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The inelastic leptoproduction of heavy resonances J (J = J/~k. 7" .... ) is investigated in a model 
where 7vg " '  Jg is assumed to be the dominant mechanism. Analytic expressions for the differen- 
tial cross section as well as for the helicity amplitudes are presented. A detailed numerical analysis 
of the angular distribution of the muon pair arising from the decay of the heavy resonance in its 
rest frame is presented. 

1. Introduction 

The product ion of  heavy resonances in hadronic  reactions is widely assumed to 
arise from the collision of  two constituents. A clean test of  this idea is marred by  the 

fact that in hadronic  collisions many  different diagrams make substantial contribu- 
tions, for example, gluon + gluon ~ resonance + gluon [1] or  the direct fusion of  two 

gluons into a P-wave resonance which subsequently decays into the J/q~ (or T) 

resonance plus a pho ton  [2]. Furthermore,  at lower energies, more complicated 
diagrams having a quark and a gluon in the initial state are not  negligible. One may, 
however, think that certain diagrams would dominate  in specific regions of  phase 
space, as for example the gluon + gluon---, resonance + gluon mechanism may 
dominate  at large transverse momenta  over the gluon fusion mechanism with 

subsequent radiative decay [2]. This is, however, limited to specific reactions in 
specific energy regions (it seems to be the case for T-product ion in pp collisions) and 
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depends on the smearing in transverse momentum of the incoming constituents. 
Without smearing the gluon fusion mechanism limits values of the transverse 
momentum of the J/~b by 

m 2 2 - m ~ / ~ )  p 2  ~ 
4m 2 

where mp is the mass of the P-wave resonance. In the case of the J//~b this means 
p2  ~< 0.18 GeV 2, indeed a very small region in PT- This limit is, however, meaning- 
less since smearing in the transverse momentum of the initial gluons may easily 
produce values above l GeV 2. 

For the above-mentioned reasons it is of interest to look for production reactions 
which would uniquely single out one specific set of diagrams, thereby allowing a 
cleaner analysis of the production mechanism. Such a reaction exists in nature, 
namely, heavy resonances produced by photons [3] and by electron or muon beams 
[4,5] (see fig. 1). In these cases the direct production of P-wave resonances is 
forbidden: a photon (virtual or real) cannot fuse with a gluon to form a resonance 
because it is not possible to balance colour between initial and final states. This 
eliminates a priori the diagram that contributes most to the production of heavy 
resonances in hadronic collisions. The main left-over diagram has a very nice 
structure: it is simply the diagram responsible for the gluonic decay of J / 6  (or T) 
with one of the gluons replaced by a photon and the appropriate crossings from the 
initial to the final state. As emphasized by Berger and Jones [3] for the photoproduc- 
tion cases one correctly projects out the spin-1 part of the quark-antiquark final state 
and also takes into account the colour singlet nature of the heavy resonance. This 
approach therefore provides a more physically correct description of the production 
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Fig. 1. Inelastic leptoproduction of heavy resonance J (J = J/t~, T .... ). The model-independent factors 
are explicitly indicated [see eq. (1)]. 
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mechanism than other approaches, e.g. the open charm production mechanism 
implemented with duality to fix the magnitude of the cross section [6]. 

It is the purpose of the present paper to present a detailed analysis of the 
leptoproduction mechanism of heavy resonances, in particular, we concentrate on 
the angular distribution of the muon pair in the final state. It has been shown by 
Keung [4] and by Baier and Rfickl [5] that the model based on the diagrams of fig. 2 
provides a good description of the Q2 dependence of the cross section [4, 5], of the 
energy dependence of the photoproduction cross section [4, 5]. of the z-dependence 
[4] (z being the energy fraction of the virtual photon taken by the J / i f ,  see eq. (38)) 
and of the t-dependence [4] of the cross section. Baier and R~ickl [5] also present 
predictions concerning the distribution in polar angle of one of the decay muons in 
the rest frame of the heavy resonance. Our analysis goes beyond these calculations 
since we present results on the polar a n d  azimuthal angular distributions of the 
lepton pair in the decay of the heavy resonance. It turns out that by organizing 
the calculation properly one arrives at relatively compact analytic expressions for the 
desired distributions. These expressions may be useful for subsequent applications 

Iz kl kl 

kz z 

,..~.~r'¢¢~ ~ - '  . . . . . . .  gZ /p,~- M_p_g' z ....... gz gl -P-gZ glr- 
(20) (2d) 

[2 IZ 
..oz 

(2b)  (2e)  

[z k~ 
! ~ k z  

~p "~'~-~ I gT 
Z 

t2 kl 

I ~  k2 

gl ~'g2 

(2c) (2f )  

Fig. 2. Diagrams used to describe the inelastic leptoproduction of heavy resonance J (J = J/4', 1" .... ). 
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when more data become available. We furthermore present a complete numerical 
analysis of the angular distributions of the lepton pair arising from the decay of the 
heavy resonance. From a theoretical point of view we remark here that the frame 
having the recoil axis does not coincide with the recoil axis at the constituent level. 
The most natural choice is the virtual photon direction since this is common to both 
the constituent interaction and the hadronic interaction. This axis furthermore does 
not suffer from smearing effects in the transverse momentum direction, as would be 
the case if the momentum of the target (in the rest frame of the heavy, resonance) 
were chosen as z-axis, a problem which seriously complicates the analysis of angular 
distributions in the Drell-Yan process and leads to the introduction of the Collins- 
Soper frame [7] as a way of minimizing these effects. All these considerations are 
unnecessary if the virtual photon direction is chosen as z-axis. In our numerical 
calculations we have consistently integrated over the azimuthal angle of the plane 
formed by the incoming and scattered lepton. 

In sect. 2 we present the most general form for the angular distribution. In sect. 3 
we present the calculations and analytic results based on the diagrams in fig. 2. In 
sect. 4 we present the numerical results of our analysis and compare them with 
previous calculations. In sect. 5 we collect our conclusions and comments. 

2. General formalism 

In this section we study the inelastic production cross section (fig. 1) in a 
model-independent way. Most of the notations are defined in the figure. We will 
denote the lepton current (£p  2'2) by L: 

L.-- (1) 

and the muon current, from the decay of the heavy resonance, (k,, k2), by M: 

M~, - ~ (k2)z ,v (k , ) .  (2) 

To investigate the helicity structure of the general process one decomposes these 
currents into left-handed and right-handed parts. This decomposition is correct 
provided one neglects electron and muon masses. This approximation will be made 
in the rest of this paper. Eqs. (1) and (2) can thus be written as 

Lt, = ½fi(£2)yt,(1 +ys)u(£,)+½~(£2)yt,(1 -ys)u(£,)=--'L~+LC~, (3) 

M~ = ½~(k2)7.(I + ys)v(kl) + ½~(k2)7.(I - ys)v(kz)- MR + M~. (4) 

Each one of these currents is conserved (up to terms proportional to lepton masses). 
They can therefore be written in a basis of three orthogonal vectors: e,(0), e~,(+ 1) 
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and e , ( -  I) corresponding to the polarizations of the associated photons [8]. For the 
lepton current L~ one has 

~ / ~ 2 Q 2 e  _ -T- :~i,~ , L~(~)--. i--; [+~,(o)-~+~.(+l)e~'*-~_~,( 1)e ] (5) 

where, in a standard notation, 

4 E I E  2 + 0 2 1 ~ - -  e + ¢1 + e 

e = 2 E ~  + 2 E ~  - Q 2 '  a +  = 2,,/~ ' (6 )  

with E I and E 2 the energies of the incident and scattered lepton (Q2 is negative), 
while ~ is the angle between the lepton plane (£~,~2) and the hadronic plane 
defined by Q and pj  (see fig. 1). 

For the muon current one has in the rest frame of the heavy resonance 

• 2 0 ; i ~  " 2 0 M~R(L)=Mj[+_sinOe~,(O)--vl2sm .~e e ~ t + l ) - C 2 - c o s  ~e±'+e~(T-1)] ,  (7) 

where O and ~ are the polar and azimuthal angles of one of the muons in the rest 
frame of J. Mj is the mass of the heavy resonance. 

The general matrix element for the process of fig. 1 is 

e 2 e 2 1 
6 ~ ( ~ ,  + T _ . . ~ 2  + j + hadrons; j ~/1+ g -  ) = ._~_Lt, T ~ M  _.; 

M i  - pj - iM, F , ~d" Pi 

(8) 

In eq. (8) we have taken out all the model-independent factors like propagators and 
electromagnetic coupling constants and the hadronic dynamics is represented by T~. 
T denotes the target particle (proton or nucleus) and J the heavy resonance, 
J = (J/~p, T . . . .  ). In the narrow resonance approximation, the modulus squared of 
the matrix element in (8) is 

IG3E (£1 + T -0 £  2 + J + hadrons ; J --, g + g -  )12 
spins 

e ' e ' .  )l ) 
- L,L. + L,L,. E L,g, O" M: MJr, a ( ? ~ - M ] ) (  s +R L +L + 

" spins 

× ( M~M. +R + MLM~ L ). (9) 
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With the help of the decompositions (5) and (7) one can rewrite eq. (9) in a form 
making the angular distributions explicit. To this end we define 

11"~ ) '~j j ,=e~,( l)e~, ,( l ' )[  E L,L+,, , e * ( j ) e , , ( j ' ) ,  (10) 
hadronic 

\ spins 

where e~(l)(e~,(l')) refers to the polarization vector with helicity l (l') of the 
incoming virtual photon while e~( j )  (ep,(j')) refers to the polarization vector with 
helicityj ( j ' )  of the outgoing photon coupled to the muon pair. In expression (9) we 
now have 

$ s 

= ~.. pu,(e,  Q2, q~)OCJfW:;(O,~) .  ( l l )  
l,l ';j ' ,j" 

The virtual photon density matrix elements ptr(e, Q2, ~)  depend on the virtuality Q2 
of the photon, on the azimuthal angle • and on the parameter e defined in (6). Its 
components can be deduced from (5) and are given by 

- 0  2 

P * + - - P - -  2 ( l - e )  ' 

- eQ 2 
P°° = l - e ' 

p+o = ( p o + ) *  = - p o -  = - ( p - o ) "  = ~ + , )  

(12a) 

Q2 

2(1 - e) 

(12b) 

- - e  i¢, (12c) 

Q2 e 2i*. (12d) 
P+-  = ( P - + ) * - - E  2( 1 - e )  

The angular decay matrix Wjf(0, 4)  depends on the rest frame polar and azimuthal 
angles O and + of the heavy resonance decaying into a back-to-back/~-/z- pair. 
Neglecting lepton masses one finds from (6): 

3 
W++ = W__ = 16¢r (1 + cos20) ,  

3 
Woo = ~ sin 20, 

w + o  = ( W o + ) *  = - W o _  = - ( W _ o ) *  = 

3 • 2 t~ 2i~ 
W . , _ = ( W  + ) * = - -  167rsmve . 

3 sin20C¢, ' 
16¢2-¢r 

(13a )  

(13b) 

(13c) 

(13d) 
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We now perform the helicity summation in (11) in order to bring out the general 
form of the angular distributions*'. The summation considerably simplifies when the 
hermiticity and parity properties are used: 

• I1" , 1"1" ~[~.-- (herrniticity) (14) ~ C j , )  , 

• -11" __ ~ - I - I "  3£j~,- + _j_/ ,  (parity).  (15) 

In (15) the + ( - )  sign should be used for odd (even) number of longitudinal 
components: 

E PtrgCff: W# = (( ~ +  " + ~ +  " ) ( 1 + cos20) + 2 ~ o  + sin20 
j , j , l , l "  

+ Re( "3£ + ~ - ~ -  o ) ¢~ sin 2 0 cos ~ + 2 RedS. _+ sin20 cos 2 q~) 

+ 2e(%_ °°. (1 + cos-'0 ) + %~sin-'0 + ¢~-Re ~+~sin  20 cos 

+ ~-+oo_ sin20 cos 2¢,) 

- e cos 2 q~{2 Re ~S. 7. ( 1 + cos20 ) + 2~.'~o- sin20 

+ ~/2Re(5£+o + ~o+-- )sinZ0cos q~ 

+ (5£.~ - + ~ +  ~. )sin20 cos 2¢,} 

+ e sin 2~{ + 7'2- Re(~)C++o - ~)C~-+-)sin 20cos q~ + (~}C+ + [ - ~-+_ ; )sin20 cos 2~} 

+ e ¢ ~  + e) cos ~ ( 2 R e ( ~  +°  + 9C+_ ° )(1 +cosZO)+4Re~.'~o°sin20 

- ~ 0 _ ~ + 0  ~ 0 ) s i n 2 0 s i n ~  + ~ R e ( ~ :  °+x0+ -0-  - 

+ 2 R e ( ~ + °  + ~+_o )sin20 cos2~) 

• . + 0  ~JL0+ + - 0 -  o -  + t C ~ + e )  s , n ~ { v ~ R e ( ~ ) C + o - " - + o  ~)C+O ~C+O)sinZ0sine? 

+2v, e(%~o +o - ~C_ + ) sin 20 cos 2 q~). (16) 

* Expression (16) generalizes the result of Schilling and Wolf [9] to the inelastic vector meson 
production process. 
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Eq. (16) gives the most general structure for the angular dependence of the process 
under consideration. In the rest of this paper we will be concerned with the 
•-integrated cross section so that only the first two curly brackets will contribute*. 

3. Constituent model 

3.1. STRUCTURE OF THE MODEL 

The model we considered is described by the six diagrams in fig. 2. These lead to 
the following expression for the amplitude T~ defined in (8): 

i .2 ~a MJJ e'q~ua, 8' T~ = t,~t~ (Tr 2 2 4 _2,-- (17) 

where ~ 2 %(e~) is the polarization vector of the incoming (outgoing) gluon, ½M is the 
SU(3) color matrix, & is the gluon-quark coupling constant, ~b(0) is the quark-anti- 
quark binding wave function taken at the origin in coordinate space, eq is the charge 
of the quark (i.e. either + ~ or - ½) and C~,~,,a is given in the following expression: 

_fl.S-__~ + me_. - P  -g '2 + me 
C~,~a#= Tr y~(fi + mc)Y~ t + Q2 _ - ~ 2  )'~ s -  M 2 Y~ 

+ y , ( p + m e ) y # # - g t + m e  - / ~ - g 2  + mc 
u-M# Y" 

Y~ 

] ~ - Q + m  e - /~  +g't + me 
+ Y ' ( p  + mc)Y~'t + Q2 _ M :  Y" u _  Mj2 Ya 

+ ./~,( p + me)yB2~t- gl + m e  
u -  M ~  Y~ t + Q2_  Mj2 ~.~ 

+y~(t+mc)y 2¢-gt+mc - / ~ - g 2 + m c  

p - - ~ + m  c --f l--g2 + mc } 
+ Y~( ~ + m¢)Y~ t + Q2 - M 2  Ya s - M~ r~ • 

(18) 

The traces in (18) appear already at the amplitude level because one requires the 

* The ~-dependence has been investigated in a different model in refs. [10, I I], 
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quark-antiquark wave function to be in a J = 1 state, e.g. for spin up [3] 

• v(I')~(I") = V½ g(T)(,d +m¢), (19) 

each constituent carrying half of the resonance momentum. In eq. (18) we intro- 
duced the variables p, s, t, u, and me; these are defined as follows: 

1 (20a) p --- ~_pj, 

s - (gt + Q ) 2  (20b) 

t = (Q _ pj)2,  (20c) 

u - ( pj - g~)2, (20d) 

and me is the mass of the constituent quark, taken as approximately equal to ½Mj. 
After taking the modulus squared of the amplitude for the process at the 

constituent level we sum over the spins and colours of the incoming particles and 
take the average for the outgoing ones. This leads us to 

¼"~ E l ° 3 E ( £ , + g t ' - * £ 2 + J + g 2 ; J - ' * / x + ~ t - ) [  
spins 
colour 

64°t4a2(4¢r)6eq 4 " " 4 -/ 

= ~ lq~(O)l ~ (  p~ - M j  )L~.,.M,,.C~,,,~/~C/,,+,,,~a, (21) 

where L~,  and M,, ,  arise from squaring and spin-averaging the lepton and muon 
currents: 

L ~ ,  - l,~t2~ ,, + ll~,12~ + ½Q2gt,~,, (22) 

- v M j g , , .  (23) M,~, - kl~k2~, + kt~,k2,  l 2 

The evaluation of the r,h.s, of (21) will be presented now in which the angular 
distribution given in 06)  is implicit. 

3.2. EXPLICIT EXPRESSIONS FOR THE CONSTITUENT PROCESS 

Calculating the traces in (18), squaring the whole expression and then finally 
multiplying with (22) and (23) leads to a very large number of terms. After 
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rearranging the expressions, we are left with the following: 

"4- L ~ ' M , , ' C ~ C ~ ' , ' ~ B  = (16m¢)2y~9_ I f~i)F(i) (24) 
(t+Q2-Mj)2(u-Mj)2(s-MjZ) 2 

In expression (24) we collected all terms containing k I and k 2, the momenta of the 
decay products of the heavy resonance, in the F t~) factors, all other terms are 
collected in t he f  ti) factors. Terms independent of k t and k 2 are collected i n f  t9) with 
F (9) = 1. We have 

F ° )  = kl " gtk2 " gl ,  (25a) 

F ~21 = k I • g : k : .  g2, (25b) 

F '3'= ½ ( k , ' g , k  2"g2 + k , ' g 2 k 2 " g , ) ,  (25c) 

F (4~ = L" k l L "  k 2, (25d) 

F ~5~= L ' g t ( L ' k t g  t "k 2 + L ' k 2 g  ~ " k t ) ,  (25e) 

F ~6~= L . g l ( L . k , g  2 . k  2 + L . k 2 g  2 . k ' ) ,  (25f) 

F ~7~= L . g 2 ( L . k l g  I • k 2 + L . k 2 g  I • kt ) ,  (25g) 

F (8) = L- gz(L" k lg 2 • k 2 + L .  k 2 g2" k t ) ,  (25h) 

F (9~= 1, (25i) 

where L = 11 + / 2. The expressions for f (o  can then be written as 

f ° ' =  ½( L .  g 2 ) 2 ( s -  Q2 ) (  s -  M2  ) + ½ L . g , L .  g2( s - Mfi )(  M2 - Q2 ) 

+ ¼Q2M2t z + ¼(Q2 _ u ) ( s  - M :  )(  M 2 - e 2 ) e  2 , (26a) 

/(z) = ½(L. g t ) 2 ( u _  O. 2 )(  u - M 2 )  + ½ L . g l L  . g2 ( u - M f  )(  M 2 -  O 2) 

+ ¼QZM:,2 + ¼(Q2 _ s ) (  u - M : ) (  M 2 - 0 2 ) Q : ,  (26b) 

/o,= _½( L. g , ) 2 ( 0 2 -  u) (  M :  - 0_ 2) - L .  O. s ) (  - ) 

+ ½ L . g i L . g 2 [ ( M ? _  Q 2 ) ( M j _  Q2 + t ) -  2 ( s -  Q 2 ) ( Q 2 _  u)] 

- ¼Q2t(t + M: + Q2)(M:_ QZ), (26c) 
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f"~= ½ ( s - Q 2 ) ( Q 2 - u ) [ 2 Q Z t + ( M ~ - u ) ( s - M ~ ) ]  +¼Q4t2, (26d) 

f,5)= ~( Q'- - u)( s -  Mj2 )( Mj2 - Q2 ), (26e) 

f ,6 ,= _~(  M ~ -  u)[(Q-' - u ) ( 2 s -  Q- ' -  Mj'-) + 2Q"t]. (26f) 

f o , =  _ ~ ( M j ' - _ s ) [ ( Q 2 _ s ) ( Z u _  Qa_  M j )  + 2Q'-t], (26g) 

f~'-- ~(Q: - s ) (  ~, - M~)( M] - Q'-), (26h) 

f o , =  _~Mj2( L.g,)Z[2QZt 2 + (Q'-_ u):( M j -  e 2)] 

~Mj(  L.g2)Z[2e'-t 2 + ( Q 2  s)2( ,~/j_, _ 02)]  

+ ½Mj2L • glL" g2t(M¢ - M~Q 2 + Q2t) 

~MjEQ2((Mj2Q 2-  su ) :+  (2t + Q2_ Mj2)t(M~Q2_ su) 

+t2[(Mj-Q2)(Mj 2+t)+(MJ-t)~}. (26i) 

Expressions (25) and (26) combined into (24) provide us with the complete modulus 
squared matrix element for the reaction under consideration. 

3.3. HELICITY AMPLITUDES 

In this section we express the inelastic production cross section in terms of helicity 
amplitudes [see eq. (10)]. This does not bring any more information that is not 
already contained in (21) but provides new insight into the physics of the problem. It 
is, for example, possible to follow the helicities of the particles involved. We will 
present explicit expressions in the recoil frame at the constituent level. Rotations to 
other frames are possible but are more cumbersome than in the covariant approach 
of the preceding section. 

The transition amplitude is written as 

~-2% (Y*gl ~ Jg2) = Cqeq~MMj~(O)*SabA('l*g, "" Jgz), (27) 

where 8ab indicates that the incoming and the outgoing gluon have to carry the same 
colour index. The reduced matrix element A is obtained from the six diagrams in fig. 
2 where the leptonic legs should be removed now. The explicit representation of A is 
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obtained using eq. (18): 

17 

64Mj 
A(y*gl "* J g z ) - - ( s _ M j ) ( u _ M j ~ ) ( t _ M j 2 + Q 2 )  

× (e.  e ,[Q.gze~.g ,e~.  Q -  Q .g :g , . g2e~ .  e~ + g, .g2e*.  Qe~.g,] 

+e*. e~[Q.g 2e.g  le t "g2 - Q 'g le 'g2el  "g2 + gt "ge e , " Qe'g2] 

+ (Q ~ 2) + (I *-, 2)} (28) 

where, in an obvious notation, e denotes the polarization vector of the virtual 
photon, ej the polarization vector of the heavy resonance and e~ (e2) stands for the 
polarization vector of the incoming (outgoing) gluon. The helicity amplitudes can 
then be calculated in the usual way. A closed form of the expression is given by* 

2JIMj 
A(y*g, ~ Jg2)--  H:x2;tx, = (s + t -  a Z ) ( _  Qz + M ~ -  t) 

× {(s - Q2 )(l  - X, ) ( J  - X 2 )(1 + hlh2COS Oj ) 

- 2 t ( 1  + cos0j)[  JX I + 
h t X z ( - Q  2 -  Mj:) + h a l ( s -  Q2) 

( /+h , ) (J+  h2) 
+ [(1 +h lX2)  [ ( s - M 2 ) ( s  - Q 2 + t ) + t ( Q 2 + t ) ]  

s - Mj 2 

+ (1 - X , X z ) t ( s -  Mj 2 -  0 2 + t)] } 

2v~sin 0jl(1 - j 2 ) ( s  - pZ ) 

¢7( -  O~ + M,~- , ) ( -  e -' + ,  + t) 

× {(1 - lX,)M?(1 + X,X2cosO,) 

+ ( I + / X , ) Q  2 l + h,X: + h tX2( s_Q-ZTss - -M~ ) 

* We use the Jacob-Wick convention. 
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, : - 2 Q  2 2 M j s i n O ~ J ( l - 1 2 ) ( s - Q 2 )  

V S ( _ Q 2 + M j Z + t ) ( s _ Q Z + t )  

)<{(| -- ~.2J)(l  + )kl)k2COS Oj) 

2tM' ~ ] 
+(1 +x::)1 + x,x~ + x,x: (s_ Q~-~-j- M;_) 

4 - f ~ ( 1 - J 2 ) ( 1 - I  2 ) 

( - Q :  + M ~ -  t ) ( - Q  2 + s + t ) ( s -  Mj 2) 

X ((1 + X,X2) [ ( s -  Q 2 ) ( s -  Mj 2)(1 + cosOj )+  2Mjt]  

+ 4tMjcos Ojhth 2)' (29) 

where J , / ,  h~ and h 2 denote respectively the helicities of the heavy resonance, virtual 
photon, incoming gluon and outgoing gluon. Oj is the angle of the heavy resonance 
in the constituent c.m.s, cosOj -- 1 + 2st/[(s - Q2)(s - Mj2)]. 

In order to facilitate comparison with previous calculations we list the sum over 
spins of the square of the amplitude (29) in the photoproduction limit (Q" = 0): 

Ial z =  ~ Injx2;tx, I 2 
spins Jh 2;/~ I 

_ 83 s2(s - Mj2)2 + t2(t - Mj2)2+ u2(u - 342) 2 

( , -  M,~)2(,- M:)~(u- M:) 2 
Q 2 _  O. (30) 

This reproduces the photoproduction cross section of Berger and Jones [3]. Return- 
ing to the leptoproduction case, in the limit* s --', ~ with Q2, t fixed and [t I << 

* In this limit we may have large QCD corrections from higher order terms [13] of the form 
a slog(s/I Q 21) or as log(Q 2/t). Nevertheless. the qualitative result of helicity conser~'ation and vector 
meson dominance may be correct. 
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M s, Q: we find a particularly simple expression for the amplitude (29): 

4StM, (l +x,x2)(l + v )  lira A(y*g, ~ Jg2) = . ~ - - ' = z  
w/j '-- ~d 

t. Q '  fixed 
Itl "*: M] .Q 2 

8 f ~ - Q  2 (1 - S 2 ) ( 1  - 12)(1 + )k,Jk2) 

m ? - Q  2 (31) 

The first term on the right-hand side of (31) is non-vanishing only for 

A l = A 2 =  + I ,  l = J =  ± 1 ;  

the second term is non-vanishing only for 

~ a = X 2  = ± 1 ,  l = J = O .  

Therefore,  in this limit, the ampl i tude  conserves helicity at the subprocess  level*. 
The leading s-channel helicity ampl i tudes  are 

H++.  ++ - 16M s, 

H + _ ; + _ -  16Mj, 

H+o: + o -  - 16~--Q 2 • 

Thus the subprocess is s-channel helicity conserving and has natural parity exchange 
[9]. The amplitude (31) also has a vector meson dominance [14] structure due to the 
factor (M 2 - Q2)- i ,  this factor determines the Q2 dependence, up to a factor Q in 
the numerator of the second term on the r.h.s, due to the longitudinal character of 
the photon in this term. 

From the s-channel helicity amplitude of the constituent scattering given in eq. 
(29), one can obtain the helicity amplitudes in the hadronic c.m. frame, t4hadro~ by "~*h2J, hxl, 
boost ing along the z axis. The  hadronic  helicity tensor appear ing  in eq. (16) are then 
obta ined  f rom H hadr°~ a- h2d, All 

~.~5' ~ E lr_/'hadron f./*hadron 
**h2j .  Afl .*~.2j ' ,Ail"  • 

A1,~2 

Finally, we would like to make some remarks on the frame dependence of the 
above expressions. Angular distributions in different frames can be obtained through 

* To leading order in s this then also holds true at the hadron level. 
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~ j r  = RT,,,( a, fl, "¢ )~C"',,,,R,,,j( a, ,8, V ). (32) 

Such a rotation will only reshuffle terms within the curly brackets of (29). The 
different frames discussed previously and in the next section can be reached from 
the above by a rotation around the y axis (a  = y  = 0). Although the rotation matrix 
has a simple form, the rotation an~e itself depends on the kinematic variables of the 
process in a non-simple manner so that the expressions become quite complicated. It 
is clear that measurements of the density matrix elements in different frames are 
only complimentary if these measurements are complete since the density matrix 
elements in different frames are linearly related to each other. In practice these 
measurements will of course not be complete and a judicious choice of frames is 
important as discussed previously. Thus, different angular distributions will in 
general test different aspects of the underlying dynamics. 

3.4. DIFFERENTIAL CROSS SECTION 

We now proceed with the study of the differential cross section. At the level of the 
subprocess we have: 

1 d312 d3g2 d3kt d3k2 
d a =  

2g (2,a.)32E2 (2,rr)32g2o (2..a.)32km (2,n.)32k2o • 

X (2rr)a3"(lt  + g, - 12 - g2 - k2 - kl)t~~L (£1 + gl -"' £2 + g2 + k.~ + k.:,)] :. 

(33) 

As four particles appear in the final state we have a twelvefold differential to start 
with. Energy-momentum conservation reduces this to 8, one of the azimuthal an#es 
can be integrated over and the two muons have to originate from the heavy 
resonance, thus fixing their invariant mass. In the end we are thus left with 6 
independent variables to describe the process. These are chosen in the following 
way: three of them are associated in the standard way with the scattered lepton, 
namely, Q2 the invariant mass of the virtual photon, ,; the energy loss (in the lab 
frame) of the lepton and • its azimuthal an#e;  two other variables specify the 
angular distribution of the produced muon-pair in the rest frame of the heavy 
resonance; as a last variable we take t the invariant momentum transfer of the 
scattered gluon: t = (gt - g2) 2 = (PJ - Q)2. In these variables the cross section 
becomes 

do = ~r I~.~qL(~¢, + gl ~ . g 2 +  g2+ k, + k_,)l 2, (34) 
dQ2df, dOdtd~2 128(2¢r)Sg 2 
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where 

= g- Q, (35) 

g _ (l, + g, )2  (36) 

while 12 refers to the polar and azimuthal angles of the/~- in the rest frame of the 
heavy resonance and p2 is the invariant mass of the produced muon pair. 

To make contact with hadronic variables we multiply expression (34) with the 
distribution function for gluons inside the target particle: G(~), where ~ is the usual 
fraction of momentum carried by the gluon in the infinite momentum frame of the 
target particle: 

da( .g  I + ~ ' -~  ~'(/+~2 + kl + k 2 +  ' ' ' )  
dQ2dt, d ~  dt dl2 

Jo J d t ; d Q 2 d ~ d t  dI2 
(37) 

where ~, -= ~;/~ --p-  Q is, in the lab frame, the energy loss of the incident lepton times 
the target mass. Instead of ~ we introduce at this point a more useful variable, : .  
which in the laboratory frame is the energy of the produced heavy resonance divided 
by the energy of the exchanged virtual photon: 

pj "p 
Q . p  

E j  
= Er. (lab frame), (38) 

and p is the four-momentum of the target particle (proton or nucleus). The relation 
between z and ~ is given by 

z = 1 + t /2u~ .  (39) 

In this way we obtain, from (34) and (35), the following expression: 

do (£ ,  + ~)L--,£2 + 0L' + J + .. .  ,J---* k t +k2) 
d z  dv  d t  dQ2 dI2 dcI) 

¢ r G ( ~ = - t / 2 ( 1 - z ) v )  d p  2 1 

64(2¢r)Ss 2 t 32 
I(~1 + gl -'~-e2 + g2 + J ,J  --' kt + k2)l 2 

spins 
colour 

(40) 
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where 

" E  
spins 

colour 

VD1L (.g, + g~ -*£2 + g2 + J; J "" kl + k2)l 2 

_ a~(4~r) 5 r2(J ---,/~ + #-) 8(p~_Mj2) 
Q'Mj F(J  --* all) 

(16m¢)2E9_ l f(i)F(i) 

(t + Q2 Mj2)2(u_ Mj)Z(s  - M2) 2 

(41) 

Use has been made of eqs. (21), (24) and of the relation 

16~ra2e 2 
F(J ~ /~+~t- )  = Mj2 I'k(O)12 (42) 

to eliminate 1#~(0)[ 2. Since u and s are no longer treated as independent variables. 
they should be replaced in (41) by: 

s = Q2 t (43) 
1 - z '  

zt (44) u=M' • 

3.5. KINEMATICS 

From expressions (40) and (41) we want to calculate the angular distribution of 
the muon pair in the rest frame of the heavy resonance with reference to the general 
choice of z axis. All momenta appearing in (25) and (26) therefore have to be 
expressed in this frame. We start by considering the constituent process in its c.m. 
frame: 

27, .~,  2vt~ ,0 ,0  , 

s - 0 2 s - Q2 ) 
g ' - -  2 g  ' 2v~" ,0 ,0  , 

) s + M  ] s - M j  2 c o s 0 J , 0 , ~ s i n 0 J  , 
P ' =  2vq ' 2¢7 2 ~  

li = (/to, l'11' Ix sin ¢/i' lj. cos ~ ) ,  (45) 

where ¢/i is, as before, the angle between the hadronic plane formed by Q and ps and 
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the leptonic plane formed by I, and i 2 (see fig. 3). The angle 0 s can be calculated with 
the help of the variable z: 

and is given by 

g " ~  (46) gl "Q ' 

s ( 2 z -  1 ) - M j  2 
cos 0j = , (47a) 

s - M  2 

sin Oj = (47b) 
s - Mj: 

We next perform a rotation around the x axis to bring pj  along the z axis. After this 
is done we boost the heavy resonance to rest. In this frame the momenta  Q, g~, g2 
and pj  are given by 

s + M2 - z (  s - Q ) s - Q z 
Q =  234I ' 2v~- sin 0j. 0, 

s 2 + M ] -  2 M ~ Q : -  z ( s  + MsZ)(s - Q2) 

2 M j ( s - M j )  
(48a) 

g ' =  2¢;  . sin e,. 0, ' (48b) 

s - -  M2 (1 ,0 ,0 ,  1), 
g z =  2Mj 

(48c) 

pj = Mj (1,0, 0, 0).  (48d) 

Since we want to study the angular distribution of the muon pair arising from the 
decay of the heavy resonance for an arbitrary choice of z axis, we perform one last 
arbitrary rotation around the y axis. This last rotation will depend on the choice of 
frame one wants to study. We limit ourselves here to three choices: for the first one 
we choose the direction of the virtual photon to fix the z axis, for the second one we 
choose the opposite of the target direction as z axis and for the third one the 
hadronic recoil axis, namely PR~:oil = Q + P, where p is the target momentum. The 
first choice is the most natural one from the standpoint of the model we are 
considering. The second one is not completely unambiguous because the constituents 
can have a certain Fermi motion inside the target and therefore the direction of the 
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/ 

/ = ~ ~ S ~  

Fig. 3. Z~ (incident lepton) and ,g 2 (scattered lepton) define the lepton plane. Q (virtual photon) and J 
(heavy resonance J/~. 1" .... ) define the hadron plane. The angle q~ is the angle between these two planes. 

Quantities calculated have been averaged over ~. 

target  m o m e n t u m  will not always be the same as the direction of the incident 
consti tuent.  The  third f rame corresponds  to choosing the z axis as the J direction in 
the hadronic  c.m. frame. The recoil m o m e n t u m ,  however,  does not correspond to the 
m o m e n t u m  of the recoiling gluon since 

PRecoa = Q + P .  (49) 

while the m o m e n t u m  of the recoiling gluon, g2, is given by 

g2 = Q+~P. (50) 

T o  reduce the form of the angular  distr ibution in (16) we averaged all quanti t ies 
over  • (see fig. 3)'*. The  expression so ob ta ined  has the following general form: 

d N  3N 3 ' 
dO -- '167r [1 + c°s20 + A°(½ - ~cos-0)  +Ai s in20cosq~  + Az½sin20cos2~] ,  

(51) 

where 8 and ~ are the polar  and azimuthal  angles of  one of the decay muons  [see 
also eq. (16)]. The  analytic expressions for N, A 0, A I and  A:  are presented in the 
appendix.  

4. Numerical  results 

In  the rest f rame of  the heavy resonance we have taken the plane defined by the 
target  m o m e n t u m  and the virtual pho ton ' s  m o m e n t u m  as the x - z  plane  [see eq. (48)]. 

* The angular distribution considered in ref. [15] corresponds to ¢ - ¢ in our notation. 
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gl gz 

~'z 

Fig. 4. Momenta  in the rest frame of the heavy resonance J (J = JAb, T . . . .  ). The momenta  of the gluons 
define the x-y plane. All momenta  lie in the positive x half-plane. 

The axes are chosen such that all momenta lie in the positive x half-plane (see fig. 4). 
The frames are then uniquely fixed by specifying the z axis. The following choices 
were made: 

beam frame: 

target frame: 

Q along z axis ( 0q = 0),  

- gl along z axis (01 = ~r), 

recoil frame: - (Q + ~ )  along z axis. 

To evaluate the different coefficients A 0. A t and A 2 we integrate (40) over u, t and 
z. For simple choices of the gluon distribution function G(~), e.g. the standard form 

G(~) = 3 (l - ~ ) 5  (52) , 

it is possible to do the u integral [~ and ), are related to each other through (39)] 
analytically because J, only appears in the lepton momenta otherwise. The integra- 
tions over z and t were clone numerically, the integration limits being the following: 
for the u integral, from the constraint 

0 ~  1 (53) 

and upon comparing u with S-r, s r  -- (11 +p)2,  one deduces 

- - t  
2(1 "sT. (54) 

This region becomes narrower if an experimental cut is imposed on the hadronic 
mass accompanying the heavy resonance: 

W2 -~ (9_ + P - P , ) :  >1 Wo ~, (55) 
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W o being typically 5 GeV 2. In this case the integration region (54) shrinks to 

- t - M 2 +  I4/2 
2(1 - z) < v < ½s T, (56) 

M being the target mass. The lower limit of the t integration region can be deduced 
from (56): 

W 2 -  M 2 -  ST(1 -- Z) x< t, (57) 

while the upper limit can be calculated from e.g. the transverse momentum squared 
of the heavy resonance in the constituent c.m. frame, 

p ~  = ~ ( 1  - ~ )  - M ? ( 1  - z ) ,  (58)  

and from (43), leading to 

t ~ & ( t  - z )  - M ?  1 - z (59)  
z 

(57) and (59) together fix the t-integration region. The last integration is done over 
the z variable. Combining (57) and (59) gives us a quadratic condition on z: 

Wg - M" - ST(1 - z )  <~ Q : ( 1  - z )  - M j  2 1 - z (60) 
z 

Solving this gives us the maximal and minimal values of z: 

ZMAX 

ZMIN ) 

sT + Q2 + Mj~_ W02 + M s +  ~/(ST + Q2+ Mj2_ Wo 2 + M 2 ) 2 _  4(ST + Q 2 I M j ~  

2(s- r + QZ ) 

(61) 

These values do not necessarily correspond to the boundaries of the integration 
region because it may be experimentally required that the heavy resonance have an 
energy above a certain minimum value. In particular, in the experiment of the 
Berkeley-FNAL-Princeton [15, 16] collaboration two regions in z were distinguished: 
0.7 < z < 0.9 and 0 < z < 0.7. In the first region the resonance picks up a very large 
fraction of the available energy which makes the reaction look like exclusive heavy 
resonance production, in the second region the resonance will be accompanied by 
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Ot 

- t  

! 
recoi l  f r a m e  

0 7 < z < 0 9 ~  

( S o )  

I I 
beam frame 

Z<Ol7 

07<z<09 

( S b )  
I 

t a r g e t  f rame 

° I . , 9  

( 5 c )  
- t  ! 

0.1 1.0 10.0 

- Q Z ( G e V Z )  

Fig. 5. Values of the coefficient a of the polar angle distribution, I + acos20, integrated over ~ and 
(defined in fig. 3). 

lots of secondary particles thus making it inelastic. The process described by fig. 2 is 
a pr ior i  better suited for the description of the inelastic production of heavy 
resonances because the accompanying gluon will automatically provide secondaries. 
We thus expect to have a better description of the data in the z < 0.7 region than for 
z close to 1. 

Having performed the integrations over ~,, t and z we can now present a discussion 
of our results. 

In the limit Q2 __ 0 one finds A o = A2. The same result is known to be valid for the 
QCD diagrams relevant for the Drell-Yan background, namely qg---, # + # - q  and 
qr: 1 --, g/~+#-. It furthermore holds for the hadronic production of X0 with subse- 
quent decay to a 3S z resonance and a photon: gg ~ X0Y; Xo ' - '  J /~Y;  J /~- -*  #+i t - .  
A similar relation was found to hold for e ÷ e----, J/qJ ~ ggg and e + e----, qqg (see 
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- I  
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0,7< z < 0.9 

Oeam 

~ TQrgqt 
~BCOll 

1" -1 
z < 0 . 7  

~ B e a m  
Target 

. . . . . -  R e c o i l  

o.~ ~.o ~o.o o.~ ~.o too 

_Qz (GeV z) _ Q Z ( G e V Z  ) 

Fig. 6. Values of A j, coefficient of the sin 2 0 cos ~ term in eq. (51 ). 

refs. [17, 18] and references contained therein). As Q2 increases, deviations from this 
equality become stronger. Instead of presenting A 0 we plot the parameter a measur- 
ing the deviation from isotropy in the polar angle distribution: 

1 + a c o s 2 0 .  (62) 

In fig. 5a we see that t~ is very close to zero in the recoil frame, both for small z and 
for large z. For large values of Q2 it becomes more and more negative. In the beam 
frame (fig. 5b) a is around ½ for z <0.7  while for larger values of z it is 
approximately zero with a tendency to turn to negative values for increasing Q2 In 
the target frame (fig. 5c) we observe a behaviour which is qualitatively the same as in 
the beam frame: ct is at first very small and tends to become more negative with 
increasing Q2. The value of ~t has been calculated before in the recoil and target 
frames by Baier and Rtick| [5], our results agree with theirs. 

In fig. 6 we plot the Q2 dependence of A t, the coefficient of the sin 20cos ~ term. 
The qualitative behaviour of AI is the same in all frames and does not depend much 
on the region of z: it is very small and tends to increase for large values of Q2. 

In fig. 7 we present our results for A 2, the coefficient of the sin20cos2g, term. This 
time for 0.7 < z < 0.9 we obtain a value around 0.5 for all three frames with A 2 
decreasing for large values of Q2. For z < 0.7 the smallest values for A 2 are found in 
the beam frame with A 2 changing sign around Q2 = 10 GeV 2. 

5. Conclusions 

The leptoproduction of heavy resonances is interesting because it tests certain 
basic aspects of our present understanding of the formation of heavy resonances in 
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A2 ! ! 

0.7<z< 0.g 

Recoi l ,  
Retire 

! 

z < 0 . 7  

8 e a r n  

i i ! , 
"~o.~ 1.o ~o.o o.1 1 o ~o.o 

-OZ(GeV z) _ OZ(GeVZ) 

Fig 7. Values of A 2, coefficient of the ½sin20cos2O term in equation (51). For 0.7 < z < 0.9 the values 
obtained in the target and recoil frames are so close to each other that they overlap in the figure. 

hadronic processes. In particular if the basic initiating reaction is a two-body 
collision the leptoproduction process provides a much cleaner situation than the 
corresponding hadroproduction process: instead of starting from a gluon-gluon 
collision one has a virtual photon-gluon collision, thus the uncertain gluon distribu- 
tion function enters linearly in the leptoproduction case while it enters quadratically 
in the hadroproduction case; furthermore, the number of possible final states is now 
more limited, e.g. it is not possible to produce directly a X state. The diagrams of fig. 
2 lead directly to the correct quantum number description of the heavy resonance, 
this is to be contrasted with models where the production of a free quark-antiquark 
pair is considered first and then an average description of the production process is 
made. 

We have presented our results for the angular distributions of the produced muon 
pair in the rest frame of the heavy resonance. The azimuthal angle ~ of the scattered 
lepton £2 (see fig. 1) was integrated over, the remaining angular distribution then has 
the general form given in eq. (51)*. The behaviour of the coefficients A 0, A~ and A 2 
is presented in figs. 5, 6 and 7 for three different choices of z axis. For large values of 
Q2, AI and A 2 become negative while the polar angle distribution is not far from 
being isotropic in most cases. Measurements of these quantities together with 
measurements of distributions in other kinematic variables should enhance present 
understanding of the underlying production mechanism. 

J.C., G.J.G. and M.K. would like to thank Professor K. Gaemers for useful 
discussions at the early stage of this work. They also thank Professor R. Baier and 

* The ¢ distribution will be presented in a future publication. 
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Professor H. Joos of DESY for hospitality while this work was in progress. J.G.K. 
would like to thank Dr. J. Gayler and Professor L. Jones for fruitful discussions. 

Appendix 

In this appendix we present the analytic expressions for the functions Ao, A~, A 2 
and N appearing in (51). To this end we first of all decompose the different factors 
F ~k) with k = 1 to 9 appearing in eqs. (25) as follows: 

| • ,) 
F~k~ = Nk[ ck(l + cos20) + Cog(½ - 3cos20 ) + clksin2Ocos 0 + C 2k~sm 'Ocos20  

+ terms depending on ~] . (A. 1) 

The terms depending on • are proportional to cos 2 ~, sin 2 ~, sin ~ and /o r  cos ~, 
they disappear upon integration over ~. Since we only consider quantities integrated 
over • we do not write these extra terms explicitly here. The functions A, (i = 0, l, 
and 2) appearing in eq. (5 l) can then be obtained as follows: 

~ 9  ~ ,.. ¢(k) 
Ai = " k -  I''k~'ikJ i = 0, 1 and 2, (A.2) -,k~9- . ~ck~'  

i-'NkCkJ 

where the functions ftk~ have been given in the main text [see eqs. (26)]. The 
expressions for N k, c k and Cik are given in table 1 where the symbol ( - . .  ) means 
taking an average over ~, 

1 / ' 2 , ,  
('">=2~r.lo dO.-', (A.3) 

and the explicit form for the four-vector L~, defined after eq. (25) in the text, is 

L~ ~ ( l l  + 12)~ 

= (L0, L I c o s  02 q- L3s in  02, L2 ,  -LIsinO 2 + L3cos 02) .  (A.4) 

The angle 0 2 appears here because of the final rotation around the y axis we 
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performed [see text after eq. (47)]. The different L, appearing in (A.4) are given by: 

LN ~ [ / - i - ~  

, (1  - ~) + M~ - ~0_ ~ 
2M,  

(,+ Q~)~/(l - ~ ) ( , ~ -  M, ~) 

s -  Mj 2 
0 

(1 - z)s z -  zs( M~ + Q2) + Mj2( Mj2 + ( 2 -  z)Q 2) 

(2z -1 ) , -  M: : : -~2  cos ~ 
s - M :  

( - L - ~  2 sin q~ 

(s + Mj2)~/-2Q2(1- z ) ( s z -  M~) 
cos M,(,-  M,~) 

(A.5) 

is given by eq. (6). 
The hat over the gi means: 8 i -  gi/gio = (1, sin Oi,0,cos 8i). The angles O l and 82 

appearing in table 1 are the angles of gt and g2 with respect to the z axis in the frame 
where the heavy resonance is at rest (see fig. 4). In the beam frame where the z axis is 
given by the direction of the virtual photon's momentum, one has 

0q B --- 0, 0~ -- $2 - Pq, O~ = O, - Pq. (A.6) 

In the target frame where the z axis is the beam axis 

(A.7) 

In the hadronic recoil frame, where the z axis coincides with the hadronic recoil 
direction one has 

O R is the angle between the hadronic recoil direction and the momentum of the 
recoiling gluon, i.e. the mismatch between the hadronic recoil frame and the 
constituent recoil frame. This can be calculated in the following way. From (49) and 
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(50) one has 

1)Q (A.9) 

Since g2 and Q are explicitly known in the frame under consideration, one can 

determine the components of PRe¢oil: 

s - Q  ~ _ ~)( ,~_ M~) (.~ 
(p.o~o.L=s_,~t,  ~ ~(1 1 _ 1), (A.10) 

(PRe~°il):= 4sMj ( ~ + s + Q 2 )  

+ ( s -  Q:)(~ + M'~)(~(:~ - ~) - M ~ ) i 7 - ~ 7  (l~_ ~) . (A.ll) 

It is then a straightforward matter to perform a rotation in the x-z plane such as to 

align PRe¢oil along the z direction. 
The relative angles Ol - 0:. 8 t - Oq and 02 - 8q appearing in (A.6) and (A.7) can be 

determined from the constituent scattering process. They are given by 

t 
c o s ( 0 , -  02)=  l 4- 2w,w---'-~' (A.12) 

QO s - Q2 (A.13) c°s(e'-°' , )  = tol 2tol,,.,, ' 

QO Q2 _ u (A.14) 
C O S ( 0 2 - - ~ q ) = ] O  ] 2101¢.01 ' 

with 

g ~ -  u (A.15) w l =  2Mj ' 

s - M ~  (A.16) 
W2 = 2Mj ' 

s + u  
Qo = ~ (A.17) 2M? 
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