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PROOF OF BANDER'S CONJECTURE CONCERNING AMBIGUITIES OF MAGNETIC FLUX 
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For three or more dimensions, we prove Bander's conjecture, which says that 't Hooft's definition of the magnetic flux 
of an SU(N) gauge system confined to a box with periodic boundary conditions gives a unique result for almost all config- 
urations. 

' t  Hooft  [1] ,  in the course ofhis  work on electr ic-  
magnetic duality for nonabelian gauge theories, has in- 
troduced a definition of  magnetic flux for gauge field 
configurations inside a box with periodic boundary 
conditions. For an SU(N) gauge theory, this flux is 
quantized so that each component  can take the values 
0, 1, ... N - 1 in natural units. Unfortunately, the de- 
finition allows some ambiguity, that is to say, some 
field configurations can be assigned two or more dif- 
ferent values of  the magnetic flux. This was first dem- 
onstrated by AmbjCrn and Flyvbjerg [2] ,  who proved 
that the zero field can be assigned any of  the allowed 
values of  the flux quantum number. The flux is a 
gauge invariant quantity, so that configurations gauge- 
equivalent to zero must also have this ambiguity. It is 
possible to find nontrivial configurations with non- 
unique flux. Does this mean that the 't  Hooft  defini- 
tion o f  magnetic flux is unsuitable? No, for it may so 
happen that the configurations where the definition 
leads to ambiguities are "exceptional", i.e. form a 
set of  measure zero (in some appropriate measure). 
This is conjectured to be the case by Bander [3] ,  who 
discusses these questions in the context of  the compu- 
tation of  the energy of  a system of  specified electric 
and magnetic flux by functional integration. 

In this letter, we prove the above conjecture. This 
result, however, refers only to three- or higher-dimen- 
sional boxes. For two dimensions we do not have any 
definite result, but it is probably untrue. 

1 Alexander von Humboldt Fellow. 

Let us recall ' t  Hooft 's way [1 ] of  introducing his 
definition. We consider the gauge field configuration 
inside a rectangle with periodic boundary conditions. 
This will give us the magnetic flux in the direction 
orthogonal to the rectangle. For a box of  higher dimen- 
sions, this method gives a definition for each pair of  
directions through the consideration o f  appropriate 
rectangle sections. 

Let (x1, x2) = (13, 0), (al ,  0), (a 1 , a2), (0, a2) be 
the four corners o f  the rectangle. When we impose 
periodic boundary conditions, these refer to physical 
objects, so that the gauge potential Ata is allowed to 
be gauge-transformed from one side to the opposite 
one. I.e. we say that there exist gauge group elements 
6o1(x2), 6o2(Xl), such that 

au(xl  ,a2) = 6o~l(xl)Au(x1,0) 6o2(x 1) 

+ O/g)6o~l(x1)~6o2(x1), 

Ata(al ,x2)  = 6o-(l(x2)Ata(O, x2) 6Ol(X 2) 

+ (i/g) 6o~l(x2)3u6ol(X2), (1) 

g being the gauge coupling constant. Now Au(al, a2) 
may be related to Au(0 , 0) in two ways: the two 
transformations COl, co 2 can be made in different 
orders. By equating the two results, we get 

6Oi- l(a2) 6o21(0)Au(0,  0) 602(0 ) 6o1(a2) 

+ O/g) 6oi- 1 (a2) 6o21(0) au6o2(0)6o1(a2) 
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+ (i/g) co~- 1 (a2) 0~a601 (a2) 

= 602 l (a l )  60]-1(0)Au(0 , O) 6o1(0 ) 602(al) 

+ (i/g) 60~ 1(al) 60i-1(o) ~.601( o ) 602(al) 

+ (i/g) 60~- l (a l )  3u602(al) , (2) 

i.e. 

[602(0) 601(a2)] - 1A~(0, 0) [602(0) 601(a2)] 

+ (i/g) [602(0 ) 601 (a2)] -  1O~t [6o2(0 ) 601 (a2)] 

= [601(0) 602(ql)1-1Z,(0,  0) [601(0) co2(al) ] 

+ (i/g) [601(0) 602(al)] -1~u[601(0 ) co2(al) ] (3) 

If we define a group element z by 

602(0)o,)1(a2) = z601(0 ) 602(al) , (4) 

then (3) can be satisfied by having z in the centre of 
the group. This is only a sufficient condition, but it 
becomes necessary too, if, as 't Hooft [4] argues, the 
60's are to be so chosen that (3) is satisfied for ali 
Au(0, 0). Now, in an SU(N) gauge theory, the centre 
is Z(N), so that z is restricted to be of the form 
exp(2mm/N), where m is an integer. This integer, 
modulo N, is defined by 't Hooft to be the magnetic 
flux, It is in principle not uniquely determined by 
the field configuration, because (1) could presumably 
be satisfied by other 60's, which could give a differ- 
ent value of z. 

The trouble with nonabelian gauge transformations, 
as in (3), is that there is a homogeneous part and also 
an inhomogeneous part, so that one does not have 
simple relations between two gauge transformations 
which lead to identical results. To overcome this dif- 
ficulty, we shall work with the second rank antisym- 
metric tensor Fur instead of the vector potential A u. 
This object of course transforms homogeneously 
under gauge transformations. The boundary con- 
ditions become 

Ft~t'(Xl ,a2) = 602-i(Xl)Flau(Xl, 0) 602(Xl) , 

Fuu(a 1 ,x2) = 60~l(xz)F~v(O,x2)~l(X2) . (5) 

Suppose we change 601(x2), ¢o2(Xl) to ~l(X2) COl(X2), 
~2 (x 1 ) 602 (x 1 ) respectively. If (5) is continued to be 

obeyed, we must have 

~2(Xl)Eauu(Xl,0),  ~l(X2)Eauu(O,x2), (6) 

where 

G, v(x 1, x2) 

= (60 E SU(N) I co-lFuu(x 1 ,x2)60 =Fuv(x 1 ,x2)}, 

i.e. the little group ofFuu(Xl, x2). Since (6) must b (7) 
satisfied for each value of/a and u, we must have 

C32(x1)EG(xl,O), ~31(Xz)~G(O, x2) , (8) 

where 

G(Xl,X2)= N Guv(Xl,X2). (9) 
ld, V 

Now the new expression for z, which we call z', is 

Z' = ~2(0) 602(0)~1 (a2)col(a2)602 l ( a l ) ~  ~ l (a l )  

X 6o]- 1(0)~ i- 1 (0 ) .  (I0) 

Clearly, 

z ' E  G(0 ,0)  602(0 ) G(O,a2)601(a2) ¢o~l(al)G(al, O) 

× 60i- 1(0)c( 0, 0). 

Making use of the relations 

G(x 1 , a2) = 602- l(xl)G(Xl, 0) 602(Xl) , 

(11) 

G(al,x2) = co-{ l(x2)G(O,x2)601(x2) , (12) 

we see that 

Z' E G(0, 0)G(0, 0) 602(0) 601 (a2) 60~ 1 (a 1)60 ]- 1(0 ) 

x c(0,0)  c(0, 0) = c(0, 0) zc(0, 0) = zc(0, 0), 
(13) 

since z commutes with all group elements. If the ele- 
ments ~1(0),  ~ l (a2) ,  6~2(0 ), ~2(a l )  can be chosen 
independently in the groups to which they are restrict- 
ed by (8), they can be made to yield any desired ele- 
ment in G(0, 0) in (13), and since obviously Z(N) 
C G(0,0) ,  z' may be made to acquire any value in 
Z(N). But can we choose all the four group elements 
independently? 

First we consider two dimensions. At a given point 
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(X 1, X 2), there is only one independent Fuv(x 1, x2) 
because of  the antisymmetry in/a and p. Consequent- 
ly, G(Xl, x2) includes at least the Cartan subgroup 
S [U(1)N].  This is a connected continuous group, so 
that for any two elements ~1(0)  and ~ l ( a 2 )  in G(0, 
0) and G(0, a2), it is possible to find a continuous 
path traced out by 6o1(x2) in G(0 ,x2)  as x 2 goes 
from 0 to a 2 . Similarly, 6~2(0 ) and c~2(al) can also 
be chosen independently. Thus it would seem that the 
flux can indeed be changed by choosing COl, 6o 2 suit- 
ably. However, by choosing to work with Fur instead 
ofA u, we have ignored some information. All the 
co's allowed by the periodicity of Fur may not be 
allowed by that of  Au, and it may so happen that 
these extra restrictions make the magnetic flux almost 
always unique. 

For three or more dimensions, there are, at each 
point (x 1, x2) ,  at least three independent F~ v(x 1, x2) 
obtained by varying/a and v. Consequently, G(Xl, x2), 
as defined in (9), is the intersection of  the little groups 
of  at least three vectors in the adjoint representation 
of  SU(N). While for one vector, the little group in- 
cludes at least the Cartan subgroup, for two or more 
vectors, the intersection is almost always just Z(N).  
This can be seen as follows. For each F~v , the tittle 
group depends on equality relations between its eigen- 
values. When all eigenvalues are different, the tittle 
group is the Cartan subgroup S [U(1) N] and is gen- 
erated by the N - 1 diagonal generators of  SU(N) if 
Fur is diagonalized. If  we want the intersection of  
the centralizers of  two Fur 's ,  we have to find out 
which of the above generators commute with the sec- 
ond Fuv. It is easy to see that unless some of  the non- 
diagonal elements of  this second matrix vanish, none 
of  the diagonal generators of  SU(N) will commute 
with it, so that the intersection of  the little groups will 

be just Z (N). Thus, barring special cases where some 
of  the eigenvalues of  one of  the Fuv(Xl, x2) coincide, 
or when some of  the nondiagonal elements of  an 
Fuv(X 1, x2) vanish in a representation where another 
is diagonal, G (x 1, x2) will be Z (N). But if for each 
x2,  ~l(X2)  E G(0 ,x2 )  = Z(N), a discrete group, then 
by continuity one must have Wl (0) = ~1 (a2)- In order 
to have a ¢.~1 (x2) that passes from one element of  
Z(N)  to another as x 2 changes, it is necessary to have 
the group G(0, x2) to be a continuous group [note 
that it always contains Z(N)]  over a range of  values 
o f x  2 . This would require Fur  to have, on a finite part 
of  the boundary x I = 0, the exceptional kind of  be- 
haviour described above (some eigenvalues equal, or 
some matrix elements vanishing). Such configurations 
clearly form a set of measure zero. In almost all cases, 
therefore, we shall have ~ 1 ( 0 ) =  ~1 (a2). Similarly, 
again in almost all cases, ~2(0)  = ~2(a l ) .  As these ele- 
ments lie in Z(N)  and therefore commute with all 
group elements, (10) reduces to 

z '  = z  . (14) 

So, apart from a zero-measure set of  configurations, 
the magnetic flux cannot be changed by altering the 
gauge transformations COl, 602. This is precisely what 
was conjectured by Bander [3]. 

It is a pleasure to thank Dr. Probir Roy for some 
discussions at the Tata Institute of  Fundamental Re- 
search, Bombay, where these ideas were conceived. 
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