thickness d. More precisely it determines its energy, or internal free energy 
(which includes the entropy due to fluctuations in internal structure) whereas the 
configurational entropy is (approximately) the same as in a Z 2 theory on a lattice of 
lattice spacing d. Vortices of thickness d will condense if/3elf(d) <~flc~0.44 (the 
transition point in Wegner's Z 2 gauge theory model). This requires that d i> de(/3). A 
distinction is made between a "high-temperature" region where/3af(a) < fie (a = 
lattice spacing) so that d c = a and vortices of thickness a condense, and a "low-tem- 
perature" region where dc > a. The high-temperature region ends at the value/3 =/31 
of the coupling parameter where fleff(a)= tic" In the low-temperature region de is 
determined from the equation /3eff(dc)=/3c, and the string tension is given by 
a = ao/d 2, where a 0 is the string tension in Wegner's Z 2 model just below its 
phase-transition point. The value a 0 = 0.54 is obtained by extrapolating the result of 
high temperature expansions to order 2k = 8, 10, 12, 14 using a linear function of 
1 /k  [36]. 

For the following calculations we need an approximate expression for/3elf(d). It is 
given by 't Hooft's version of a vortex free energy ~,(d) [29]. To obtain this 
approximation one imagines cutting a piece of area d '2 out of a vortex sheet of 
thickness d and simulating the effect of its environment by imposing periodic 
boundary conditions [24]. This gives 

f l a f ( d ) ~ p ( d )  = -½(d/d')21n[Z(block,  t .b .c .) /Z(block,  p.b.c.)], (3.1) 

and is supposed to be reasonably accurate for fl not too large, depending on d, so 
that dc(fl)<~d. Z ( . . .  ) are partition functions for a block of size d × d × d ' ×  d' 
(d'~> d)  with periodic boundary conditions (p.b.c.), and twisted periodic boundary 
conditions (t.b.c.) with one twist in the 12-plane, respectively. The result should be 
independent of d '  for d '  >> d. 

T h e  periodic (twisted) boundary conditions assure that there is an even (odd) 
number of vortex souls passing through the intersection - of every plane x3, x 4 -- 
const, with the block. This is easily seen as follows [31]. Periodic boundary 
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conditions imply in particular periodicity of the Z 2 variables o(b)  

introduced in sect 2. It follows that the Z 2 parallel transporters satisfy 
that were 

1 = o(OE) = I'l o(Op), for p.b.c. 

This says that an even number of vortex souls passes through E. The singular gauge 
transformation on ~A (or a neighborhood of it) which changes periodic into twisted 
boundary configuration takes parallel transporters o(3E)--,  - o ( b V ) .  Therefore the 
number of vortex souls through "" is changed from even to odd. 

We wish to obtain an estimate for the string tension of our positive plaquette 
model near /3 = 0. To get it we try to determine whether vortices of thickness 1 
lattice spacing can condense at all in this model. The answer is not trivial, in spite of 
the constraint t r U ( ~ p ) > 0 ,  if we count vortices by counting their souls as is 
suggested by the consideration of sect. 2. In ref. [30] we pointed out that twisted 
boundary conditions can be fulfilled by a pure gauge. This means that creation o f  

vortex souls costs entropy but no energy. It follows that t.b.c, can be fulfilled without 
making trU(~p)~<0 for any plaquette p, even in the case d = a .  For instance 
U(Op) = - UIU2U I 1 U 2 2  - -  1 for U 1 --- iol,  U 2 = io 2 (quaternions). 

The effective Z 2 theory of confinement has so far given good results while using 
only the simplest of approximations. Encouraged by this we will be bold and use 
approximation (3.1) for d = a. Moreover, we will drop the plaquettes in the boundary 
of the blocks from the action. (Consider them as part of the environment.) To check 
that these approximations are not unreasonable we will first try them out on the 
standard SU(2) model at low/3. The partition function of that model is 

(3.2) 

Therefore, we obtain 

Z(b,ock +) {/d dVexpt+  tr V  1V '1}  2j°2 

+ ( - )  stands for p.b.c. (t.b.c.). We evaluate the integral by noting that U V U - I V -  

SU(2) for any U, V. Therefore there must exist a measure p ( W ) d W  on SU(2) such 
that 

f dVdVf(UUU-'V-')=fo(WldW/(W). (3.3) 
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Explicitly (see appendix B), 

2 r r - 0  
p(W) -- 4sin½0 ' for W = S e i ° 3 ° / 2 s - l ,  0 = 0 " '"  2¢r. (3.4) 

O is the angle of rotation. For the purpose of integrating class functions we may use 
Weyl's integration formula to substitute 

d W =  1 sin2 ½0d0 ' (0 = 0 . . .  2~r). (3.5) 

As a result we obtain ( I  o is the modified Bessel function) 

f dUdVexp[ ½13tr UVU- IV- l] : 1 3 - - l ( e  fl _ lo(t 3 )). (3.6) 

Thus, finally 

p(a)=½1n((elJ-Io(13)) / ( Io( f l ) -e-a)}  =¼13+ . - - ,  (3.7) 

for the standard model. We can use this to determine the end point fl~ of the 
high-temperature region where vortices of thickness a cease to condense. Eq. (3.7) 
gives p(a) -- 0.44 at/3 = 131 = 2.05. This is in very good agreement with Monte Carlo 
data (see sect. 4). Moreover, for 13< 131 the string tension a of the model should 
equal the string tension az2 in Wegner's Z 2 model at coupling parameter 13eff(a). 
Since az2(fl ) = - l n / 3  + . . . .  we find, using eqs. (3.1) and (3.7) 

a = - - l n ¼ f l + . - - .  (3.8) 

This is the correct result, to order 130. 
Now that we have seen how well our simple approximation works for the standard 

model, we apply it to the positive plaquette model (2.2a, b). We obtain 

Z(block, +-) = ( f dUdVO( +-trUVU-lV-1)exp[ +-½fltrUVU-IV-l] } d'2/a2 

The integral can be evaluated in the same manner as before. It is expressible in terms 
of the modified Bessel and Struve functions I o and L o [37]. As a result 

v(a) = l ln{  (2e~ - 1 -- lo(13 ) -- Lo(13))/(Io(13 ) + Lo(fl ) -- 1)) 

=½1n(Tr-  1)-~ 13+ - . .  

= 0.38 + 0.0813 + . - - .  (3.9) 



158 G. Mack, E. Pietarinen / Monopoles, vortices and confinement 

This is close to and slightly below the critical value tic = 0.44 for fl = 0 and has a 
very small slope there. Therefore, the string tension a in the model (2.2a, b) should 
be (a = 1) 

a~>a0~0 .54 ,  a t f l = 0  (3.10) 

(equal to the string tension of Wegner's Z 2 model at fl ~ 0.38) and it should change 
little with fl near fl -- 0. Ignoring the errors inherent in our approximation, vortices 
of thickness a are found to just barely condense at fl = 0, since p(a)~< 0.44 for 
fl ~< 0.82. In fig. 6 we present some rough Monte Carlo data for the string tension of 
the model. They were obtained in the manner described in the introduction. We see 
that they are in agreement with the result of our theoretical calculations. 

Finally we will now also consider the MP model. It has Z 2 strings but no 
monopoles. It was proven in ref. [13] that this model has a phase transition that is 
associated with condensation of Z 2 strings. Partition functions are defined by the 
formula 

z= f lI dU(b)exp[ l fltrU(Op)] ~ O(Oc(U )) .  (3.11) 

We compute the vortex free energy p(a) using the same approximations as before. 
Because of the absence of monopoles and the periodic boundary conditions, we must 
either have tr U(0 p) ~> 0 for all plaquettes in the interior of the block, or tr U(0 p) ~< 0 
for all of them. Z(block, ± )  are therefore sums of two contributions: 

Z(bl°ck'-+-) =[S dUdVO(+-trUVU-lV-1)exp(+lfltrUVU-iV-l)] d'~l~2 

+ [ f dUdVO( ~ trUVU- W- l )exp( +_ ½Btr UV U W- ~ ) ] a'V~. 

The integrals can be evaluated in the same manner as before with the result 

Z(block, + )  = (2e a - 1 - Io(fl) - Lo(fl) 

"] d ,2 /a  2 

Z(block , - )  = ( -  1 + Io(fl) + Lo(fl) ) 

+[ ~-~-~(--2e-a+ l + Io(fl)--Lo(fl))] a'~/~. (3.12) 
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We are interested in the behavior for d'/a>> 1. In Z(block, + )  the first term 
dominates in this limit for all ft. In Z(block, - )  the second term, which comes from 
the contributions of Z 2 strings, dominates for small/3. Therefore, 

3~" 
~,(a) - 8 (*r -  1 , /3+  .. • , )  for small/3, (3.13) 

and the string tension behaves like 

3~" 
a =  - I n  8 ( r r -  1 , /3+ . . )  , for small/3. (3.14) 

For large enough fl the first term, which comes from vortices that are not Z 2 strings, 
dominates Z(b lock , - ) .  The transition between the two possibilities occurs at the 
value of fl = flc, MP = 0.82 where both terms are equal. At this value of fl the vortex 
free energy assumes the value v(a) = 0.45 which happens to be very nearly equal to 
the critical value fie = 0.44 for the Z 2 coupling constant. From this we deduce that 
the string tension should behave as follows. For small fl condensation of Z 2 strings 
leads to a large value of the string tension as given by eq. (3.14). With increasing/3 
the string tension falls. At/3 =/3c, MP ~ 0.82 it reaches a value around a 0 ~ 0.54 which 
agrees with the prediction for the string tension for the positive plaquette model at 
that value of/3. At /3 >/3¢,MP the Z 2 strings are no longer able to condense, and 
vortices which are not Z 2 strings take over. Their thickness has to grow with/3. 

We do not have Monte Carlo data for the string tension of the MP model. But 
there are indirect indications that the above predictions are essentially correct. First, 
the result (3.14) is consistent with the rigorous inequality of ref. [13] which implies 
that a 1> --ln/3 for f l - ,  0. Second, the predicted value of the position /3c,MP of the 
phase transition agrees well with the value/3c,MP ~ 0.9 that was obtained from Monte 
Carlo computations by Brower, Kessler and Levine [5], compare fig. 1. Third, we 
have also Monte Carlo evidence that the probability of Z 2 strings in the MP model 
becomes very small for /3 above /3c, MP" This follow from the results of fig. 1 for 
(signtr U(0p)). 

Let us summarize our conclusions. 
(i) The effective Z 2 theory appears to work well with very simple approximations. 
(ii) There is a strong correlation between thin vortices and monopoles. If the 

monopoles are suppressed by a constraint, the entropy of these vortices is lowered 
substantially. As a result, the string tension is also lowered substantially, for fl </31 
(the range of/3 where thin vortices condense in the standard model).The simplicity 
of our approximations makes it very clear how the loss of entropy comes about 
because of a loss of possibilities in internal structure of the vortices. 

Let us now turn to a discussion of what should happen at large/3. Formally, the 
standard model, the MP model, and the positive plaquette model (2.2) all have the 
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same continuum limit. The example of the 3-dimensional U(1) lattice gauge theory 
[23] shows that arguments based on such formal properties need not be reliable. 
There is, however, a partial result. In ref. [1] it was shown that the monopoles in the 
standard SU(2) model are confined for large ft. Moreover, it was predicted in ref. 
[24] on the basis of the effective Z 2 theory of confinement that the string tension for 
the standard model and for the MP model should behave in the same way for large 
ft. By the same argument the same should also hold for the positive plaquette model 
(2.2). One expects therefore that the correlation between monopoles and the fat 
vortices (which are needed to produce confinement for large fl) will become less and 
less pronounced with increasing thickness d c of these vortices. At the moment we 
can only hope that future Monte Carlo data will eventually confirm these predic- 
tions. 

So far we have only considered monopoles of size 1 lattice spacing. In a sense such 
small monopoles in an SO(3) theory are the only ones which really deserve to be 
called monopoles (compare appendix A). From the point of view of a block spin or 
renormalization group picture [38] it is, however, natural to consider also "fat  
monopoles" as have been introduced in ref. [1]. It would be interesting to know how 
they are correlated with fat vortices. An investigation in this direction was suggested 
in refs. [5, 7]. A specific conjecture has been advanced by Iwasaki* [39]. He believes 
that the most important fat monopoles are those that are hidden inside instantons 
(in 4 dimensions). A stringent lower bound on the cost of energy of fat monopoles 
and their strings was established in [1]. 

4. Monte Carlo data for the vortex free energy 

In our first paper [30] we presented Monte Carlo data for the derivative 31,/~fl of 
the vortex free energy 1, as defined in eq. (3.1), for cubic lattices of side length 
d '  = d ~  < 5a, and we also compared them to predictions of the effective Z 2 theory of 
confinement. Since then we have collected more such data, and we have extended 
the computations to a lattice of side length d' = d = 6a. We take the opportunity to 
present these data in fig. 8. The conclusions are the same as in ref. [30]. The fits 
represent the following predictions of the effective Z 2 theory for intermediate fl [24]: 

~,(a) = [a /d¢( f l ) ]2exp[ -aa2] ,  for a>>d¢, (4.1) 

where the string tension is given by 

a = a o e x p [ - - 6 c r 2 ( f l - f l , ) ] ,  for f l > f l , ,  (4.2) 

* In Iwasaki's work only thin vortices are considered. The spreading mechanism, by which fat vortices 
can lower their free energy and confine static quarks for large/3, is not considered there. 
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Fig. 8. Monte Carlo data for the derivative Or~Off of the vortex free energy v(d) of the standard SU(2) 
model with Wilson action (1.3), The lines represent a fit by eqs. (4.1)-(4.3a), with a0=0.54a -2 and 

fll = 2.06. 

and 

(de~ a)2 = { Cto/a, for fl I> tic, (4.3a) 
1, for fl ~< tic- (4.3b) 

a = lattice spacing, and a 0 and fll have the meaning described in sect. 3. In the fits 
we put  a 0 = 0.54a -2 and fll = 2.06. All data  are for fl > ill- (Below ill, Or~Off is too 
small to be computable  on a reasonably big lattice.) Very good agreement is seen. 
Mianster has shown [40] that the asymptotic  behavior of v is v = (d 2/a 2)exp[ - ad 2 ] 
to all orders of the high-temperature expansion. If we were allowed to combine with 
eq. (4.2) for  the string tension, which fits Creutz '  Monte  Carlo data  [27] for  fl > 2.15 
or so, we would get a ratio 16 : 25 : 36 of the height of the maxima of av/Ofl for lattice 
size 4a, 5a and 6a. In contrast,  the predictions (4.1), (4.3a) of the effective Z 2 theory 
for fl > fll differ f rom this expression by a factor (d2 /d  2) which depends exponen- 
tially on ft. It predicts equal height of the maxima. The  data  decide in favor of this 
alternative. 

Note added. The asymptotic  behavior  of v(d) for large fl and fixed d/a  can, in 
principle, be calculated by the saddle-point  method.  In practise this is very difficult, 
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but a calculation has now been performed for ~v/b/3 by Gonzalez-Arroyo, Groene- 
veld, Korthals Altes and Jurkiewicz. They find that v does not admit a series 
expansion in powers of g 2 =  4//3; instead there is an extra logarithmic term. A 
logarithmic term is also present in our result (3.7) for the special case d = a which 

gives 

v (a )  = ¼ In 2 ~r/3 + . . .  , for large/3. 

In ref. [30] we presented some Monte Carlo data for Or~a~3 on a 34 lattice for large/3 
(up to/3 = 9). They failed to reveal the presence of the logarithmic term in v - the 
data could be fitted within errors without it. 

We would like to thank F. Englert for helpful discussions on monopoles and their 
strings which one of us (G.M.) had with him several years ago, and C.P. Korthals 
Altes for a private communication. E.P. is grateful to the DESY theory group for 
their kind hospitality. 

Appendix A 

SO(3) MONOPOLES IN CONTINUOUS SPACE 

We will adopt the fibre bundle point of view which has been advocated in 
particular by Wu and Yang [9]. 

Consider the 3-dimensional space M = R 3 _ {x0} which is obtained from euclidean 
space by removing a single point x o. x o will be the monopoles site. Since the 2nd 
Maxwell equation (Bianchi identity) is not true at the site of a monopole, a gauge 
field (vector potential) will only exist away from x o. 

One imagines that a 3-dimensional real vector space V x is attached to every point 
x of M. One may envisage introducing matter fields q, eventually which take their 
values q,(x) ~ V x. To formulate differential equations for them one needs a topology 
(and differentiable structure) on the space E of pairs (x, v); x E M, v ~ Vx. It should 
satisfy certain requirements (the scalar product ( , ) should be continuous, and E 
should be a euclidean space locally). When E is equipped with such a topology it is 
called a vector bundle with structure group SO(3). 

The Naheinformat ionsprinz ip  [33] asserts that there is no a priori way of comparing 
directions in vector spaces V x and Vy that are attached to different points x = y .  
Instead, a map 

v.  --, v ,  

is assumed to be given for every path C from x to y. It should depend smoothly on 
C, preserve the scalar product so that 

( v , ,  = for Vl,  
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and obey the composition rule 

 (C2o c , )  = -, vz, 

if C2oC 1 is obtained by juxtaposition of a path Cl from x t o y  and a path C2 f ro m y  
to z. ~ ( C )  are called parallel transporters. They are said to specify a connection. 

Our space M is topologically a sphere S 2. The classification of vector bundles over 
spheres has been described in Steenrod's book [41]. The result is that they are 
specified by homotopy classes of maps from the structure group G of the vector 
bundle into the equator of the sphere. Here G- -SO(3)  and the equator of S 2 is a 
circle S 1. Since ~r1(SO(3)) = Z 2 there are two inequivalent bundles [42]. One is trivial, 
i.e. isomorphic to M × V x. This vector bundle can be extended to a vector bundle 
over R 3, while the other one cannot. One says that there is a monopole at x 0 if the 
vector bundle E is non-trivial. 

To obtain a vector potential from ~ one needs to specify a moving frame first. A 
moving frame e specifies an orthonormal basis e(x)  = (el(x),  e2(x), e3(x)) of vectors 
ei(x ) E V x for every x E M. One would like to have them depend smoothly on x; the 
problem caused by this requirement will be discusssed below. A moving frame 
specifies a coordinate system on E: A point (x, v ) ~  E can be specified by real 
numbers (x ~, I)i), V i = (V,  e l ( X ) ) .  

Given a moving frame and a connection, i.e. parallel transporters ~ (C) ,  one can 
define parallel transport matrices/7(C) = ( /~ (C) )  E SO(3) by 

o21~(C) e l (x)  --- ej(y)UJi(C).  

i x and y are initial and final points of C. The vector potential A~(x) = (A#~(x)) is a 
matrix in the Lie algebra so(3) and is defined in terms of the parallel transport 
matrices by the familiar relation 

One of the fundamental results in the theory of fibre bundles asserts that it is 
impossible to find an everywhere smooth moving frame in a non-trivial vector 
bundle ( =  a smooth section in the associated principal fibre bundle) [41]. It follows 
that the presence of a monopole at x - - x  0 enforces the presence of singularities in 
any moving frame over R 3 - {x0). In other words, a non-singular global coordinate 
system does not exist. Let C D be any path from x 0 to infinity. Since R 3 -  C D is 
topologically trivial, the fibre bundle E reduces to a trivial fibre bundle over 
R 3 _ CD" Therefore, the moving frame can be chosen so that it has singularities only 
on C n. C D is called a Dirac string. The singularities of the moving frame cause 
singularities of the vector potential on C D as well. These are not singularities of the 
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Fig. 9. A monopole at x o and its Dirac string C D. 

connection ~ but are merely due to the singularities of the coordinate s y s t e m -  the 
Dirac string is unphysical. 

Given a vector potential A~,(x), parallel transport matrices U(C) in SU(2) - rather 
than SO(3) - can also be defined by 

"r ~ are Pauli matrices. The singularities of the vector potential on the Dirac string 
have the consequence that 

½ tr U(C) ~ - 1, 

if C is a closed path of infinitesimal length which winds around the Dirac string C D, 
see fig. 9. In contrast, ½ tr U(C) ~ 1 for any boundary of an infinitesimal area that is 

not crossed by C D (and lies away from x0). 
We will now consider a more general situation with several monopoles at some 

positions x,. Given an open set O, we may define the magnetic charge Q = 0,1 in O 
to be equal to the number of monopoles in O modulo 2. There is a formula for Q. 
Suppose that O is a cube, and none of the monopoles is on its boundary 00.  We 
may superimpose a lattice of small lattice spacing a on the continuum R 3 so that 0 0  
is a union of plaquettes p of this lattice. We can count monopole charge by counting 

Dirac strings. Therefore 

e g~Q= r[ signtrU(Op) 
pEaO 

for sufficiently small lattice spacing a (depending on O and U). This motivates the 
definition of monopoles in an SO(3) lattice gauge theory that is described in the 
introduction. 

The world line of a monopole in space time R 4 is a line without end points - either 
closed, or extending to infinity. 

Let us emphasize once more that monopoles such as are discussed here can only 
exist when the gauge group G has a non-trivial first homotopy group rq(G), and that 
the Dirac string attached to such monopoles is unphysical and unobservable. If  we 
had started with 2-dimensional complex vector spaces V x in which (classical) fields 
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or SchrOdinger wave functions for quarks could take their values, and with a 
corresponding gauge group SU(2), then any vector bundle over R 3 _ (x0} would be 
trivial and there would be no monopoles. In an SU(2) lattice gauge theory one can 

interpret the gauge field as an SO(3) gauge field and use this to define monopoles as 
discussed in sect. 1, but the string attached to such monopoles is not unphysical - it 
costs energy [10]. 

Appendix B 

PROOF OF FORMULA (3.4) 

We wish to determine the m e a s u r e  p(W)dW on SU(2) which satisfies 

f dUdVf(UVU-IV -l) = f p(W)dWf(W). (B.1) 

dU is the normalized Haar  measure on SU(2). By making a substitution U -  
S U S - I , v ~  SVS - l  with S E SU(2), we see that P is a class function. Therefore it 
admits a character expansion 

p(W) = ~ aflxj(W). (B.2) 
j = 0 , 1 / 2 , 1  . . . .  

X/is the character of the 2 j  + 1 dimensional irreducible representation of SU(2). It  
remains to determine the coefficients af  1. We use orthogonality and the defining 
non-linear integral equation of irreducible characters, 

f dUx/(U)x,(U-') = 1 
f dUx+(UV, = 2 j +  1 Xj(Vl)Xj(V2)" 

(B.3) 

From eq. (B.1) we find that aj= 2 j +  1. Thus 

1 s i n ( j + l ) O  2 ~ r - O  
p ( W ) =  ~ 2 j + l  s in l0  4sin½0 ' for 0 = 0 - . .  2~z. (B.4) 

j=0,1/2 .... 

The last equation is well known, especially to electrical engineers. 
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