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The average action per plaquette is calculated for the pure SU(N)/ZN, N = 2, 3, 4, 5 and 6 gauge groups using strong 
coupling expansions up to 13th order for euclidean lattice gauge theory in four space-time dimensions. These expansions 
are compared with Monte Carlo generated data and agreement is found to be excellent for 0 ~< fl ~ fie, where tic is the crit- 
ical inverse temperature for the appropriate gauge group considered. 

Lattice gauge theories with the gauge groups SU(N) 
and SU(N) /ZN,  respectively, are believed to have the 
same cont inuum limit, while for fmite lattice spacing, 
i.e. finite bare coupling constant, they may behave dif- 
ferently. Both models possess Z N monopoles [1]. In 
the SU(N) model the monopoles are attached to strings 
that carry energy, whereas in the SU(N)/Z N model the 
strings are invisible [ 1 - 5 ] .  Arguments have been given 
that this difference leads to a phase transition in the 
SU(N)/Z  N theory, which separates a strong coupling 
phase with condensed monopoles from a weak cou- 
pling phase without condensed monopoles [6]. For 
N = 2 this expectation has been confirmed by Monte 
Carlo calculations [5 -10 ] .  

In this letter we present the results of a numerical 

study of SU(N) /Z  N lattice gauge theories for N = 2, 3, 
4, 5 and 6. We investigate the average action per pla- 
quette by means of the strong coupling expansion and 

1 Permanent address: Department of Mathematics, Royal 
Holloway College, Englefield Green, Surrey, TW20 0EX, UK. 

2 Supported by Schweizerischer Nationalfonds. 

the Monte Carlo method. The models are defined on 
a hypercubical lattice in four dimensions. To each link 
b an element U(b) of SU(N) is attached. The plaquette 
term is denoted by U(p). Let 

×A(U) = tr U t r  U t - 1 ,  (1) 

be the character of the adjoint representation of SU(N), 
which is also a faithful representation of SU(N)/Z  N . 
Its dimension is 

d A = N 2 - 1 . (2) 

The Wilson form of the action of euclidean SU(N)/Z  N 
lattice gauge theory is 

S = fl ~ [1 - ( N  2 - 1) -1  XA(U(p))]. (3) 
p 

The sum goes over all unoriented plaquettes and fl is 
related to the bare coupling constant g by 

f l (N 2 - 1) -1  = ( g 2 N ) - i  -=X.  (4) 

The path integral for the partition function reads 
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z =  f ~ b dU(b)exp( -S) ,  (5) 

and the average action per plaquette is defined as 

(E) = (1/6V) O log Z/O/3 

= 1 - (N 2 - 1) -1 (XA(U(p))), (6) 

where V is the total number of  lattice points. 
Using standard methods [11,12] ,1 we derived the 

first thirteen terms of  the strong coupling expansion 
of  (E) for 2 ~< N ~< 6. They are of  the form 

o o  

(E) = 1 - (At 2 - 1) -1 k~l gk Xk • (7) 

The coefficients gk are listed in table 1. A computer 
program [13] was used to generate the 10th to the 
13th order terms. We would like to add a remark about 
the limit N ~ oo with g2N fixed. In this limit the model 
approaches a trivial ultralocal theory at strong coupling. 
The average action per plaquette becomes equal to I 
identically and the correlation length goes to zero like 

~ 1/log[(N 2 - 1)(1 - X ) / X ]  . (8) 

On the other hand we expect a nontrivial large-N limit 
at weak coupling, where the model should behave in a 
similar manner to the standard SU(N) model. 

The weak coupling expansion of  (E) has the leading- 
order behaviour 

(E) = ¼gZN + O(g4) .  (9) 

The Monte Carlo simulation data was generated on 
44 lattices. For the strong-coupling region 0.0 ~</3 
~</3c we carried out 100 iterations through the lattice 
and averaged over the last 20 iterations. Disordered start- 
ing lattices, along with periodic boundary conditions, 
were used throughout our calculations• The method of  
Metropolis et al. [ 14] was used to achieve statistical 
equilibrium with five Monte Carlo upgrades per link 
of  the lattice• Further details of  the calculational 
techniques can be found in ref. [15]• The critical in- 
verse temperatures were found to be 2•50 [ 6 - 9 ] ,  
6.40 [15], 12.0 [15], 19.5 [15] and 32.0 [15] for 
SU(2)/Z 2, SU(3)/Z3, SU(4)/Z4, SU(5)/Z 5 and SU(6)/ 
Z6, respectively. 

.1 We use eq. (2) of ref. [ 12]• This equation is incorrect in 
the paper because the term 30664[4 is missing. However, 
this term does not contribute to terms up to 14th order. 

In figs. la, lb, lc, ld  and le the results of  our 
Monte Carlo simulation on 44 lattices are shown for 
SU(N)/ZN, N = 2, 3, 4, 5 and 6, respectively, along 
with the strong-coupling expansions of  eq. (7). For 
accuracy the results were plotted by computer [ 16]. 
We can see clearly that the strong-coupling expansions 
and the Monte Carlo generated data agree with an error 
of  less than 1% over the whole range 0.0 ~</3 ~</3 c 
where the error is due entirely to the statistical fluctu- 
ation in the Monte Carlo generated data. These results 
are unexpectedly good but similar good results for the 
strong-coupling expansions have been found for the 
gauge groups SU(4) [17] and SU(5) [18]• Note also 
that the transitions are first order ones; therefore, the 
series are not expected to be singular at/3 =/3c and 
give good results, even near the transition point. We 
can see from fig. t that the convergence properties of  
the strong-coupling expansion could not be improved 
by the Pad6 continued fraction expansion or otherwise. 

The Pad6 continued fraction approximation for any 
function E(/3) can be written as 

a0 
E(/3) = +al/3 

1 ---Y2/3 
1 + a3/3 

1 + - -  

1 +an~ 3 . (10) 

The poles of  this truncated continued fraction are ex- 
pected to simulate the singularities. To have confidence 
in this method, poles and residues should be stable as 
the order varies. This analysis is also performed on the 
logarithmic derivative of  the function, for which the 
method is particularly efficient when the singularity 
obeys a power law. We have carried out the Pad6 ap- 
proximant analysis in the following stages: (1) the 
direct analysis of  the series in X for (E) [eq. (7)], (2) 
the corresponding analysis for the one-plaquette world. 
This analysis is interesting because there are no singu- 
larities on the real axis but the complex singularities 
remain and can cause trouble in a four-dimensional 
lattice• The coefficients for the expansion of  log Z/6 V 
in a one-plaquette world are presented in table 2. (3) 
In order to improve the convergence, the series is re- 
expressed in terms of  the energy in the one-plaquette 
world. By this means we expect to lower the influence 
of  the complex singularities. 
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Table 2 
The coefficients of the one-plaquette world strong-coupling expansion for log Z/6 V. 

9 September 1982 

N 

2 3 4 5 6 oo 

gl 0 0 0 0 0 0 

1 1 1 1 1 1 
g2 T T 2- T ~ T 

1 1 1 1 1 1 
g3 - ~  T T 3- T T 
g4 0 5 1 1 1 1 

2-X T T T T 
1 1 23 1 1 1 

g5 - 3-0 1-0 12----0 T 3- T 
1 1 5 119 1 1 

g6 - 7-2- 4--ff 3--6 720 ~ -6  

1 11 37 23 719 1 
g7 336 504 42-----0 168 5040 7-" 

1 47 61 127 119 1 
g8 19---'2 1440 1440 1152 960 8- 

1 13 79 541 1633 1 
g9 72---0- 540 12960 6480 15120 -9- 

7 817 57 229 7037 1 
gl0  7200 86400 3200 4032 75600 1O 

41 199 9661 52351 7703 1 
g l l  -47520 95040 332640 1663200 98560 1-] 

1 10387 4483 19163 50621 1 
g12 12960 1451520 151200 2073600 806400 1~- 

191 157307 208061 26389 6651217 1 
g13 786240 23587200 8985600 3144960 141523200 1-3 

457 235369 683153 12489041 529567 1 
g14 3386880 67737600 50803200 609638400 16934400 1-4 

109 2387 89617 650347661 2660866333 1 
g15 5806080 10368000 23328000 24216192000 163459296000 1--5 

2483 3398837 1207757 58644549763 11610419683 1 
g16 46448640 2090188800 348364800 -2092278988800 4184557977600 1-6 

We obtain the following results. The direct analysis 
o f  the series in X for (E) [eq. (7)] suggests a singularity 
at about X ~ 0.90 which is not  very clear for SU(2)/Z 2 
while for the other gauge groups this approach does 
not  give any result. For  the corresponding analysis for 
the one-plaquette world we have the exact result for 
SU(2)/Z 2 for the derivative of  log [ I0(2X) - I 1 (2X)] 
of  pairs of  poles at 0.6398 -+ 1.4902i, 0.8094 
-+ 3.0876i,  0.9094 -+ 4.6710i  . . . .  lying near the imagi- 
nary axis. The first pair of  poles is well produced by 
our analysis. For  the other gauge groups the poles 
come nearer and nearer the real axis (near point  1). 
This accumulation of  poles lowers the accuracy as the 

order of  the group increases. It is reasonably good up 
to SU(5)/Z 5 . Other complex singularities may also ap- 
pear and are the reflection of  the transition line end 
points in the phase diagram of  the SU(N)-SU(N)/Z N 
extended model. This is the case for the SU(2) model,  
where an adapted t reatment  [ 19] improves the result. 
However, the number of  complex singularities for 
large N forbids such a technique in our case. 

When we reexpress our series in terms of  the energy 
in the one-plaquette world we fired a very stable pole 
at X ~ 1.045 probably corresponding to the end of  the 
metastable region, beyond the first-order transition. 
In SU(3)/Z 3 we fred a stable singularity at X ~ 0.925 
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Fig. 1. The average action per plaquette <E) as a function of 
the inverse temperature ~ on a 44 lattice for (a) SU(2)/Z~, 
(b) SU(3)/Z3, (c) SU(4)/Z4, (d) SU(5)/Z s and (e) SU(6)/Z6. 
The solid lines represent the 9th order strong-coupling expan- 
sions derived in the text. 

which is beyond the first-order transition found near 
0.80 in the Monte Carlo simulation. This approach 
seems to be insufficient for larger gauge groups be- 
cause complex poles have completely washed out the 
accuracy of  the real singularity. 

Up to the (first-order) transition, Pad4 approximants 
reproduce the Monte Carlo results quite well. The agree- 
ment suddenly breaks down at the transition as is e×- 

pected: Pad4 approximants continue to correctly de- 
scribe the metastable phase into which it smoothly 
enters without hitting a singularity, while the Monte 
Carlo simulation does not remain in this phase but 
jumps to the tow-temperature regime. As done here, 
the analysis of  Pad6 singularities can localize and ana- 
lyze a second (or higher) order transition, but remains 
totally blind to the first-order transition. One localizes 

305 



Volume 115B, number 4 PHYSICS LETTERS 9 September 1982 

the nearest singularity, but  cannot decide if this is a 
second-order transit ion or the end of  a metastable re- 
gion, after a first.order transition. To deal with such 
a first-order transition, one needs more information. 
It is, for instance, possible to use both strong-coupling 
and weak-coupling expansions and to construct type 2 
Pad6 approximants which reproduce both  expansions 
and which will then locate the transition. However, 
this analysis is beyond the scope of  this letter.  
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