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We have calculated the glueball masses of various spins and parities in SU(3) gauge theory. Our first results give 
mM(0 ++) = (3.6 - 0.2)Amom, mE(0 ++) = (4.3 ± 0.3)Amom,m(0 -+) +1,6 + = (7.2_0.9)Amom, mM(2 ++) = (8.1 ± 1.1)Amo m and 
mE(2 ÷+) = (8.3_+]:6)Amom as well as information on the glueball wave functions. 

In this letter we extend our recent calculation of  
the glueball mass spectrum [ 1 ] to the gauge group 
SU(3) (i.e., QCD). 

We follow the calculational procedure outlined in 
our previous letter [ 1 ]. That is, we perform a varia- 
tional calculation by choosing some ~ priori reason- 
able class of  wave functions {~} and vary ¢ within 
that class to maximize the expectation value 

Pa = (¢P = 0( t + a)¢/,= 0(t)) = (~bp = 0(t)e-Ha(~p = 0 (t)) 

Po (¢P= 0 (t)Cp = o(t)) (¢/'= 0 (t)¢/,= 0 (t)) 

~n=O e-mna l(n ICp=0(t)112)12 , (1) 

Zn=01 (n 1¢/,= 0(t)I~)[2 

where a is the lattice spacing and t the euclidean time. 
The resulting wave function is then used to calculate 

F2___£ ={¢P=O( t + 2a)¢P=o(t)) = {(aP=o(t)e-H2a~ap=o(t)) 

Pa ((ap= o(t + a)¢p = 0 (t)) ((ap= o(t)e-Ha~bp= o(t)) 

Zn=0 e-ran 2a i(nl~p=o(t)[ ~)12 

]~n=0e-mnal<nlCp=0(t)ls2) 12 ' 
(2) 

the logarithm of  which will give us the lowest-lying 

glueball mass (m = m0): 

m = - a  -1 ln(F2a/Fa) .  (3) 

The idea behind this procedure is that (i) increasing 
the theoretical accuracy involves searching for a larger 
signal and (ii) the higher mass states in (2) are double 
suppressed by the choice of  the wave function and 
the exponential damping factor 

It follows that (1) provides an upper bound on the 
mass: 

- a  -1 ln(Fa/Po) t> m .  (4) 

The pure variational calculations of  the glueball 
mass(es) [2,3] assume that this upper bound will be 
close to the actual mass(es). How much this is actual- 
ly so for the rather small lattices and the limited class 
of  wave functions considered can be checked [1] and 
will be discussed further along with the results. 

We work on a 4 3 • 8 lattice with 8 lattice points in 
the time direction. From our previous experience [1], 
where we have considered 4 4, 4 3 • 8, 6 4 and 8 4 lat- 
tices, we infer that the 4 3 • 8 lattice is large enough 
for our purposes provided that the coupling param- 
eter/3 is chosen appropriately. Working on a "rectan- 
gular" lattice has the further advantage that it lowers 
the physical temperature at nearly the same computer 
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cost and, hence, better approximates zero temperature 
QCD. 

An appropriate value of/3 is one for which 

a < glueball size < 2a .  (5) 

To two loops the lattice spacing is given by 03 = 6/g 2) 

a = (83 .5 /Amom)(~  rt2/3)51/121 e x p ( - 4  Ir2/3), (6) 

where the overall scale is set by the string tension * 1 
[we "measure" Amo m = (0.48 + 0.05)X/~ at/3 = 5.7]. 

Amo m ~ 0 .5~K- ,  (7) 

which we believe is ~ / K ~  400 MeV, corresponding to 
unit Regge slope. Assuming the the glueball size to be 
of  the order of  0.5 fermi (which proves to be correct 
in the actual calculation), this constrains/3 to the re- 
gion 5 ~/3 ~ 6. We also require that/3 lies in the con- 
tinuum region. Leaning on the results of  ref. [4] we 
infer that 5 ~/3 is a suitable value. 

The occurence of  a sharp peak in the specific heat 
at ,2/3 = 5.45 +0.1 and a rapid increase in the corre- 
lation length near this peak, which has been attributed 
to nearby complex/3 plane singularities [6], cuts the 
range of  admissible values of/3 further down to 5.6 

/3. We have taken "data"  at/3 = 5.7 and/3 = 5.9 
which we have checked lie in the scaling region. In- 
cidentaUy, the authors in ref. [3] have taken most o f  
their "data"  below and at the peak in the specific 
heat which casts some doubt on their results. 

We have constructed states ~ with jPC  = 0 ++, 0 -+ ,  
1 - - ,  1 + -  and 2 ++ which we expect to be low-lying. 
Except for 0 - ÷  they can be composed of  planar loops 
with purely space-like links (0 ++, 1 ÷ -  , 2 ++) or space- 
and time-like links (0 ÷+, 1 - - ,  2 ++) as shown sche- 
matically in fig. 1. To project onto zero momentum 
states the sum is to be taken over all spacial lattice 
points. The loops that we have considered in our vari- 
ational calculation are shown in fig. 2. We have con- 
fined ourselves to loops that extend only one lattice 
spacing in time (O 4 and O5, cf. fig. 2). That is to re- 
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Re ~ -  

+ ÷  

2E 

Fig. 1.0 ++. 2 ++, 1 +- and 1-- wave functions composed of 
planar loops. The loops are understood to be summed over 
all space-like translations. The subscripts M and E stand for 
magnetic and electric, respectively. 

duce the amount of  time-like overlap in Pa and to 
avoid time-like overlaps in r2a  at all which, otherwise, 
could lead us into conflict with physical positivity [7]. 
Note that for 0 ++ and 2 ++ two types of  different oper- 
ators arise: magnetic (~B  2) with exclusively space-like 
extensions and electric ( ~ E  2) extending also in time 

14 

©1 02 03 

*1 We haven taken the mean value of the string tensions 
"measured" by the authors in ref. [4]. 

,2 This has been obtained by a straight-line interpolation 
l[g 2 ~ N, N being the number of colours, of the SU(2), 
SU(4), SU(5) and SU(6) peak/phase transition values re- 
ported in ref. [5 ].Note that they fall very nicely on a 
straight line. 

I 

Fig. 2. Loops considered in our calculation (x,y stand for 
any space direction). 
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(cf. fig. 1). This doubling of glueball states has also 
been found in the bag model [8~. The most natural 
trial wave function for 0 - ÷  is FF,  the topological 
charge density, which is of  the type E • B. We have 

-+3 ~ 0i /'k t aken  ~'i,],k= +_ 1 eOijk F F instead which extends 
only one lattice spacing in the time direction in con- 
trast to F /~  (which does two) but else has the same 
quantum numbers and topology. The reason is to se- 
cure physical positivity [7] as mentioned before. There 
are various ways of implementing this operator on the 
lattice. We use the definition employed in ref. [9]. 

We have performed several independent lines of  
iterations of  the lattice configuration using the heat- 
bath method [10]. Before taking any "da ta"  we have 
heated up the lattice starting from cold 05 = oo) and 
hot 03 = 0) starts. So far we have collected ~24000  
"events" at 15 = 5.7 and ~ 7000 "events" at 13 = 5.9. 
Our first results for SU(3) glueball masses and wave 
functions are summarized below. A more detailed 
presentation will be given elsewhere. 

0 ÷+. As 0 ÷+ has vacuum quantum numbers, it is 
necessary to replace ¢ by ~b - (~b) in (1) and (2) to en- 
sure that the vacuum state does not appear as inter- 
mediate state. 

We first treat the magnetic and electric 0 ++ glue- 
ball states independently, i.e., not accounting for any 
mixing between them. 

(a) Magnetic. After maximization we obtain at 
13= 5.7 

r , / r  o = 0.22 + 0 .01 ,  (8) 

which, according to (4), (6), corresponds to the upper 
bound 

mM(0 ++) ~< (5.52 + 0.18)Amo m (9) 

(where the subscript M stands for magnetic). The ac- 
companying best wave function is (cf. fig. 2) 

~bM(0 ++) ~ 0.33 O 1 + 0.40 02 + 0.85 03 , (10) 

where the operators on the right-hand side are under- 
stood to be summed over all orientations in accord 
with fig. 1 and over the spacial lattice for any fixed t. 
For ease of  writing we have dropped the subscript P 
= 0 .  

In the next step we compute F2a/P a now using 
the wave function (10). We find 

P2a/Pa = 0.37 -+ 0 .02 ,  (11) 

which gives the mass 

mM(0 ++) = (3.6 +- 0 .2)Amo m . (12) 

We observe that the straightforward variational calcu- 
lation would have yielded a considerably higher 0 ++ 
glueball mass (9) which disqualifies the pure variation- 
al approach. This is not surprising as the class of  pos- 
sible wave functions is rather limited for such a small 
lattice. 

(b) Electric. Our best wave function is 05 = 5.7; cf. 
fig. 2) 

~bE(0 ++) ~ 0.42 04 + 0.9 05 (13) 

(where the subscript E stands for electric) which cor- 
responds to 

r j r  o = 0.16 + 0.01 (14) 

(note that I" a is positive in line with physical positivity 
[7]). This results in the upper bound 

mE(0 ++) ~ (6.68 + 0.22)Amo m . (15) 

Using the optimized wave function (13), we then ob- 
tain 

r 2 . / r  a = 0.31 + 0 .02 ,  (16) 

which gives the mass 

mE(0 ++) = (4.3 + 0.3)Amo m . (17) 

Note that also in this case the pure variational calcula- 
tion cannot be trusted. 

(c) Mixing. In reality the magnetic and electric glue- 
ball operators will mix. Accordingly, we write 

¢ = cos O CM + sin O CE • (18) 

The physical eigenstates and mass eigenvalues of  the 
transfer matrix are, then obtained by searching for two 
orthogonal wave functions ~1,2 that maximize and 
minimize, respectively, P2a/I'a. We have at tempted 
this. But, due to the relatively large errors, we have no 
reliable numbers yet and even cannot tell with certain- 
ty that there are two states (or just one), not to men- 
tion the additional mixing with quark-ant iquark  
states. We postpone the details to a forthcoming pub- 
lication. 

At 13 = 5.9 our best wave functions have a rather 
small projection onto the lowest lying state which re- 
suits in a large error o f  I'2a/I" a. 
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2 ++ . We now go through the same analysis for 2 ++ . 
(a) Magnetic. At/3 -- 5.7 the best wave function is 

(cf. fig. 2) 

SM (2++) ~ 0.18 O 1 + 0.46 02 + 0.87 03 (19) 

with 

% / r  0 = 0.058 -+ 0 .002 ,  (20) 

which gives the upper bound 

raM(2 ++) ~ (10.3 + 0.2)Amo m • (21) 

Using (19) we then obtain 

r 2 a / r  = o.11 _+ 0 . 0 3 ,  (22) 

which gives 

mM(2 ++) = (8.0 + 1 . 2 ) m m o  m . (23) 

Our results at/3 = 5.9 (with ~ 1/4 the statistics) agree 
very well with that.  The optimal wave function is 

¢M(2 ++) ~, 0.14 O 1 + 0.34 02 + 0.93 03 (24) 

and gives only a slightly higher bound on m while 

P2a/Fa = 0.16 + 0 .03 ,  (25) 

which results in 

raM(2 ++) = (8.4 -+ 1.0)Amo m . (26) 

This is to say that F2a/F a follows nicely the weak cou- 
pling renormalization group trajectory. 

By taking the statistical average of  (23) and (26) 
we finally obtain the mass 

raM(2 ++) = (8.1 + 1 . 1 ) A m o  m . (27) 

(b) Electric. At/3 = 5.7 the best wave function is 
(cf. fig. 2) 

¢E(2 ++) ~ 05 (28) 

corresponding to 

Fall" 0 = 0.022 + 0.002 (29) 

(note that F a is positive in line with physical positivity 
[7]) which leads to the bound 

mE(Z ++) ~< (13.9 + 1.0)Amo m • (30) 

From (28) we then obtain 

r ' z~ / r  ~ = 0.11 -+ 0.06 (31) 

and 
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~o ,~ +2.9"1A . (32) mE(2 ++) = i.o.v _1.6 j morn 

At/3 = 5.9 (with roughly the same statistics) we find 
the optimal wave function to be the same and 

P2a/Fa = 0.15 -+ 0 .04 ,  (33) 

which leads us to 

mE(2 ++) = (8.7 +_l'.49)Amo m (34) 

in good agreement with scaling. 
The statistical average of  (32) and (34) gives final- 

ly the mass 

mE(2++) = ~o ~ +1.6~ A (35) ~o .J_ l .0  ~ mom ' 

(c) Mixing. Our data do not allow any conclusions 
yet as to the mixing between the magnetic and elec- 
tric 2 ++ glueball operators. 

0 -  +. In this case physical positivity [7] demands 
that the (naive) correlation functions Fa, F2a, etc. are 
negative because the orooer oositive metric involves 
reflecting the time in one of  the ~,3,k =± 1 "gOi/k 
X F°iF/k. We have found that F a (and F2a, F3a, 
though these have no time-like overlaps) is (are) in- 
deed negative. 

-+3 Since the calculation of  ~i,],k=± 1 "eOijk FOiFjk on 
the lattice is very slow and the time required to ob- 
tain a reasonable signal/error ratio for P = 0 wave func- 
tions is outside the present bounds of  possibility, we 
have used momentum smeared wave functions here 
(as already before in our previous letter [1 ] on SU(2)). 
That is, instead of  summing the wave functions indi- 
viduaily over all spacial lattice points to project onto 
zero momentum states, only nearest neighbour corre- 
lations are taken into account. We have calculated 0 ++ 
and 2 ++ energies in exactly the same way and, by com- 
paring with the 0 ++ glueball mass stated above (2 ++ is 
less suited because of  the relatively large errors), cor- 
rected for the effect of momentum smearing. We found 
consistently (p2) ~ 4/a 2. 

All our "measurements" are at/3 = 5.7. From 
IPa/P01 we obtain the mass upper bound 

m(0  - + )  ~< (8.46 + 0.20)Amo m , (36) 

while I '2a/F a yields the mass estimate 

, -  ~ + 1.6 "~A (37) m(0 - + )  = (I.Z _0.9 ) morn " 

The proximity of  (36) and (37), which is a reflection 
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+3 
of  r2a/P a .~. II"a/F 01, suggests that  Z~/,k=+ 1 eoiik 
X FOiFjk is a good 0 - +  wave function. - 

1 +-, 1 - - .  We have no useful bounds and num- 
bers yet  in this case. 

So far we have expressed the glueball masses in 
units of  Amo m. To make contact  to experiment [11 ] 
we may use (7) now to fix the absolute scale (but note 
the obvious caveats). If  we do so, we obtain the mass 
spectrum 

mM(0 ++) = (720 + 40) MeV,  

mE(0 ++) = (850 + 50) MeV,  

m(0  - + )  = (1430 +3120 ) MeV,  

mM(2 ++) = (1620 + 220) MeV,  

mE(2 ++ ) = (1670 +_200,32° ~ MeV (38) 

]where we have ignored the uncertainties in (7)].  
To summarize, we have reported first results of  a 

calculation o f  the low-lying glueball masses based on 
altogether ~31  000 Monte Carlo "events".  Our aim 
for the future is to reduce the errors and to make a 
more systematic survey of  the low-lying glueball spec- 
t rum, in particular: to look for "oddbal ls" .  

We like to thank H. Joos, H.S. Sharatchandra, 
K. Symanzik and P. Weisz for useful discussions. We 
also thank E. Pietarinen for the use of  his heat-bath 
and iteration routines. 
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