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Abstract. We extend the standard analysis of the QCD 
planar ladder diagrams to the nonforward direction. 
Results are used for calculating exclusive and semiin- 
clusive cross sections of diffractive photoproduction in 
the small-x region of ep-collisions. As an example we 
estimate the event rate for diffractive photoproduction 
of the neutral vector boson at Hera  energies. 

I. Introduction 

During the last few years perturbative calculations 
within QCD have been applie, d to a large variety of hard 
scattering processes [-1-6]. In most of these calculations 
evolution equations of quarks and gluons play a central 
r61e. Diagrammatically they corresponds (in a special 
gauge) to a certain class of Feynman diagrams : planar 
ladder diagrams, evaluated in the forward direction 
with their rungs taken on the mass shell (Fig. 1). 

In this paper we try to extend the use of perturbation 
theory to cases where the same QCD ladder appears, 
but not necessarily in the forward direction, and the full 
amplitude rather than its energy discontinuity. The 
purpose of this extension is twofold. The original 
motivation comes from the observation that per- 
turbative QCD (say, in deep inelastic ep-scattering) 
breaks down if the Bjorken scaling variable x becomes 
small (Regge-region). It is believed that then unitarity 
corrections become important,  i.e. Feynman diagrams 
with more than two gluon,; in the exchange channel 
[7, 8]. A simple diagram of this type is shown in Fig 2 : 
since the momentum transfer along the QCD-ladders  
has to be integrate d over, this immediately leads to a 
study of the nonforward QCD ladder in the small-x 
region. Once the behavior of these ladder diagrams.is 
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understood, one can use them - before attaching the 
difficult question of the Regge limit in QCD - to 
compute certain exclusive or inclusive processes which 
so far have not yet been considered in the framework of 
perturbative QCD. Two obvious examples are shown in 
Figs. 3 and 4 : exclusive or (semi-) inclusive electropro- 
duction in the small-x region of 7, neutral current, near 
flavor states etc. As an example which may be of 
practical interest for future ep-colliders (e.g. Hera) we 
will use our formalism to estimate the event rate for 
diffractive Z~ 

q l ~ r q 2 =  ql+r 

Pn ~ Pn -r 

r 

Fig. 1. The planar QCD ladder. In the small-x region the leading 
contributions come from gluon only. In the standard case the 
momentum transfer r,=0, and the rungs are taken to be on-shell 

/ - - \  
Fig. 2. Example ofa QCD diagram which is expected to be important 
in the limit x~0 
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k2 / [1 

r 

Fig. 3. Example of a reaction which can be described in terms of the 
nonforward QCD-ladder : electroproduction of the neutral current in 
ep-collisions 

}x 

Fig. 4. Generalization of Fig. 3 to inclusive final states 

Starting point for such applications is a study of the 
nonforward QCD ladder which will be carried out in 
this paper. We will start with the usual diagrammatic 
analysis of the QCD ladders, as they appear, for 
example, in ep-deep inelastic scattering [-2, 3] and 
generalize to the case where the momentum transfer r~ 
is nonzero (Fig. 1) and the rungs are not constrained to 
be on mass shell. We stay in the usual Bjorken limit 
(Q2~ o% x fixed), but we restrict ourselves to the small 
x-region where the gluon ladders dominate over the 

c~ s 1 
quark ladders but still ~ l n  x < 1 such that per- 

turbative QCD is applicable). We believe that the use of 
k 

/ 

perturbation theory can be justified within Mueller's 
[9] formalism of cut-vertices, but in this paper we make 
not attempt in this direction. 

The main result of this part of our study is the 
behaviour of the nonforward ladder as a function of r,. 
For a purely transverse r, we find that a large r 2 
prevents the formation of powers of lnlnQ 2. We thus 
must require that r 2 ~ Q2. Moreover, if r 2 > ~2 (= typi-  
cal virtuality of a valence quark inside a hadron), the 
integration over internal transverse momenta lies in the 

r i < K •  2 rather than #2<K2<Q2.  If r, is range 2 2 
longitudinal, the usual enhancement in the small-x 
region persists only if the longitudinal component of r u 
is small, too. It can, however, be large enough to allow 
for a timelike outgoing momentum q2. 

As an immediate application of this analysis one can 
calculate cross sections for processes which have not yet 
been considered in the framework ofperturbative QCD. 
Two obvious examples are shown in Figs. 3 and 4: 

diffractive exclusive or inclusive photoproduction (in 
Figs. 3 and 4 we illustrate the production of the neutral 
current). For the inclusive reaction we derive a for- 
malism which is quite similar to the triple-Regge 
formula in old hadron physics. As an example, we then 
calculate the cross sections for both exclusive and 
inclusive Z~ using the data of the projected 
Hera-machine. As expected, these cross sections are 
small (the inclusive cross section gains a factor < 10 
compared to the exclusive one), but still large enough to 
attract interest for future ep machines. The other 
purpose of studying the nonforward QCD-ladder, 
namely the x--,0 limit of the deep-inelastic structure 
function, will be taken up in a future paper. 

The outline of this paper is the following. We first 
study the QCD gluon ladder for r,:t:0. We then 
(Sect. III) derive a formula for semiinclusive diffraction 
scattering at small x. In Sect. IV we apply this to the 
production of the neutral vector boson, using HERA 
data. In the final section we conclude with a brief 
summary and outlook. 

II. The Nonforward Ladder at Small x-Values 

Our method of analysing this set of Feynman diagrams 
(Fig. 1) will be the following. We start from the usual 
diagrammatic analysis of the structure function (see, for 
example, [3]) which deals with the energy discontinuity 
of the forward ladders, and then remove both the 
discontinuity constraint and the condition r u = O. The 
latter part will be done in two steps : we first allow only 
for a transverse component r• then for a longitudinal 
component of r,. The results are easily summarized: 

( i )  The full amplitude differs from its energy discon- 
tinuity by a factor l n l / x  (and a factor 2 if we include the 
twisted ladder graphs). This is very similar to the Regge 
analysis of old @-ladders : since we are working in the 
small x region, this analogy is easily understood; 
( i i )  a large transverse component r• prevents the 
formation of powers of In Q~ (or, if the running coupling 
constant is included, powers of lnlnQ~). Since the 
increase of the structure function at small x depends 
upon these powers oflnQ 2, we conclude that only in the 
region r2z~Q~ we retain the maximal small-x- 
enhancement of the QCD-ladders ; 
( i i i)  if r u has a longitudinal component, the ladder 
diagrams depend upon two scaling variables. One 
belongs to the incoming (spacelike) momentum ql, the 
ohter to the outgoing momentum qz (which can also be 
timelike). We find that in the small-x region the 
amplitude becomes large only if the longitudinal com- 
ponent of r, is sufficiently small. Moreover, it is the 
larger of the two-scaling variables which determines the 
growth. 
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Pi§ 
Pi 

Pi-1 
~ Pi§ 

Pi-~ -r 

Pi-1 - r 

Fig. 5. A cell of the ladder diagrams of Fig. 1 

Pi,ki 

Pi.Yki-1 

. . . . . . . . . . . .  ~ P i '  =Pi -r.X~ 

Pi'-, = Pi-, -r .X' i_ 1 

Fig. 6. A single rung of Fig. 1. The symbol 2 stands for gluon helicities 

In the remainder of this section we briefly derive 
these results. We use the same techniques as in [3]. Each 
four momentum ku will be expressed in terms of 
Sudakov variables : 

P i  = ~ i q '  -}- fliP' + P i i  , 

where 

q '=q i  + x p  

li 2 
p ' = p -  ~vql  

are light-like reference vectors in the (0, 3)-plane, p, and 
q~, the momenta of incoming parton and photon, 
respectively, and //2 corresponds to the initial vir- 
tuality of the incoming parton. The variables v and x are 
defined as usually: 

v =Pqi "~P'q', x q~ _ Q2 (2.3) 
2v 2v " 

From the standard analysis we know that the dominant 
contribution to the structure function comes from that 
region of phase space where both the longitudinal and 
transverse components are 
notation) 

x < f l , + l <  ... < f l ~ < l ,  

2 2 #2<~p21_<~ . . .  ~p.+l• 

ordered (see Fig. 1 for 

In the limit x ~ 0  the ordering of (2.4) becomes strong. 
Let us first consider the effect of removing the 

discontinuity constraint. In the standard case we have 
for each rung a factor 2x6((p~_ lpl) 2) which can be used 
to do the c~i-integration 

(Pi-  Pi- ,)~ - P~  
c(i = 2v(fli- fli- f)2 + cq-1 ~ ~vfli_--~ 

[-where we used the ordering conditions (2.4) and (2.5)]. 
In our case there is no such g-function, but it is easily 
seen that for each cell (Fig. :5) the cq-pole coming from 
the propagator of the lower rung lies in the upper half 
plane, whereas the eFpoles of the other propagators lie 
in the lower half plane. It is therefore convenient to close 
the c~i-contour in the upper half plane which then has 
the same effect as a ~-function for each rung. The same 
argument goes through for each rung except for the one 

at the top of Fig. 1. Normally the g-function for this 
rung leads to the condition fl,+ 1 =x.  Now we have for 
the fl,+l-integral a propagator instead of the 
g-function : 

(2.1) P" 1 
dfl.+l 2v(f l .+l_x)_ 2 - (2.7) x P.+x• i~ 

In the limit v~oo, the dominant contribution comes 
(2.2) from the region f l . + t ~ x  and leads to the behavior 

(x-~O): 

1 2v l l n l  (2.8) 
2vv in ~-j2 = 2v x" 

Apart from the factor In 1/x, this is the same as in the 
case of the discontinuity. If we add to Fig, I its twisted 
analogue, we obtain an additional factor 2. 

We now allow for r. 4= 0 ; first we only take r L + 0 and 
keep the other components at zero. Let us consider one 
rung of the ladder (Fig. 6) and compute the analogue of 
the Altarelli-Parisi-kernel. In the axial gauge the gluon 
propagator is : 

6ab. ~ gU(k, 2)eV(k, 2). (2.9) 
k 2 "~ l~ 2= 1,2 

(2.4) Here eU(k, 2) (2= 1, 2) are the polarization vectors be- 
longing to four momentum k,: 

(2.5) 
k u = o~q' u + flp', + kux 

e,(k, 1)= (0, cos~o, s inq),-  
Ik• 

~ ]  (2.10) 

~,(k, 2) = (0, - sin q), cos q), 0) 

(q) is the angle of the transverse component k). Using the 
ordering conditions (2.4) and (2.5) and keeping only that 

(2.6) piece which is most singular in the limit fl~_ 1 >> f l ~ 0 ,  we 
find for the numerator of the rung: 

g24N (fli- 1 - -  ill) 2 
fl~ Ip~ll I(p~- r).l,Sx, Js~.. 

.(c~ s in(o ,_~-q) ;_J  t 
\--  sin(q)/_ i -- q);- i) cos(q)i_ i -- q)'i- i)/i~-~z,-,. 

(2.11) 

When iterating such rungs, only the (1, 1)-element of the 
matrix in (2.11) will contribute; we then rearrange the 



266 J. Bartels and M. Loewe: The Nonforward QCD Ladder Diagrams 

cos(q~ - qr factors such that the factor cos(pi_ 1 - ~o~_ 1) 
in (2.11) goes into the next-lower rung, whereas (2.11) 
receives a similar factor from the rung above. This 
replaces (2.11) by: 

gZ4N (fli- i - fii) 2 
fie IPi• [(Pi-- r)•176 (~~ qr 

_ fl,)2 (P2_L + (P,_ r) 2, _ rE) (2.12) = g 2 2 N  (fl~- ;2  

Together with the propagators of the lines pi and p~- r 
and color and phase space factors we find for the i-th 
cell: 

(Zbare dill dEpi• 

f l i -  , - fli { 1 -~ 1 r E )~ 

B, d• p , -r  •177 
( )2 2 ," (2.13) 

In deriving this result we have used the ordering 
condition (2.5) for both sides of the ladders, i.e. we have 
assumed that 

1p2_1 • ~ [p2• ](P~-x - r)2l ~ [(P~- r)~[. (2.14) 

In the standard derivation of the forward ladder 
ordering comes from the requirement that the in- 
tegration over transverse momenta leads to the ma- 
ximal number of powers ofln Q2. The result (2.13) shows 
that the p~• diverges only if [p,•177 (in 
particular, the integrand is regular near IP~• =0  and 
Pix = r~). This then leads us to the conclusion that we 
must have r ~ Q ~  in order to obtain the maximal 
logarithmic enhancement from the transverse momen- 
tum integration*. Moreover ifr~_ > #2, the lower limit of 
the ordering condition (2.5) should be replaced by r 2. 
There is an important consistency check for the result 
(2.14). Dokshitser [11] has shown that the small 
x-behavior of the forward QCD ladders is consistent 
with the leading-Ins Pomeron study of Kuraev et al. 
[12]. More precisely, by taking in the integral equation 
of [12] the limit of large transverse momentum and by 
replacing the bare coupling constant by the running 
coupling constant, one arrives at the same integral 
equation as in the small-x limit of the deep inelastic 
structure function. The same check can be made in our 
case. For r .  4=0 the kernel of the Pomeron integral 
equation [12-] is: 

~,+,-r)~ d+~• r, ~ + 
2 (pi_r)• l)2 2 2 2 ( Pi• Pi+ t)• Pi• P i -  r) 2 

(2.15) 

* We do not consider the possibility that r• 2 this would lead 
into the kinematic region where the form factor calculations [10] 
would apply 

The ordering condition (2.14) immediately leads to (the 
transverse part of) (2.13). 

Up to this point our ladders still contain the bare 
coupling constant. For the forward-case it has been 
shown that self energy corrections to gluon and quark 
propagator together with vertex corrections lead to the 
replacement in (2.13) (putting r 2 = 0): 

%aro~a(p~• (2.16) 

In our case the same argument holds, at least as long as 
in (2.13)Ipi• [ra[2: we then simply disregard r~. At 
the lower end of the integration, however, p2 ~ r 2, and 
(2.16) needs to be modified. We shall assume that we 
have, instead of (2.16): 

g2b,~e ~ g(P~• r)~) (2.17) 
•  - -  4n 4re 

As a result of this, the difference between the forward 
ladder and the nonforward case (only r• =~ 0) consists of 
the following change: 

Of ~ dp~ ~(pZ__) Q~ ,t .  2 g(pZx)g(( p -  r)~) 
- ~ ~ ~ (2.18) 

~(Q2)_ d 2 ~ 4n ,~2 p• (4z0 2 

As long as r~ ~ Q2, this change will not affect the leading 
behavior as Qz_. oo. 

Next we allow rF, to have a nonzero longitudinal 
component fi~ (for simplicity, r~ = 0 again). Repeating 
the analysis which leads to (2.13), we find, as the only 
change : 

, - -  f i ' ,=f l , - f l , .  (2.19) B~ Bd', ' 

As we have.mentioned before (2.11), this only represents 
the most singular (in the limit fl~_ 1 >> fli ~0)  piece of the 
kernel. It follows, however, from (2.19) that this singu- 
larity will be lost if fl~ Je 0 when x ~ 0. This situation will 
become clearer, if we write down the full chain of 
fl-integrals of Fig. 1 : 

1 i 1 I Kiln [3n- l -[~n d f l n - l f l n - 2 - ~  n-1 "'" f dill l - - i l l  

(2.20) 

If fl, would be zero, i.e. all fl'i =fli, this integral would 
diverge as 1/x( lnl /x)  ~ - '  (in the limit x~0).  This 
divergence is due to that region of phase space where 

x ~ f l n  ~ --. ~ f l l  ~ 1. (2.21) 

In our case, however, we want fi~ :I: 0. Then such a small- 
x-enhancement is possible only of we require that fl~ is 
also small, i.e. 

f l ~ 0  together with x--*0. (2.22) 
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Let us consider two cases. If fin ~ x, then/3~ can safely be 
neglected everywhere in (2.20) and we still have the same 
behavior: 1/x(ln 1Ix) ~- 1. In the more interesting case, 
however, we want the outgoing momentum q2 to be 
timelike. For this we need fl~>x, for example/3~ = cx 
with c > 1. With c~, ~ 1 (this follows from the mass-shell 
conditions of the outgoing parton at the lower end of 
the ladder) we then have: 

q2 = 2v(/3,- x) + r2 > O . (2.23) 

So if we require fl~ > x, the/3,c-integrals in (2.20) cannot 
go down to x (otherwise fl'i=/3i-/3~ could become 
negative and the partons on the right hand side of the 
ladder would run into the opposite direction) but only 
down to c'/3~ (c'> 1). This replaces (2.20) by 

1 dj~n/3 n } 1 1__/31 

(2.24) 

and leads to 1//3r(lnl//3r) "-1 (up to constant factors). 
From this we conclude that it is always the larger 
variable of x and/3~ which sets the scale in the small-x 
region�9 

In order to complete our discussion of the nonfor- 
ward QCD ladder, we still have to couple a quark line to 
the lower end and a quark loop to the upper end of our 
gluon ladder. For simplicity, we shall do this only for 
the case r 2 = 0. At the lower end we make use of the 
strong ordering condition [i(2.21) and (2.22)]: /3r can 
then safely be neglected. As to the summation over the 
quark helicities (Fig. 7), it is well known [13] that a fast 
quark at the quark-gluon vertex conserves helicity. As a 
result of this, the quark helicities are equal at both sides 
of the ladder, and we are back at the usual Altarelli- 
Parisi expression for the fern'don rung. At the upper end 
we have for the trace: 

Tr [~(p.-r ,  1)(r 1 -  ?z)Vu(~, ~a +~1) 

�9 7 ~ ( s  +~ g(p.,  1) (~ .  - r +~)] 

~4v(  -gu~+ P'uq'~+P'~q")v 

f ~.(/3~ - ~ )  
�9 ]/3,+ ~ -/3~+/3,+ ~ + ~,, _~fi~,+q j Ip2+ ~1 (2.25) 

which is regular near/3, + 1 = 0. Because of the argument 
contained in (2.7), the/3, + 1-integration effectively leads 
to/3+ ~ = x. Thus the fermion loop, when coupled to the 
gluonic ladder, will not change the small-x behavior (i.e. 
no additional power of In l/x), but modifies the result 
(2.23) merely by a constant factor which weakly de- 
pends upon whether/3r ~ x  or x ~ ft,. To leading order, 
therefore, the effect of the fermion loop is the same as in 
the forward direction. 

Z /  \ 
X., X, Xo: ;~o 

ho X'o ko Xo 

Fig. 7. The fermion line at the lower end of Fig. 1 

We summarize the results of this section in the 
following expression for the gluon ladder, valid to 
leading order in the limit x--*0,/3/-+0: 

ruv(,2,~)=(_gu~+p'uq'~+p'~q'.) .21nl . 64c2 ~2 
32 ] / / ~  

exp ]/16N~ In 1/2 
(16N~ in 1/Yc) 5/~ " 

(2.26) 

Here 2 is equal to max(x, fir), and ~ is taken from (2.18), 
deviating from the usual ~-variable only if #z ~ r2 (but 
always r 2 ~ Q2). 

III. The Inclusive Cross Section 

We now want to make use of the results of the previous 
section and calculate a few cross sections. The most 
straightforward applications are various diffractive 
photoproduction processes in the small-x region, for 
example production of lepton pairs, new flavor states, 
Z~ .... One of them, the production of the 
Z~ (Fig. 3) will be estimated in the following 
section. Before this we wish to generalize to another 
type of reactions: inclusive photoproduction. One 
example, which will also be considered in the next 
section, is again the production of Z's (Fig. 4). In this 
section, we develop the necessary formalism which then 
allows the calculation of such reactions. 

The class of QCD Feynman diagrams which is 
relevant for such inclusive processes is shown in Fig. 8 
(we always stay in the axial gauge). These diagrams 
consist of three parts : 

a) The usual distribution function of deep inelastic 
ep-scattering which is responsible for the inclusive part 
of the final state; 
b) a branching vertex whose position in x, k2-space 
restricts the phase space of the inclusively produce 
hadrons, and 
c) the two nonforward ladders above the branching 
vertex. Since (so far) we know them only on the small-x 
region, the upper ends of these ladders must be 
sufficiently "far away" in x-space from the branching 
vertex. 

The parts a) and c) can immediately be taken from 
the literature [3] and the previous section, respectively, 
whereas the branching vertex requires some discussion�9 
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I 

I I �9 

Fig. 8. The class of Feynman diagrams which describes the reaction of 
Fig. 4. In the small x-region only gluonic ladder diagrams contribute 

i I I 

a b 

Fig. 9a and b. The nonplanar branching vertex, a shows the energy 
discontinuity which is relevant for the reaction Fig. 4. The energy 
discontinuity of 5 applies to the jetcalculus of 1-14] 

a b 

Fig. 10a and h. The planar model for the branching vertex that we use 
in this paper 

The kinematics of our inclusive process is very close to 
that of the triple-Regge region in hadron-hadron 
scattering; there one knows that the coupling between 
the three ladders has to be nonplanar. This suggests that 
the branching vertex of our case should be nonplanar, 
too (Fig. 9). The calculation of this vertex, however, 
shows that ordering of the transverse momenta which is 
not present in Regge physics slightly changes the 
situation. First one finds that the "diffractive cut" 
through the vertex (as shown in Fig. 9a) does not lead to 
the same answer as the (so-called double multiper- 
ipheral) cut shown in Fig. 9b which is relevant for the jet 
calculus [14]. This is in contrast to the situation in 
hadronic physics, and it indicates that another feature 
of Regge physics, namely the cancellation of Regge cuts 
in planar diagrams, also does not hold because of 
ordering of the transverse momentum. For our present 
purposes (in particular for the numerical estimate in the 
following section) we, therefore, take a simpler model 
for the branching vertex: the planar graph shown in 
Fig. 10. 

After these remarks we are ready to derive our 
formula for the inclusive cross section. We first study 
the planar vertex of Fig. 10 and find that in the limit 
where the longitudinal components above the vertex 
are much smaller than those below, it equals the square 
of the usual Altarelli-Parisi-kernel. In other words, we 
find for the numerators of Fig. 10 : 

numerator of Fig. 10a 

= 94sC~(_ p2) (_  p,2) (1 - z) 2 + 1 (1 - z') 2 + 1 (3.1) 
Z 2 Z ~2 

and 

numerator of Fig. lOb 
, 4,4N,2, 2 , ,  t 2 ,  (1 - z )  2 (1 - z ' )  2 (3.2) 

~ ~,~og~t ) t -P  ) t -P  ) )-2 z,2 

Next we combine this with the other parts of Fig. 8. We 
find: 

�9 F,~ ~ , ~ - ~ n  .Fu,~, ~ , ~ - ~  . (3.3) 

Here y~, ~B denote longitudinal momentum and vir- 
tuality at the branching vertex. The first term in (3.3) 
stands for those diagrams where the upper two gluon 
ladders couple directly to the fermion line at the 
bottom. In the second part the derivative takes care of 
the fact that the i-integration in the loop underneath 
the branching vertex cannot be absorbed into the lower 
ladder : it acts both as the lower limit of the upper two 
ladders and as the upper limit of the lower ladder. The 
functions F~, and W are normalized such that in the 
small-x-region they behave as: 

F~(z, ~)= ( -  9~,v + P'~q'v + P'~q'~-) 

,,, 1 : djl -sl 16Cz J l -  1 4~ 
"ZmzJ2~ /z  3 4N eSl-1 

~ (_9,~ + P',q'~ + P'~q'u )) 

�9 21n 1 64C2~2 exp V16N~ln 1/z 
z (16N~ In l/z) sIC (3.4) 

and 

4N d" ..4Nr 
W(z,~)= ~ i z - S e s - 1 .  (3.5) 
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If we insert the Mellintransforms (3.4) and (3.5) into 
(3.3), we find, for the second part, that the integration 
over y~ leads to the conservation law of angular 
momentum: 

J =J~ +J2- 1, (3.6) 

where jr and j2 belong to the upper two ladders andj  to, 
the lower one. This situation is quite reminiscent of the 
triple-Regge analysis in hadron-hadron scattering or 
the jet-calculus. Before presenting our final answer we 
mention that the integration over ~ in (3.3) cannot go 
up to ~. As usual, our perturbative analysis is valid only 
if ln l /x<lnQ2/A 2. We therefore keep ~ smaller than 
some ~max < ~' 

Putting all this together we use the saddle-point 
method and derive the following small-x limit for the 
second part of (3.3) : 

In this formula we have averaged over initial and 
summed over final spins, iff~0 is the structure function of 
(2.26), convoluted with the valence quark distribution 
function inside the proton: 
- ldz ,,d .2 
F~o(2, ~)= ~ ~ - - w  ' (z)F~o[-, Q . (4.2) 

u,a-~ z \ z  / 

The coupling of the neutral current to quarks and 
leptons is given by [15]: 

J~neutral =(e~T-) - -  ~ T + s i n 2 0 w T U  

+(UCt);-~7 5 5 sln 

~ T u ~ - -  + 5sin . (4.3) 

F,~" ~'~ ' ' ~ •  •  ~9u~gu'"!d~B[2"lnx~="~ r 1 6 4 C z ( ~ _  ~ )  2 3 1 / ~ - 2  exp]/4Nlnl/Yc(~--~)WBI'expI/4Nlnl/2(~--~B)VVB-12(T6N~(--~)~F) 57z 

1 4N 11/4Nlnl/2 1 
]/WB 4C2" 2 V ( ~ -  ~ exp ~ ]/4N~2(~ - ~B)-~ In 1/2 WB -1 

with 

W B--- 1 + - - -  9u~ = 9~ 
4 ~-~B' v 

As a function of (B, the integrand of (3.7) has its 
maximum near ~B = 0 where it becomes equal to the first 
term of (3.3), apart from the,, enhancement factor 

4N 1 ~ 4 N l ~  1/2 (3.8) 
4C 22 

IV. Z~ 

In this section we investigate, as an application of our 
calculations, the possibility of diffractive Z~ 
in a e - p  collider. We first consider the exclusive pro- 
cess e + p - ~ e + p + Z ~  - ) (F ig .  3a), then 
the semiinclusive reaction e + p-~ e + Z ~ + anything ~ e 
+ (#+#+) + anything (Fig. 3b). 

With the notation of Fig. 3a we have for the 
differential cross section: 

da=l- 2 Ifi(kl)e?Uu(k2) ~e2 /?~Z~(q~)  
2 Spins [ qf 

1 -- "0" 2 
sin 2 0 w cos 2 0 w v( l l )J :aeutraleu( l l ) 

1 1 
�9 (27046~( r + q l  - -  [1 - - / 2 )  IV e __ Vpl 2Em2Ek ~ 

d3k2 d3r d311 d312 
2Ek~(2~) 3 2Ep~(2~) 3 2E~(270 3 2Ee~(2n) 3 . (4.1) 

(3.7) 

The 7s-piece in the coupling of the neutral current to the 
fermion box in Fig. 3a drops out as a result of 
C-conjugation. Summation over the spins in (4.1) and 
integration over the momenta of the lepton pair leads 
t o :  

e 2 f d4ll Vl ~ 
2(2rC)4 k l/Jnentral 

Spins 

�9 u(ql + r-/1)~(ql + r -  ll)j~entralv(la) 

(2~) 2. 6 +(l~- m~) G + mr) 

�9 6+((q~ + r - / 1 )  2 - m  2) (~i  -~- ~ -[- [1 -Jr" m.)  

2a u~ 
q~Ym~T(--g (ql +r)2+(ql  +r)"(ql +r)  ~ 

�9 ((~ -sinZOw)2 + 1~). (4.4) 

Finally, the Z~ is taken to be: 

g~,~- GqJM~ 
~ ( q 2 ) _  q2_ M 2 + irma" (4.5) 

We now insert (2.26) into (4.1) and contract all the 
Lorentz indices, using 

S T 
k2j_ = x 2~v ( s t -  2v). (4.6) 
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We use the mass-shell  condit ion of the outgoing proton,  
in order to do the %-integrat ion:  

M 2 + r~_ (4.7) 
% - 2v (1  - fi,.)' 

This then leads to" 

32c~4 q2 1 
do-= 

3 (q~- MZ~ + iFM~) 2 srQ 2 

S T + (S T - -  2V) 2 d 3/c 2 

(2v) 2 2Ek2(2rc) 3 

"(sin ow lcosOw)4 ((: -sin2 Ow) 2 + ~ )  

.(3 _ 5 2 , \dg~dara 
s i n  0 w ~ / ( - ~ /  \ - -  

z 
• j - -  w '  ( z ) 2  I n -  

• ~ z X 

64C2¢ 2 exp ] /16N~ lnz/xl2 
3 ~ ~ ]  ' (4.8) 

Before we insert numbers  into this expression we have 
to make  a few comments .  F r o m  our  discussion at the 
end of Sect. II  we know that  in order to make  the cross 
section as large as possible we need:  

l) the exchanged transverse m o m e n t u m  r± is as small 
as possible. We, therefore, evaluate our  cross section at  
r~_=0 and keep only events with r 2 < 1 0 G e V  z. This 
leads to : 

dZr l~z  . 10M 2 ( M =  nucleon mass) .  (4.9) 

2) The longitudinal m o m e n t a  of  bo th  the virtual 
pho ton  and the neutral  current  are as small as possible. 
However ,  the requirement  that  the neutral  current  
carries enough energy to produce a resonance of, say, 
90 GeV, sets a lower limit to the longitudinal  m o m e n -  
tum of the neutral  current. In the nota t ion  of Sect. I I  we 
have:  

Q~ ~ 2v(g~-  x). (4.10) 

If  we denote by s the energy of the hadronic  part ,  we 
have for small x 

s=(p 1 + qOZ=q2 + 2v= 2v(1- x )~  2v. (4.11) 

F r o m  the condit ion that  s cannot  be larger than the 
total  energy s r = (p~ + k~) 2 we obtain : 

s~2v=  Q-~-~ <s r 
fl~ - -  X (4.12) 

s T 

With the data  of  Hera  [16] :sr~4EpE ~ ~ 105 GeV 2 and 
M~ = 8000 GeV z we find" 

2 = / ~ r -  x >0 .08 .  (4.13) 

For  a numerical  est imate of  our cross section (4.8) we 
take both  x a n d / ? r -  x to be 0.1. This is also the region 
where our  approx imat ion  of only keeping the gluonic 
par t  of  the Q C D  ladders is valid. It  is also convenient  to 
parametr ize  in (4.8) the final states through Q22 = mass of 
the neutral  current  and the longitudinal m o m e n t a  and 
g ~ - x  = 2 rather  than  the m o m e n t u m  of the outgoing 
electron. The Jacobian  for this t ransformat ion  is" 

d3k2 _ 1 SdxdQ~ Q~ (4.14) 
2Ek2(2rc) 3 2(2rc)2sr 2(g~ -- x) 2" 

Our  cross section (4.8) then becomes:  

do- 16~ 4 10M 2 1 

dxd2dQ 2 3(2rc) s 2 2 2 2 • 2 xQ2(Q 2 - M z + tFm z) 
1 " 2 2 I 3 5 " 2 ( ( ~ - - s l n  O w l  + T g ) ( ~ - - ~ s l n  O w l  2 

(sin 0 w cos Owl 4 

• j - - w  ' (z)ln _- 
N z  x 

64C2~ 2 exp ] /16N~ lnz/2] 2 
~ ~ j ,  (4.15) 

where 

2=fl,-x, 

= b'nln  jA2-- b'n'n 

2 
b = 11 - ~n  I ,  

2 = max(x,  gr) = gr = 0.2. 

We finally insert numbers.  Parameters  of the Hera  
machine are [16]:  

Ep = 820 G e V ,  E k = 30 GeV (4.16) 

Luminosi ty  = 0.35 x 1032 s - 1 c m -  2. 

For  the Q C D  par t  we use [17] : 

A =0.1 GeV 

n~ = 6 (4.17) 

w"(z) = 1.79 (1 - z)3(1 + 2.3z) /y 
wa(z) = 1"10(1 _ z) 3-1 " 
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The weak interaction parameters are [18] : 

M~=90GeV,  F=2.5  GeV, sin2Ow=¼. (4.18) 

The z-integral in (4.15) can be done approximately (in 
the limit of small x) and leads to an effective enhance- 
ment factor : 

i d z wU, a(z ) 64C2~ 2 exp 1/16N~ lnz/2 lnz/2 
z Y~/z(16N~ lnz/2)s/~3 ~ f ~  

C,,a 64C2~2 exp 1/16N?, In 1/2 . ln l /2 ,  (4.19) 
x~0 3 1 / ~ 2 ( 1 6 N ¢  In 1/~?/4 

where 

C" ~ 2, C a ~ 1. (4.20) 

In the variables Q2, x, and 2 we allow ranges of 
500 GeV 2, 0.1, and 0.1, respectively. This then leads to: 

1 0 -  2 events/day. (4.21) 

It is important to emphasize,, that this result takes into 
account only the most singular part (in the limit x, 
/ ~ 0 )  of the ladder diagraras. Nonleading pieces will 
still be relevant at Hera-energies, and it would therefore 
be of interest to extend our analysis beyond the leading 
approximation. 

We now turn to the semiinclusive process of Fig. 3b. 
Our result of (3.3) allows us to restrict the inclusively 
produced hadrons to a kinematic region which is close 
to the outgoing proton. For example, we could demand 
that y~ > Ymin and kai < k 2 (i.e. ~B <~ ~max) : the had- ln-~ax 
rons then have momenta larger than Y~'[Pp~oton[ and 
they are produced within a cone of opening O : 

tan 20  ----- k 2 ~"~ (4.22) 
(YminlpprotonD 2'  

Such events have the advantage of being rather clean, 
i.e. the produced lepton pair is well separated from the 
produced hadrons. 

However, in order to make our estimate as simple as 
possible, we will allow for the full region of y~, and for 
k2± < k~,~ ~ 20 GeV 2. From the derivation of (3.3) we 
know that the main contribution will come from the 
region where 

x, 2 <y~ < 1. (4.23) 

So at least most of the inclusively produced hadrons will 
be separated from the /2-pair. The differential cross 
section is given by: 

1 
d a = =  ~ ~(kl)ey" u(k2) g"'~ 

z sp i~  I q2 

• e2N;~a~(q2)g(ll)j;~eutraleU(I2) 

• ~t(kl)e])U2u(k2) guzv2 

• e2N;~,:(q~)~(ll)j~ut~,leu(12) 

• (sin O w cos O w)- @~ ~; ~ Q~ 

"(2~)464( r + ql - 11 - 1 2 )  

1 d4r d3k2 
2Ee~ 2Ek, ]V~-- Vp] (27~) 4 2E~(2rc) 3 

d311 d312 
2E~(2~) 3 2E~(2g)a. (4.24) 

The tensor F~o~;~o~ is taken from (3.3); the tilde- 
symbol indicates that we convoluted our result (3.3) 
with the valence quark distribution function. We per- 
form the same steps as those which lead to (4.15) and use 
the small-x approximation (3.7). The result then is: 

d~r 16~ 4 10M 2 1 

dxdYcdQ22 3(2~) s 2 ,2 2 2 xQ2(Q 2 - M~ + iFm~) 2 

~ ) ( ~ - ~ s m  Ow) Yc s~ + s ¢ -  
(sin 0 w cos Ow) 4 (1 - x -  2) 

[ 64Ca~ 2 exp ]/16N~lnz/Y~] 2 

+ ~m.x~ d~B [ln--Z 64C2(~-~n)2expV4Nlnz/ ,2(~-~)W~ 1 exp]/4Nlnz/y~(~-~B)WB] z 
L x (16N lnz/2(~ - ~B) WB- 1)5/~ ] 0 

]/-~B 4C2 2 V ~ B  
exp V-Nlnz/2 w;1 }. 
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With the same numbers as for the exclusive cross 
section and with ~m,x = 0.3 (k~max -- 20 GeV2) we find the 
same order of magnitude as for the exclusive cross 
section 

0.01-0.1 events/day. (4.26) 

Again we have to emphasize that this result takes into 
account only those parts of the Feynman diagrams 
which are most singular in the small-x region. Our 
numerical estimate indicates that at Hera energies 
nonleading terms are still quite important and, most 
likely, will lead to a decrease of the event rate (4.26). 

The estimate (4.20) is in qualitative agreement with 
an earlier estimate [16] (with a branching ratio of ~ 3 % 
for the p-decay, (4.21) leads to a cross section 
da~10-37cm2).  What is new is the fact that the 
inclusive cross section does not significantly increase 
the event rate : the enhancement factor compared to the 
exclusive process is of the order 3-5 but certainly less 
than 10. When estimating the cross sections (4.15) and 
(4.25) one sees the interplay of two effects : a decrease as 
a function of the Z-mass, and an exponential increase if 
the scaling variables x and 2 become small (as we have 
discussed before, the smallest allowed value for 2 is 
determined through the incoming proton momentum 
as well as the Z-mass). At Hera energies the exponential 
factor is already quite large, and a further increase of the 
proton momentum by a factor 5 would already lead to a 
factor ~ 102 for the cross section! 

V. Conclusions 

In this paper we have extended the analysis of QCD 
planar ladder diagrams in the small-x region to the 
more general case where the momentum transfer r~ 
along the ladder is different from zero, and where the 
full diagrams are evaluated as opposed to their energy 
discontinuity. As the main qualitative result we have 
found that r, has to be small in order to preserve the 
familiar small-x enhancement. A large transverse com- 
ponent r .  prevents the formation of large powers of 
lnlnQ 2, whereas a large longitudinal component stops 
the growth at small x-values. 

An immediate application is the study of certain 
exclusive and inclusive cross section which have not yet 
been studied in the framework of perturbative QCD. 
The exclusive cross section is obtained in a straightfor- 

ward manner, whereas the inclusive cross section 
requires further analysis and leads to a formula which 
parallels the triple-Regge analysis of hadron-hadron 
scattering. As a practical example we have estimated the 
event rate for diffractive Z°-photoproduction in 
ep-collisions: for the exclusive production we find an 
event rate of 1/3 - 1/2 events/day ( ~ 10- 2 events/day in 
the #+p--decay mode). The inclusive cross section 
gains only a factor < 10 over the exclusive case. 

Strong motivation for studying the nonforward 
QCD ladders comes from interest in the x--,0 behavior 
of the deep inelastic structure function. When x-~0, it is 
believed that diagrams with the exchange of more than 
one QCD ladder become more and more important: 
this leads to a study of hyper-Feynman diagrams with 
QCD-ladders as building blocks. As a first step, one 
might try to "close" the diagrams of Fig. 8 at the upper 
end and integrate over the momentum ru along the 
ladders. Results of such an attempt will be presented in 
a future paper. 
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