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We perform a variational calculation of the masses of glueballs of various spins and parities in SU(2) gauge theory. The 
quantum vacuum we use is generated by the lattice Monte Carlo technique. Our first results, obtained on medium sized lat- 
tices give m(0 +) (3 .6  0.35)Amom, m(0-) = (6.0 -+ 1.0)Amo m, m(2 +) = +1.8 = +_ (6.5_ 1.1 ) Amom, various mass upper bounds 
and information on glueball wave functions. 

QCD without fermions, the pure non-abelian gauge 
theory, will possess its own spectrum of states that are 
composed solely out of gluon fields. If this theory is 
colour confining - and all the numerical evidence now 
points to this [1] - then these "glueball" states will 
be colour singlets and should have their place in, and 
impact upon, the full spectrum of the chromodynam- 
ic theory with fermions. The lack of any firm experi- 
mental information on glueballs ,1 makes the predic- 
tion of their properties a theoretical challenge with par- 
ticularly high stakes. 

In this letter we present the first results of a theoret- 
ical program to calculate the masses of the detailed 
glueball spectrum. Our calculations are on a finite 
sized lattice [3,!] using the Monte Carlo technique 
[3,1]. Previous [4] ,2 Monte Carlo calculations at- 
tempted to calculate the lowest glueball mass,/~, using 
the fact that correlation functions for any operator q~ 
should have the property 

,1 Interesting recent candidates have been located in J/q~ radia- 
tive decays [2]. 

,2 Rough glueball mass estimates have also been obtained 
from the temperature dependence of QCD [5]. 

(q~(r)q~(O)) ~ f(r)  e - " r ,  as r -+ 0% (1) 

where f(r)  is an inverse power o f r  (and where one 
chooses ¢ such that Ctvacuum) has a zero projection 
on the vacuum and a non-zero projection on the low- 
est glueball state). This approach proved inaccurate be- 
cause for r greater than 2 lattice spacings the signal is 
lost in the noise of statistical fluctuations. The prob- 
lem with this method is that the more accurate a mea- 

surement one wants the (exponentially) smaller is the 
signal one has to look for - since the theoretical accu- 
racy of (1) is improved by going to larger r; and this is 

not going to work in a Monte Carlo calculation of 
limited statistics. 

The lesson here is that one should use a method 
where increasing the theoretical accuracy involves 
searching for a larger signal. Such a method is available 
It is the standard variational method for deriving ener- 
gy levels ,3 .  One chooses some/~ priori reasonable 

class of wave functions ¢ and varies within that class 
to minimize the energy expectation 

<5 { (a lC+Hq~la ;> / (a lC+Cla; , }  = o. (2) 

,3 This has been emphasized by Wilson [6]. 
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On the lattice, the operator one has available is the 
transfer matrix, V = e -Ha, where a is the lattice spac- 
ing. The analogue of  (2) on the lattice is 

6 { ( f l l  4 + e-Ha4l x2 )/( f l l  4,+41gz ;,} = 0, (3) 

where now one searches for a wave function 4 that 
maximizes the expectation value (minimizing H maxi- 
mizes e-Ha). In our work we shall use the lattice 
Monte Carlo technique to construct the vacuum 1~2) 
and hence to calculate the matrix elements in (3). 

An important  added advantage of the variational 
method is that as well as providing estimates of energy 
levels it simultaneously provides an estimate of the 
wave functions. This will enable us to make, later on 
in this paper, non-trivial statements about the internal 
structure of glueballs of  different spins and parities. 

On the other hand, a serious disadvantage of the 
variational method is that while it is easy to obtain an 
estimate of  an energy level, it is difficult to judge the 
accuracy of this estimate (although what we do know 
is that our estimate provides an upper bound on the 
true value). For this reason we supplement the naive 
variational method as embodied in eq. (3) with a calcu- 
lation of  the expectation value of  the square of the 
transfer matrix: (~[4+e-2Ha4lfZ) .  In general 

(f2l 4+e-Ha4l  ~2) ~< {~14+e - 2Ha4[ f2) (4) 

(~214+41 ~2) (g2[4+e-Ha4l~2) ' 
with equality being achieved when our trial wavefunc- 
tion exactly reproduces the correct wavefunction, so 
that the deviation from equality will measure the ex- 
tent to which our trial wavefunction and energy level 
estimate deviate from their correct values. Indeed (see 
below) for a given wavefunct{on the right-hand side of 
eq. (4) provides in principle a much better  estimate of  
the energy level than the left-hand side;however,  for 
reasons to do with statistical accuracy it is best to do 
both calculations in tandem (see below). 

The analogue of this in a more familiar context  - 
say a potential  model - would be to compare different 
moments  of  the energy, for example f~k*H~ and 
f~*H2~k. Typically the latter quanti ty would be much 
more complicated to evaluate than the former, so this 
test is not usually implemented. In our present context  
the evaluation of  (3) and (4) is equally simple, so in 
this sense the Monte Carlo approach lends itself espe- 
cially readily to such a variational treatment.  

We now outline our method;  details we leave to a 

later publication. For brevity we sketch the argument 
as though the lattice were of  infinite extent.  The set 
of  all closed loops on the lattice forms an (over) com- 
plete set of colour singlet operators for the dynamical 
system represented by the lattice. So our wavefunction 
operator ¢ will in general be composed of  such loops. 
By taking a suitable linear combination of such loops 
the operator 4 can be made to transform as a momen- 
tum i6, spin J, parity P operator.  The rotational dis- 
creteness of  course implies that in terms of  continuum 
angular wave: functions our operator will not  be a pure 
spin J operator:  here J will label the lowest spin con- 
tributing to the operator.  Now choose one axis as the 
imaginary time, t, axis and consider the correlation 
function (4(J P, fi; t = a)4(J P,/5; t = 0)) normalized to 
the equal-time expectation value (4(t = 0)4( t  = 0)), 
where we shall suppress arguments where convenient. 
Expanding in a complete set of  energy eigenstates la- 
belled by u = 0, 1 ,2  .... etc. (and suppressed indices J, 
P and/7) we have 

Fa _ (4(t = a)4(t = 0)) _ (4 e-Hao) 
r 0 - (4(t = O ) 4 ( t  = 0 ) )  ( ~ )  

= ~ e  -Eua 1@141f2)12 (5) 

v Evl@l¢[f2)l 2 '  

where necessary (in particular for JP = 0 +) we replace 
4 by 4 - (4} to ensure that the vacuum state does not 
appear in the above sum. Then the lowest energy state 
[u = 0) contributing to this sum will generally be a one- 
particle state (or a continuum formed out  of  lower 
mass glueballs of other JP); the lowest mass particle 
of the particular JP considered. Since we are interested 
in masses we take a zero-momentum translation-invar- 
iant operator,  ¢(JP, it3 = 0), so that E 0 = m(JP). From 
the fact that we have normalized the correlation func- 
tion in ( 5 ) i t  follows that any wave function 4 immedi- 
ately gives us an upper bound on m(JP): 

(¢(t  = O)O(t = 0)) (6) m(JP)<~I ln ( - ~ - a ) ~  0))" 

The variational part of the calculation now consists of  
varying ¢ judiciously so as.to minimize the right-hand 
side of  (6). (Note that this means one maximizes the 
left-hand side of  (5), which is the quanti ty directly cal- 
culated on the lattice.) 

In the spirit of  the variational approach, one hopes 
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that the resulting upper bound will be close to the ac- 
tual mass itself. How much this is actually so can be 
checked by measuring also the correlation function 
over two timelike lattice spacings, giving in analogy to 
(5), 

F2a _ (~b(t = 2a)~( t  = 0 ) )  2;~e-f~'2al<ul~lS2>12 (7) 
F a (~(t = a )¢( t  = 0)) Z e -Eu ' a [ (u l~ l~ ) t  2 

The higher mass states are more harshly suppressed in 
(7) than (5), and so one expects approximate equality 
between (7) and (5) only when one has found a very 
good wavefunction for the lowest mass state. Of course, 
in general 

(~b(t = 2a)~b(t = 0)) ~ (~b(t = a)dp(t = 0)) 

,~ (q~(t = O)4~(t = 0)), (8) 

whereas the statistical noise is comparable in all cases, 
so the errors on (7) will be much larger than on (5), 
and this is an added reason to use (7) in tandem with 
(5) rather than alone (see below). 

As a brief aside at this stage note how we differ 
from earlier efforts [4] ,2 : normalizing our correla- 
tion function allows us an immediate bound on the en- 
ergy of  the lowest excited state; taking suitable JP 
combinations of  loop operators allows us to obtain 
lowest mass states of differing JP; taking p = 0 means 
that the energy is the mass and does not  contain a, per- 
haps large, momentum contribution *~. Moreover, we 
obtain non-trivial information on the various glueball 
wavefunctions. 

We now turn to the practical implementat ion of  the 
above program. The first point  to note is that the use 
of/7 = 0 states, is an expensive strategy from the point  
of view of  minimizing statistical noise, sound as it 
might be theoretically.  This is basically because any 
given equal-time slice of  a given generated lattice con- 
figuration gives us just one/5 = 0 wave function, q~l ~2), 
so a lattice with LT spacings in the time direction 
gives us only LT measurements of  (f2[~qSI f2) for each 
generated configuration. Moreover, the error to signal 
ratio for a given measurement is roughly independent 
of the spatial lattice size LS, so that the computing 

,4 The advisability of using/7 = 0 states was stressed in ref. [7]. 
Note that this strong-coupling series calculation does indeed 
give a lower mass than obtained in (4). 

time required to achieve a given accuracy increases 
rapidly with lattice size, as LS 3. 

The solution to this problem lies in the observation 
that one loses nothing by considering states with mo- 
mentmn smearing Ap  as long as 

Ap  ,~ mg, (9) 

so that E(p) ~ mg (unfortunately one does not know 
the dispersion relation for large p).  Equivalently one 
considers partially translation invariant operators,  
e.g. finite blocks of  loop operators. This cures the sta- 
tistics problem. However, to implement it requires a 
rough idea of  the mass spectrum; higher mass states al- 
low a larger momentum smearing, which increases sta- 
tistics, which nicely compensates for the lower signal 
coming in (5) for higher mass states. Accordingly the 
first part  of  our program has been to calculate the 
glueball mass spectrum using exact t5 = 0 states on 
small/medium sized lattices. It is the results of  this part 
of our program that we wish to report on in this letter. 

We work on lattices of  sizes 44, 43. 8 and 64 , using 
operators 4~ of  definite JP and with p = 0 (and using 
the Wilson action [3,1] ). Such lattices are large enough 
that the mass spectrum should undergo no qualitative 
change in going to larger lattices. This expectation has 
been borne out by a comparison of  our results for the 
44 and 64 lattices. The present calculation is for the 
SU(2) group; again theoretically one expects no great 
change going to SU(3). SU(2) calculations are much 
faster so it is expedient to let SU(3) wait till the mo- 
mentum smeared wavefunctions have been con- 
structed and can be used. Most of  our calculations are 
at one value of/3 (= 4/g 2) so as not  to dissipate our sta- 
tistics. An appropriate value for/3 is one for which 

a "~ size glueball ~a'LS/2, (10) 

so that the effects of  discreteness and of  the boundary 
conditions are minimal. We also require that/3 should 
be large enough (g2 small enough) that two-loop per- 
turbation theory should be good on the size scale of  
the lattice spacing - so that we are indeed close to the 
continuum limit. For  the kind of  lattice sizes currently 
amenable to Monte Carlo treatment,  such requirements 
could well have been found to be mutually exclusive; 
the surprise of  the first calculations [1] has been that 
this is not so, nature has been kind to us. We lean on 
the results of  ref. [1] to infer that/3 = 2.3 is a suitable 
value. For this value of/~, the two-loop perturbative ex- 
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pansion is good on the size scale of the lattice spacing 
a, and hence we can obtain the relationship between a 

and Amo m : 

a ~ [57.5/Amom(GeV)] e -  37r29/11(6 rr2/3)51/121 

(l l)  
0.34Amlom(GeV). 

~3=2.3 

At/3 = 2.3 on the 64 lattice we measure the string ten- 
sion to be 

x / ~  1/2a ~-. 1.47 Amom(GeV). (12) 

Using the SU(3) string tension of ~400  MeV (corre- 
sponding to unit Regge slope) gives a ~0 .24  fermi. 
Hence for this/3, for our lattices of sizes 44 , 43-8, 64 , 
condition (10) appears to be "satisfied" (if one adopts 
the optimistic interpretation of inequalities that has 
become standard usage in Monte Carlo work). 

On these lattices, at/3 = 2.3, we have constructed 
operators with Je  = 0 +, 0 - ,  1 +, 1 - ,  2 +, 2 -  and 3 + 
and have measured the quantities in (5) and (7). Since 
in fact the glueball size is not expected to be much 
bigger than the lattice spacing, only small loops need 
be considered. Furthermore here we neglect products 
of loops: basically to simplify matters, although one 
can also remark (somewhat disingenuously) that a 
product of  loops looks like a state with two colour 
singlet objects, and here we are not so interested in 
continuum states. For odd parity loops one needs 
loops with a geometric handedness and such loops 
have at least 8 links. In figs. l a - l i  we show the loops 
that we have used as basic components of  q~ in our cal- 
culation (note all the links are spacelike in figs. l a - l h ) .  
The loops in figs. l d - l g  are 8 link loops (not products 
of plaquettes, although their differences are simple 
plaquette products) and the arrows indicate the order- 
ing of the matrices (there are only two such orderings 
because in SU(2) the overall direction around the loop 
is irrelevant). The loops in figs. l f - l i  have a geometric 
handedness and are used to construct odd-parity states 
(as well as even-parity states). 

To construct states of  definite spin J out of these 
basic components we construct linear combinations 
which have appropriate properties under rotations of  
1r/2 and/or 7r about the spatial axes, x, y ,  z. For exam- 
ple the totally symmetric combination of simple 
plaquettes (see fig. 2a) contains states of spin-par i ty  

(a) (b) (c) 

(d) (e) 

( f )  (g)  

(hi ( i )  

Fig. 1. Loops  on the lattice (crosses represent  lattice sites) 
that  are used as the basic components  for our trial wave func- 
tions: (a ) - (e )  loops are planar;  ( t ) - ( h )  loops are three-dimen- 
sional (and purely spatial); (i) is not drawn explicitly since it 
is four dimensional (see text). Where necessary arrows indicate 
the path ordering along the loop. 

* translations 
~x 

(a) 

./-/ 
* t r a n s l a t i o n s  

(bJ 

Fig. 2. (a) a sum of p laquet tes  with 0 + as its lowest spin com- 
ponent .  (b) A sum of plaquet tes  with 2 + as its lowest spin 
component. 
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JP = 0 +, 4 + .... (13) 

and so is a suitable trial wavefunction for the 0 + glue- 
ball. As a non-trivial example consider the 2 + operator.  
Such an operator can be obtained by imposing the ro- 
tational properties 

Rz(rC )--Ry(zr) = -Ry(Zr/2) = 1, P =  +1. (14) 

In fig. 2b we show a linear combination of  plaquettes 
satisfying the condit ions in (14) (the simplest example). 
This operator will contain JP contributions 

JP -- 2 +, 4 + .... (15) 

and hence is a possible trial operator  for the 2 + glue- 
ball. We perform analogous steps for our other wave 
functions. 

The results we present here are based on the fol- 
lowing wave functions. We construct 0 +, 2 + wave func- 
tions out  of  all the basic components  shown in fig. 1. 
In addition we calculate arbitrary linear combinations 
of  figs. l a - l c  and, separately, arbitrary linear combi- 
nations of  figs. l f ,  lg. (In subsequent results we plan 
to have arbitrary linear combinations of  all our basic 
components.)  The components  in figs. l f - l i  are used 
for trial 0 , 1 ±, 2 -  wave functions, and figs. l d , l e  for 
the 3 + wave function. 

We have performed several independent series of  
iterations of  the lattice configuration. Typically before 
taking any data, we first heat  up the lattice with 
0(2000)  iterations starting from an ordered (all ma- 
trices on links are unit matrices) or a disordered (all 
matrices totally random) start; corresponding to start- 
ing with/3 = 0%/3 = 0, respectively. Most of  our data 
here is from a disordered start; the purpose of taking 
data from both starts is to provide an estimate of  
some of  the systematic errors as well as giving an addi- 
tional measure of  the statistical errors. 

We now summarize our first results for glueball 
masses and wavefunctions: a detailed presentation and 
discussion of our results and error analysis will appear 
elsewhere. 

0+: measurements of  Pa/P0 show that the best op- 
erators in fig. 1 are lh  and a linear combination of  la  
- l c  which consists almost equally of  lb  and lc.  We ob- 
tain from I 'a /P  0 for these operators an upper bound 

m(0 +) ~< (4.88 + 0.15)Amo m. (16) 

Measurements on about 30 000 lattice (43"8 and 64) 

configurations have been used. We m e a s u r e  ['2a/['a 
for these wave functions to obtain the mass 

m(0 +) = (3.6 + 0.35)Amo m. (17) 

Our observed statistical errors on F2a/P a are consis- 
tent with the errors expected from the observed errors 
on the more accurately determined Pa/I'o. (All our 
quoted errors are statistical.) If  we confine ourselves 
to the operators in figs. l a - l c ,  we find that the best 
linear combination is 

~ . . . .  .. 

Observe that a straightforward variational calculation 
would have yielded the right-hand side of  (16) as our 
best estimate, the concurrent use o f  F2a/F' a has en- 
abled us to obtain (17) - a substantially different and, 
we believe, bet ter  estimate. 

2+: measurements of  [ 'a/[ '0 show that the best op- 
erator in fig. 1 is a linear combination of l a - l c  domi- 
nated by lb  and lc:  

  I06 +04 / 
This gives us an upper bound 

m(2+) ~< (8.53 _+ 0.27)Amom, (20) 

based on some 25 000 lattice configurations. Measure- 
ments of  P2a/Pa for our best operators give the mass 

m(2 +) = (6.5 + 1.8 (21) 
-1 .1)Amom • 

The error quoted here is the error expected on the ba- 
sis of  the error observed in I'a/I" 0 : the apparent statis- 
tical error in I'2a/P a appeared much smaller. 

0-: the most natural trial operator for the 0 -  glue- 
ball is F F ,  the topological charge density, which has 
an E'B structure. Unfortunately the calculation of 
this object on the lattice is very slow, and the time re- 
quired to obtain a reasonable signal/error ratio with/~ 
= 0 wavefunctions would have been prohibitive. Ac- 
cordingly we have used momentum smeared wavefunc- 
tions; specifically our wavefunction consisted of  a 
nearest neighbour sum o f F F  , s  terms (all on a 64 lat- 
tice). We have calculated 2 + energies in precisely the 
same way, and comparing with our 2 + masses allows 
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us to unravel (approximately)  the effects of  this mo- 
mentum smearing. Our mass upper bound from Fa/P 0 
turns out  to be 

m ( 0 - )  ~< (8.04 + 0.23)Amo m (22) 

and our mass estimate from P2a/Fa gives m ( 0 - )  
= (6.5 + 1.1)Amo m. In this case we find F2a/[" a ~I~a / 
I" 0 which suggests that F F  is a good wave function. 
Observe that we find [ 'a /I '0  for 0 -  to be larger than 
for our best 2 + wave functions suggesting perhaps that 
the 0 -  is lighter than the 2 +. We have also used the 
operators in figs. l f - l h  as trial wave functions for the 
0 -  ; in these cases we Used p = 0 operators. 'We find 
that these are far worse wave functions than FF for 
the lowest lying 0 - .  The qualitative difference between 
say fig. lh  and FF is that the former contains no E 
field, it contains pieces like B 3 ; and it may well be 
that the two classes of  wave functions have their 
largest projections on different 0 -  glueballs. Nonethe- 
less F2a/F a should be much less sensitive to the qual- 
ity of the wavefunction, and indeed we obtain a mass 
estimate m ( 0 - )  = (5.4 -+ 1.2)Amo m consistent with 
that from Fff. (Y2a/F a was obtained on a 64 lattice at 
/3 = 2.5 to give a larger signal: in fact some of  our other 
data was also taken at/3 = 2.5). Averaging for all our 
wave functions gives finally 

rn (0 - )  = (6.0 + 1.0)amo m. (23) 

2 - :  from iO = 0 wave functions based on figs. l f -  
lh  we obtain only a crude upper bound 

r e ( Z - )  ~< (11.5 -+ 0.5)Amo m. (24) 

We expect a FF type operator to do better ,  but  we 
have no numbers yet .  

3+: based on figs. l d , l e  we obtain a crude upper 
bound 

m(3 +) ~< (13 -+ 1)Amo m. (25) 

1 ± : no useful numbers as yet.  
We have expressed the masses in terms of  Amo m ; 

using eq. (12) the reader may reexpress the masses in 
terms of  the string tension. Because SU(2) is not  the 
"correct"  colour group, there is no obviously correct 
way to express our masses in GeV units. One possibility 

,s  There are various ways of implementing F~ on the lattice, 
see e.g. refs. [8,9]. The results of our paper use the same 
definition as employed in the calculations of ref. [9]. 

is to set the string tension equal to the string tension 
which gives unit Regge slopes (but note the obvious 
caveats). If  we were to do so we would obtain 

m(0 +) = 1.07 -+ 0.11 GeV, 

m ( 0 - )  = 1.77 _+ 0.3 GeV, 

m(2+) . -~  *0.53 GeV. = 1.5~z-0.32 

In summary: we have applied a modified variational 
approach to the Monte Carlo generated vacuum of 
SU(2) lattice gauge theory to obtain the glueball 
masses and wave functions. Our results reported here 
are for 44, 43. 8 and 64 lattices; however, the variation 
in going from 44 to 64 lattices is sufficiently small 
that we do not  expect  large changes in going to larger 
lattices. We are now calculating on an 84 lattice with 
a wider class of momentum smeared wave functions. 
Having established what are good wave functions we 
plan to extend our calculations to the SU(3) gauge 
theory. Nonetheless, the current folklore is that in go- 
ing from 2 to 3 colours there should be no qualitative 
change in mass ratios, so that the numbers presented 
in this paper should be a guide to the true glueball 
spectrum. 

We thank H. Joos, H.S. Sharatchandra and 
K. Symanzik for useful discussions and comments;  
and the DESY computer  center for its invaluable tol- 
erance. Particular thanks go to Sau Lan Wu for allow- 
ing us to use the Wisconsin VAX computer  and to 
G, Rudolph and G. Zobernig for operational assistance. 
We also thank E. Pietarinen for the use of  his SU(2) 
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Note added in proof. It is interesting to note that 
the mass spectrum obtained here can also be accommo- 
dated in the bag model  if hyperfine interactions are in- 
cluded [ 10]. 
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