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The transverse interaction between a bunch of charged particles and cylindrically symmetric accelerating structures is studied in 
three steps. The particle motion is influenced by short range forces and long range forces. The short range forces are calculated by 
solving Maxwell's equations in the time domain including the presence of free moving charges passing an arbitrarily shaped structure 
off axis. The long range forces are dominated by resonant modes in cavities. These forces are computed in frequency domain by 
evaluating eigenmodes and eigenfrequencies. Since only high energy particles are considered, the particle motion, which is affected by 
both forces, can be studied seperately using simple models and computer simulations. 

This first paper deals with the computation of short range forces. 

1. Introduction 

The pe r fo rmance  of high energy e l e c t r o n / p o s i t r o n  s torage rings and l inear  accelerators  is s t rongly 
l imited by current  dependen t  phenomena .  Wi th  increasing the number  of par t ic les  per  bunch  the self 
exci ted e lec t romagnet ic  fields increase and thus the beam envi ronment  in terac t ion  is enhanced.  The most  
severe p h e n o m e n a  in s torage r ings is the t ransverse ins tabi l i ty  [1]. The t ransverse ins tabi l i ty  is likely to be 
d o m i n a t e d  by the t ransverse impedance  of  the accelerat ing cavities. F o r  s implici ty  we assume that  all 
accelerat ing s tructures  and o ther  objects  seen by  the beam are cyl indr ica l ly  symmetr ic  with an a rb i t ra ry  
shape in the r - z  plane.  The s tudy of the t ransverse beam envi ronment  in terac t ion  can be split  into three 
separa ted  subjects  since the par t ic le  dens i ty  varies slowly in t ime: 
i) Short range forces. 

These forces are excited whenever  a bunch  traverses a s t ructure  off axis. They  do not  depend  on the 
qual i ty  factor  of a cavi ty  but  only  on the shape of the structure.  

ii) Long range forces. 
After  a bunch has passed  a cavi ty resonant  fields will remain  with a cer tain f requency and decay rate. 
In a s torage r ing and a l inear  accelera tor  a fol lowing bunch (or the same bunch  again)  will in teract  with 
these fields. 

iii) Particle dynamics. 
All  forces are causal  and  the par t ic le  d i s t r ibu t ion  does not  change fast c o m p a r e d  to the bui ld up t ime of 
the forces since only high energy par t ic les  are considered.  Thus the dynamics  can be s tudied separa te ly  
using simple models  and  compute r  s imulat ions.  

In this paper  a me thod  for the compu ta t i on  of  short  range forces will be descr ibed which is based on the 
BCI method  and p rog ram [2,3]. Since the s tructures  are assumed to be cyl indr ica l ly  symmetr ic ,  all fields 
can be expressed in terms of dipole,  quadrupole ,  etc. componen t s  with respect  to the az imuthal  coordinate .  
This  fact enables  a "quas i "  th ree-d imens iona l  compu ta t i on  and thus a fast compute r  code. Fo r  a small  
offset  of the bunches  f rom the symmet ry  axis the d ipole  forces are dominan t .  A cons idera t ion  of the first 
two az imuthal  m o m e n t a  seems to be sufficient.  

* Editor's note: This paper, which was originally published as a DESY report (DESY 82-015, March 1982) is reprinted here for the 
readers' convenience. 
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2. Mathematical method 

A bunch of charged particles with velocity #c  in the z direction is described by the longitudinal line 
charge density )~(s )  having no transverse dimensions. If  the bunch passes a cylindrically symmetric 
structure off axis at a distance a, the current density produced may be written as: 

J(  r, cg, z,  t )  - #c~'s(  z - #c t  ) + oo 
2~'a • cos m~p 3 ( r  - a ) e : .  (1) 

m =  c ~  

Thus the electromagnetic fields excited by the bunch can also be written in terms of sinusoidal azimuthal 
dependence. Choosing the origin at the bunch as ep = 0 we have in general all six components  of  the 
electromagnetic field: 

E r ( r  , q0, z, t)  = Er(")(r ,  z, t)  cos mop, 

E r ( r ,  ep, z,  t )  = E+") ( r ,  z, t )  sin mqg, 

Ez(r ,  z, t) = E F " ( r ,  t) cos 

H r ( r ,  q~, z,  t )  = H)m)(  r, z ,  t )  sin mq~, 

H ~ ( r ,  q0, z, t) = H~" ) ( r ,  z, t)  cos mq0, 

I t . ( r ,  cg, z,  t )  = H ) m ' ( r ,  z, t )  sin mq0. 

(2) 

From here on the upper index m will be omitted. The only geometry that can be treated half analytically is 
the infinite chain of "pi l l -box" cavities with beam tubes inbetween [4]. Since there is no way to solve for 
arbitrarily shaped structures without using a computer  we will apply a mesh method to the problem. Basis 
for the method is the FIT-algori thm [5,6] which has been successfully applied to the case of an on axis 
beam [2,3]. 

The component  of the fields are replaced by their values on a finite number  of  grid points using the 
locations described in ref. 7, see also fig. 1. The nodes are numbered first in z then in r direction linearly 
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Fig. 1. The mesh used in the r - z  plane  with equal  steps in both  directions.  The mesh points  are numbered  l inearly first in z and  then 
in r direction.  The fil l ing index is F and may have values between 0 and 5 and thus F k defines the boundary  of the structure.  
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increasing. All the unknown values are put into vectors: 

e = ( E r ,  . . . . .  ErN, Ecp I . . . . .  E~N,  Ezl . . . . .  EzN) t , h = ( H r ,  . . . . .  OrN, O,:p I . . . . .  O r p N ,  t t z l  . . . . .  O z N )  t . 

(3) 

N is the total number  of  mesh points and the dimension of the two vectors is 3N. Applying finite 
integrations to Maxwell 's equations: 

f f ( , o E + J ) . d A  = ~6H. ds ,  f f ( - b t o H ) . d A  = ~ E . d s ,  (4) 

yields a set of  two equivalent matrix equations for e and h: 

De(%~ + j )  = Reh  , (5) 

D h ( - I ~ o h ) = R h e .  (6) 

The vec to r j  contains the driving current produced by the beam. (The full derivation of  the above equations 
is given in the appendix.) 

The time axis is broken into pieces of At. The magnetic fields will be computed  at times t = nAt ,  the 
electric fields at half times t = nAt  + At~2.  Due to this dual time axis the time derivatives in eqs. (5) and (6) 
can be replaced by: 

~.(nAt)  = [ e ( n A t  + A t / Z )  - e ( n A t  - A t / Z ) ] / A t ,  

~ ( n A t  + A t / 2 )  = [ h ( n A t  + A t ) - h ( n A t ) ] / A t .  (7) 

Thus both terms in the difference equations can be evaluated every half time step alternatively. Using 
the time argument  of the vectors e and h as upper time index we can rearrange eqs. (5) and (6) to: 

hn+l hn__ Y o -  n + l / 2  - ~ A ~ e  , (8) 

Z ° A  h ' + '  e ,+3/2  = e ,+  1/2 + M]3 "-e'" , (9) 

with 

z0 = z0Y0 = 1, 

M = number  of time s t eps /mesh  step, M = Az / ( ]3cAt ) ,  A z  = step size of the mesh. The sparse matrices A h 
and A e have elements of very simple structure and need not to be stored during a computat ion.  

Starting with e °5 = h  ° = j o =  O. the recursive eqs. (8) and (9) enable a computa t ion  of the total 
electromagnetic field at all spatial locations and for all times by simple multiplications of  matrices with 
vectors already known. The procedure is so far identical to the BCI-code with the only difference that twice 
as many  field components  are used. 

3. T h e  o p e n  boundary  condi t ion  and stabi l i ty  

In order to enable the open boundary  condit ion described in ref. 3 we need to know the electromagnetic 
field of  a bunched beam in an infinitely long cylindrical beam pipe of radius R (fig. 2), with a as off-axis 
distance each componen t  of the total field can be derived from the two potentials 

q'l = - Y'~ 2wrn - 1 sin mep; 0 ~< r ~< a, 
m =  - - o Q  

E Xs(s)c]3 . . . .  
27rrn + sin rnq~; a<~r<~R,  (10) 

m ~  - - o o  

with H = - ~zep, ]3 = 1. 
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Fig. 2. An example of a cavity with infinitely long beam tubes on both sides. The bunch passes at a distance a away from the cavity 
axis. 

The electric field is not  needed. Thus an open boundary  condit ion can be established in the same sense 
as in the case of longitudinal fields. Here in addition to the inhomogeneous H~ components  the radial fields 
are needed. 

This boundary  condit ion simulates infinitely long side tubes and does not need tapers of infinitely 
conducting metal to terminate the structure. 

All considerations concerning the numerical stability of the time iteration apply in the same way as in 
the longitudinal case [2,3]. Since a "quasi"  third dimension has been introduced an additional term has to 
be added. For  equal step sizes in r and z stability requires the time steps to satisfy: 

A z { 1 /s inh(~r /2)  "open" ,  
_ _ ×  ( l l )  

cAt ~< x/2 + m 1 "closed".  

Since charge conservation requires an integer relation between time step size and space step size the 
condit ion may be rewritten in terms of M = time s teps /mesh  step [2]: 

1 f sinh(~r/2) "open" ,  2¢ 7 x (121 
1 "closed".  

The above equation implies that the number  of cycles to be executed increases with increasing the angular 
momentum m. Since m is usually limited to 1 or 2, this does not increase the computa t ion  time 
significantly. 

4. The computer code TBCI 

Starting from the existing program for cylindrically symmetric fields (BCI) the transverse version has 
been established by introducing the new additional three field components .  By some improvements  the 
total length of the source was reduced significantly. 

For transverse fields no graphical output  is foreseen * in order to provide memory for the additional 
field components  without increasing the total memory of the code. Thus the overall size of the program in 
the small version (20000 grid nodes) could be kept constant  at 800 kbyte on an IBM 370/168.  The big 
version using 50 000 mesh points allocates less than 1500 kbyte. 

* The version of TBCI distributed since May 1982 does have graphical output for the transverse fields as well without an increase in 
memory. 
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The cpu time consumption for transverse fields is increased by roughly a factor 2 compared to the 
longitudinal case. An average run on an IBM 370/168 with 20000 grid points needs 300-400 s including 
the computation of the wake forces. 

All computed results such as fields and forces may be stored on external files for further manipulation 
by a set of utility programs. 

The output of the code contains mainly the fields and the stored energy as a function of time as well as 
the transverse and the longitudinal wake potentials. 

Self-checking routines have been implemented for independent control of the correctness of the code as 
well as for control of the proper solution of Maxwell's equations. 

5. Examples 

During the time when a bunch traverses a cavity electromagnetic fields act on the bunch as a function of 
time and each particle in the bunch will feel a different force. Since we assumed that the bunch shape does 
not vary during the passage only the total distribution of the forces after the passage is of interest. Theses 
time independent forces are then functions of the longitudinal position inside the bunch. They are 
normalized to the total charge in the bunch and usually called "wake  potentials". The forces depend also 
on the shape of the bunch M s )  and on the radiation position r l at which the bunch traverses off axis the 
cavity. Independent of r~ the forces may be integrated at a radial position r 2. For cavities with infinitely 
long side tubes (open boundary condition) it is found that the wake potentials scale exactly as they do in 
infinitely repeating structures [4]: 

w± ( r 1, r2, m, s)c~ w .  ( m,  s ) r~r~ '-1 (transverse) 

Wll (r , ,  r2, m,  s)  ~x w .  ( m,  s ) r~'r~" (longitudinal), 

with r 1, r 2 ~< beam tube radius. Thus the normalized wake potentials have the dimensions 

[w± (m,  s)]  = V / A s / m  2m-l, [wll(m, s)]  = V / A s / m  2m. 

For the PETRA accelerating cavity [8], the future PETRA cavity [9] and the LEP accelerating cavity [10] 
the dipole wake potentials are shown in figs. 3, 4 and 5 for Gaussian bunches with r.m.s, length o = 3 cm. 
All three wake potentials look very similar. The transverse force is roughly proportional to the particle 
density but shifted to "later"  particles. 

The dipole and quadrupole wake forces are shown in fig. 6 for a single cell of the PETtL~ cavity and a 
Gaussian bunch with o = 2 cm. It can be seen that for small offsets the dipole force is dominant. The peak 
values relate as: 

~± (m = 2 ) / ~ ±  (m = 1) - 2 5 0 ( r , / m ) ( r 2 / m  ). 

The linear betatron tune shift due to the wake potentials of the cavities can be obtained from: 

J+2 AQ 4~r E (fl)rf  _ w _ L ( s ) X ( s ) d s ,  

with 
w± (s) total wake potential of all cavities in the ring, 
(f i)rf  average value of the beta function in the cavities, 
E 0 particle energy, 
X(s) line charge density of the bunch. 

For a Gaussian bunch with r.m.s, length a = 2 cm the tune shift due to 60 PETRA cavities at injection 
energy (7 GeV) becomes ( ( f l )  = 15 m): 

- A Q  ~ 0.0017/mA "-- 215 H z / m A .  
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From measurements  the total tune shift is known to be [11]: 

- A Q  = 0 . 0 0 3 4 / m A  ~ 450 H z / m A .  

One can conclude from these numbers  that the total tune shift due to the vacuum system in P E T R A  is 
roughly equal to the effect of 60 cavities. A detailed investigation of  the tune shifts as a function of bunch 
length will follow in a later paper. In general it is found that the dipole tune shift decreases for very short 
bunches but the ampli tude of the wake force increases. 

For  LEP Phase II  [10] and a bunch length o = 3 cm the betatron tune shift at injection energy reaches 
the value: 

for 

a Q  = - 0 . 5 / m A ,  

E 0 = 20 GeV, nca v = 768 (5-cell cavities), 

( ~ ) r f  = 50 m ,  T O = 88.9 × 10 - 6  s (rev. time)• 

6. Conclusions 

The method described enables by means of  the computer  code TBCI  a computa t ion  of  deflecting forces 
acting on a bunch  of  charged particles passing off axis a structure of cylindrical symmetry.  The shape of 
the structure may be arbitrary in the r-z  plane and may  have infinitely long beam tubes on both sides. 
Since the self-induced transverse forces are likely to limit the performance of future storage rings and linear 
accelerators the quantitative prediction of such forces is necessary for a design of  such a machine. 

Appendix 

A. 1. Difference equations in the vacuum 

Solving the integrals in Maxwell 's equations with a first order approximat ion yields linear equations for 
the electric and magnetic field components .  We will assume first that the mesh point  with number  k lies 
entirely in vacuum and no boundary  is near to it. Integrat ing the first eq. (4) on the left hand side over the 
area in the r - z  plane defined by (see fig. 7): A = 0, +)  × (zj - A /2 ,  z i + A/2 )  at r = (i -- 1 /2)A yields: 

ff%E.dA - - ,oErk( i -1 /2)A2f0+ cos m r  d r .  (13) 

Integrating the right hand side of these equations along the boundary  of the area A yields: 

fH • cos m r d r ( n ~ 0 , _  t - n r k  ) + A  sin mr / / . / , .  (14) 

Replacing the time derivative according to eq. (7) in eq. (13) and equating both  results finally yields an 
equation which enables the computa t ion  of  Erk from the earlier value and from three magnetic components  
in the neighbourhood:  

Er~+3/2=ETk+I/2+ Z o 2m H 
m f l ( 2 i - 1  -'k + H~k- l - H~k)" (15) 

In a similar way the two other equations may be found for the azimuthal and the longitudinal 
componen t  of the electric field. 

Solving the second Maxwell equation on areas perpendicular to magnetic field components  yields the 
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Fig. 7. The area of integration for the first Maxwell equation yielding an equation for the radial electric field component as a function 
of the azimuthal and longitudinal magnetic fields in the direct neighbourhood of mesh point number k. 

second set of three equations for the evaluation of the magnetic fields. The full set which is necessary for 
the calculation of  all the fields at a time step n + 1 a n d  n + 3 / 2  reads: 

HT+, . Y0 ( .+1/2 n+l/2 m n - , / 2 )  k = H ~ k - - ~  E~k --E~k i - - l E J k  . (16) 

H n+l ,, Yo r . + l / 2  k = H c p k - - m - - ~ (  Eznk + 1 / 2 -  Ezn~+lj/2 ~ - ~ r k + l  --  Er~+  1 / 2 )  , (17) 

Hz.+, ,, Yo 2 [itz.n+l/2 (i  - l )E ; ; , /Z+rnETk+l+2  ] 
k = H j k  Mfl 2 i -  1 t '=~k+J ( lS) 

Zo / ,,+ l 2m H,,+ I ) ETk+ ' / 2 =  ETk+l/Z + - ~ (  H ; k - '  - H ; ; I  + ~ ' T  ~k . '  (19) 

n+ Z° S ~  +1 + (20) E ~ ; 3 / 2 = E T k l / 2 ~- ~ - ~  ( - [ 4  n + ' / 4 . + 1  / 4 n + l ]  
~ ' r k - 1  ' ' z k  J ~ z k  ]~ 

Zo ( 2 i -  1 H .+  I 2m ) 
E T k + 3 / 2 = E z ~ + ' / 2 + - - ~ L ~  rk - s  2i--_2H7,. + ~ .  (21) 

The source term comes into eq. (21) and has to be added at the radial position of bunch:  

1 1 1 E n ~ - 3 / 2  = E~+ 1/2 __ ) n + l  (22) 
"k i -  1 m~rAzc o 1 +8o.  , '  

6o. ,=  1 f o r m = 0 ;  = 0 f o r m ~ : 0 .  

The above equations guarantee that the electric and the magnetic field stay source free with increasing 
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time. This may easily be checked by integrating the electric field over the surface of the volume: 

V~= ( r , -  g / 2 ;  r, + A / 2 )  × (0; ¢ )  × ( z j -  A / 2 ;  zl + A / 2 ) ,  

and replacing the electric components  by magnetic ones according to eqs. (19)-(21). This yields identical 
zero. Since the computa t ion  is never infinitely accurate there will be a small charge resulting from rounding 
off  errors. In order to check the proper  coding of the field equations this charge on any mesh point  may be 
divided by the total charge in the bunch. The so computed  relative parasitic charge is small compared to 
unity. 

Integrat ing the magnetic field over the surface of a mesh cell: 

V h = (ri; r i + A  ) × (0; ~b) × (za; z j + A )  

gives the total magnetic charge in this cell. Setting the magnetic force equal to the electric force gives an 
equivalent magnetic charge to the total charge in bunch  Qe: 

Q, ,  = Z o Q  e. 

Relating the parasitic magnetic charges in the mesh cells to the above equivalent charge yields the second 
number  which is small compared  to unity. 

Both parasitic effects are used in the computer  code TBCI  in self-checking routines which check proper  
coding and computa t ion  independently.  

A.2.  B o u n d a r y  condi t ions  

The boundary  condit ion is defined by the material index F in each cell, see fig. 1. The electric field 
components  are located in such a way that they either are parallel to a boundary  surface or that they do not 
touch such a surface at all. This enables an easy implementat ion of the boundary  condition. When a 
electric field componen t  lies parallel to a boundary  surface it will not  be evaluated and thus stays zero for 
all times. 

The magnetic field components  in radial and longitudinal direction are either perpendicular  to a metallic 
surface or do not touch a boundary  at all. Thus we proceed in the same way as before and do not calculate 
those components  which are zero by boundary  condition. The only component  which has to be looked at in 
more  detail is the azimuthal magnetic field component .  If  the mesh cell if entirely filled ( F =  5) with 
infinitely conduct ing metal the field is identical zero and will not  be calculated. If  the cell is entirely filled 
with vacuum eq. (17) is used. There is no need to care about  the boundary  condit ions for the electric field 
components  involved here. If  the cell is filled with a triangular metal the area of integration is halfed and 
thus all coefficients on the right hand side of  eq. (17) have to be doubled. Again there is no need to ask 
whether the electric fields involved are anyway zero or not. 

Summarizing the above comments  we find that boundary  condit ions do not cause any complication. In 
order to achieve a even faster execution one may omit the boundary  conditions for the magnetic fields. In 
the time domain it is sufficient to fulfill the boundary  conditions for only one of the fields E or H. 
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