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Abstract. The geometrical description of spinor fields 
by E. Kiihler is used to formulate a consistent lattice 
approximation of fermions. The relation to free sim- 
ple Dirac fields as well as to Susskind's description 
of lattice fermions is clarified. The first steps towards 
a quantized interacting theory are given. The cor- 
respondence between the calculus of differential 
forms and concepts of algebraic topology is shown to 
be a useful method for a completely analogous treat- 
ment of the problems in the continuum and on the 
lattice. 

!. Introduction 

Lattice approximations to quantum chromo@- 
namics [1] seem to be a promising method to ap- 
proach the problem of calculating those physical 
quantities which are mainly determined by the 
strong effective interaction at low energies. The cal- 
culations of the string constant, of the glue ball mass 
[2] etc. in pure lattice gauge theories, as well as the 
first attempts to calculate the hadron spectrum in 
lattice QCD with fermions [3] justify such an opi- 
nion. 

However, all formulations of lattice QCD with 
fermions may be considered as not yet satisfactory. 
This problem originates in the fact that the naive 
transcription of the Dirac equation shows a higher 
degeneracy of the energy spectrum on the lattice 
than in the continuum [-4J. There are essentially 
three proposals to overcome this problem of the 
additional degrees of freedom of the "naive" Dirac 
field on the lattice. In the solution of Wilson [5], the 
lattice action of the Dirac field gets modified in such 

a way that the superfluous degrees of freedom get 
masses which become infinite in the formal con- 
tinuum limit. Hence one has the correct spin degrees 
of a Dirac field in the continuum. The main disad- 
vantage of this approach is that it violates chiral 
symmetry on the lattice for massless quarks. Suss- 
kind [6] gives a procedure to reduce the ad- 
ditional degrees of freedom to a "minimal" number. 
He suggests an interpretation of the remaining de- 
grees of freedom as "flavour" spins. His procedure 
does not include a formal continuum limit and 
hence obscures the geometrical origin of his flavour 
spins. The SLAC-group [7] tries to settle the prob- 
lem by brute force. Working in the momentum 
space of the lattice, one can construct a Dirac equa- 
tion with a correct spectrum and correct chiral in- 
variance. The price one has to pay is a non-locality 
in the form of long range interactions which are 
difficult to control [8]. In a way all these solutions 
of the spectrum problem of lattice Dirac fields look 
somewhat arbitrary and it is difficult to judge how 
much this restricts the possibility and the reliability 
of calculations in complete lattice QCD. It is the 
aim of this paper to contribute to the clarification of 
the problem of fermions on a lattice. Our starting 
point is the geometric content of gauge theories [9]. 
The geometric interpretation of the gluon field, de- 
scribing infinitesimal parallel transports of the local 
colour spaces, plays an important part in the for- 
mulation of the Wilson action for pure lattice gauge 
theories [1]. Gauge fields are represented as finite 
parallel transports along lattice links. However, the 
geometric properties of spinors are completely dis- 
regarded in the formulation of the "naive" Dirac 
field on a lattice. Here one associates spinors rather 
arbitrarily with quantities defined on lattice points. 

0170-9739/82/0015/0343/$04.60 



344 P. Becher and H. Joos: Dirac-Kiihler Equation and Fermions on the Lattice 

In order to find a more consistent procedure, one 
should start with a differential geometric formu- 
Iation of the Dirac equation. For tlais we use the 
"'well-known" fact [10] that Dirac fields are cross- 
sections of an Atiyah-K~ihler bundle on a manifold, 
and we consider the generalization of the Dirac 
equation, first proposed by K~ihler [11]: 

(d-6+m)~=0, (1.1) 
as very well suited for this purpose, [12]. 

In this equation # denotes a general differential 
form, d the operator of exterior differentiation and 3 
its adjoint operator, m the mass parameter; we shall 
give a more detailed description of (1.1) in the fol- 
lowing section. Now we consider the lattice as a sort 
of triangulation of the space-time manifold. Then 
there is a standard procedure [13] by which co- 
chains ("functions on the lattice elements: points, 
links, plaquettes, . . . ' )  are associated with differential 
forms. By this prescription the lattice approxima- 
tion to the Dirac-K~ihler equation (1.1) becomes 
straightforward. The # turns into a general cochain, d 
and 3 become the dual boundary operator z~ and the 
dual coboundary operator ~ respectively. The Dirac 
field is therefore no longer associated with point 
functions. According to its geometrical meaning it is 
described as a superposition of functions defined on 
points, links, plaquettes, ... etc. 

What do we gain by this systematic geometrical 
approach? First we find that the energy degeneracy 
of the Dirac-Khhler equation and of its lattice ap- 
proximation is the same. However, we should realize 
that the multiplicity of states of given momentum of 
the Dirac-K~ihler equation in four dimensions is 
four times that of the Dirac equation. As a matter of 
fact, it has the same multiplicity as the Susskind 
formulation. Indeed we can show that the Susskind 
description of Dirac fields is equivalent to the lattice 
approximation of the Dirac-K~ihler equation. In this 
sense we have found the correct formal continuum 
limit for the Susskind fermions. This result is of 
practical and theoretical interest. It helps to control 
the continuum limit in Monte Carlo calculations 
with Susskind fermions. TheoreticaUy, the reduction 
of the Dirac-K~ihler equation to the Dirac equation 
in the continuum gives a hint at the meaning of the 
additional degrees of freedom on the lattice. There is 
a strictly local integral of motion which in the con- 
tinuum case supplies the subsidiary conditions al- 
lowing an easy elimination of the additional degrees 
of freedom. In the lattice case, this integral is no 
longer strictly local, but involves nearest neighbours 
in a twisted way. From our point of view this is the 
origin of the problem of the lattice formulation for 
simple Dirac fields. 

In this paper, we describe the Dirac-Kiihler 
equation in detail in the next section. This includes 
the reduction to tile Dirac equation, the discussion 
of its symmetries and conservation Iaws, the cou- 
pling to gauge fields and its quantization according 
to the Lagrangean approach. In Sect. 3 we treat the 
corresponding problems for the lattice formulation 
of the Dirac-K~ihler equation and we prove the 
equivalence to the Susskind reduction. In this paper, 
we give only a short discussion of interacting Dirac- 
K~ihler fields on the lattice. We add an Appendix on 
the fundamental formulas of differential forms and 
its analogues from algebraic topology on the lattice. 
It is supposed to be helpful for those unfamiliar with 
these mathematical notions. We consider this Ap- 
pendix as an integral part of the paper, because it 
underlines the geometrical basis of our approach. 

2. The Dirac-K~ihler Equation 

We consider the Dirac-K~ihler equation as the key 
for the understanding of the lattice formulation of 
fermions. The following description of the Dirac- 
K~ihler equation is not given in the most general 
setting of an Atiyah-K~hler bundle on a manifold. 
In view of our intended applications, we rather re- 
strict ourselves to an elementary consideration of 
the case of Euclidean space time. The extension to 
Minkowski space or even general manifolds is at 
this elementary level straightforward. However, the 
use of the calculus of differential forms is crucial for 
our applications. A glossary of the most important 
notations and formulas together with the relations 
to the corresponding lattice concepts is given in an 
Appendix. 

2.i. In the Dirac-Kiihler equation 

( d - 3 + m )  O=O,  (2.1) 

the Dirac field is described by a general real or 
complex differential form 

' ~ 1 
O = (}(x) + qo r dx  + ~.  p , , (x)  dx  A dx  v 

1 
+ ~ .  q~ ~o(x) dx  ~ A dx ~ /~ dx  p 

+P1234(x) dx t A d x  2 A d x  3 A d x  4 

--Z o(x, ~) ax". (2.2) 
H 

In the second line we introduced the multi-index 
notation: ~(x)=-~o(x,O), ~o~2(x)- ~o(x, 12), 
p u v o ( x ) - p ( x , ( # v p ) ) = p ( x , H ) ,  H: ordered set of in- 



P. Becher and H. Joos: Dirac-K~ihler Equation and Fermions on the Lattice 345 

dices, which we explain in more detail at the be- 
ginning of the Appendix and in (A.19)ff. The ex- 
terior differentiation d can be written as 

d~b = d x "  A 8 ~ ,  (2.3) 

where ~, denotes the partial differentiation of the 
coefficients q)u...~(x). The adjoint 6 of d is defined 
with help of the ~-operat ion 

6=  - ' ~ -  ~dCr. (2.4) 

With the appropriate sign convention, the action of 
the linear Or-operator on the basis differentials is 
given with help of the completely antisymmetric ten- 
sor ~#vpa, g 1 2 3 4  +1: 

1 = d x  1 A dx  2 A dx  a A dx  4, 

1 
dx  ~' = - -  e"~ ~ d x  /x dx  p A d x  ~, 

1 
~ d x U A d x ~ = - ~ . e ' ~ o ~ d x P A d x  ~, etc., r  (2.5) 

From the antisymmetry of the wedge product in 
(2.3) for d and hence for 6, it follows: 

d2=62=0 .  (2.6) 

After this formal definition of the Dirac-K~ihler equ- 
ation (DKE), we want to make a first remark on the 
relation of the DKE to the conventional Dirac 
equation [10]. It is 

(d - a) 2 = _ (d 6 + 6 d) = [] = au 8". (2.7) 

In this sense (d -6)  is a square root of the Laplacean 
[Z. The operator (d -6)  shares this property with the 
Dirac-operator 0= ?~?,. As it is well-known, the con- 
struction of [~w2 played a decisive r61e in the orig- 
inal derivation of the Dirac equation [14]. 

Following E. K/ihler, we introduce a Clifford 
product in the space of differential forms [11, 15], 
((A.58)ff.). This distributive and associative product 
of differential forms is defined by that of the gen- 
erating elements d x ' :  

1 v 1 = 1, 1 v dx  ~' = dx  u v 1 = dx*', 

dx  ~ v dx" =gU~- 1 + d x  ~ A dx  ~, (2.8) 

(g"~=6 u*=metric tensor). With help of the Clifford 
product we can write the differentiation (d-c5) in a 
form similar to (2.3), (A.74)" 

( d - 6 )  ~b = d x ~  v 8,q~. (2.9) 

Since the defining relations (2.8) imply those of the 
y-matrices: 7"?~+?~yU=2g "~, (2.9) clarifies the re- 

lation between the DKE and the Dirac equation: 
The mapping 

?u~--~dx" v ,  (2.10) 

d x U v - = C l i f f o r d  left multiplication, defines a repre- 
sentation of the algebra of y-matrices in the 16- 
dimensional space of complex differential forms. Be- 
cause all the representations of the complex Clifford 
algebra of the &dimensional euclidean space can be 
decomposed into 4-dimensional irreducible represen- 
tations [16] equivalent to those generated by the 
standard y-matrices, we can decompose the space of 
differential forms ~ = { ~ }  into 4-dimensional in- 

r 
variant subspaces 9 =  @ ~(b), on which the DKE 

b=l 
implies the Dirac equation: 

( d -  6 + m) ~(2-z-9)(dx# v 63u+m ) ~ = 0  

(2"l~ ~ = 0  for kurd(0). (2.11) 

(For a complete description see (2.25-27).) Equipped 
with the operations A, V and Or, the local co- 
tangent space spanned by the differentials dx  u has 
the structure of an Atiyah-K~ihler algebra [17]. In 
this sense one may consider Dirac fields as cross- 
sections of an Atiyah-K~ihler bundle on a manifold. 

2.2. For the following it is important to make the 
relation between the DKE and the Dirac equation 
more explicit. Therefore we study the decomposit ion 

o f  the Clifford algebra into subspaces invariant un- 
der left v-multiplication, i.e. the decomposition into 
left ideals. For simplicity we consider the complex 
DKE, the real DKE will be discussed later. Follow- 
ing the usual techniques of representation theory 
[18], we introduce a new basis in @:Z=(Zab), a, b 
= 1, 2, 3, 4, written in matrix form, with the proper- 
ty 

dx v (zoo - (7)acZcb)=? Z. (2.12) 
c 

This basis allows the decomposition of the Clifford 
algebra. Here the ?" denote Dirac matrices in any 
irreducible representation. For some explicit con- 
siderations we use the euclidean y-matrices in the 
Weyl basis: 

~ . _ y r  (2.13) at, i=  1, 2, 3, Pauli matrices, ?~=7u, 7, - ,. 

In the following we shall use the multiindex no- 
tation also for products of y-matrices 

7~ -= y,~ 7,2.. . . .  yu~, #1 <#2 <. .-  <#h ~H, (2.14) 

h: number of elements of H, y0= 1 for h=0. 
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We shall show that 

r 1 Yuy~dx A d x  ~ Z = l + y u d x , , + ~  7 r T !* 

1 T T T 
+ f(. 7, Y~ 7~ dx" A dx  ~ A dx  ~ 

1 T T T T  !z v +~-~YuY~Y~y~dx A d x  AdxO AdX " 

-= Z ( - 1)(h~)(Ya) rdx~ (2.15) 

satisfies (2.12). For the proof we need the following 
formula for the Clifford product of differential forms, 
[11], Appendix (A.58): 

dx ~ v Cb = dx" A (~ + e*' I go, (2.16) 

v dxU=~b A dx" -eU_J eg~.  

eUA is the contraction operator, (A.49), which for- 
mally differentiates a differential form with respect 
to the differentials. It is defined as a linear operator 
by the following relations, including the product rule 
(y): 

e" A 1 = O, e" A d x  ~ = g ~ ,  

e~_l(4)+ E)=eU l @  +eU A E ,  

eUA(q~ A E) = ( e " / ~ )  A E +(ag~) A e " l E .  

(~) 
(/~) 
(0 

The main automorphism ag, ag(~ a E)=sgq5 A d E ,  
is defined by 

(218) 

P~ are the homogeneous parts of degree p of the 
general differential ~b. Similarly we have the main 
antiautomorphism 
~(0(~ @ 1 ~) _~ 2(~ .~t_ 3~._}_ 4~) = 01~_ }_ I~__ 2~__ 3(j~i _~_ 41~" 

(2.19) 

applied to the y-matrices with the hermitecity 
condition (2.13) gives 

(YH) t = ~ Y H  = ( - -  1)(h2)yH, (TH) T = ( -  l)(h2)y~/. (2.20) 

Further useful formulas on these morphisms are 
found in the Appendix, (A.32)ff. 

Now we use (2.16) and the "differentiation rules" 
(2.17) in order to calculate 

This is the desired result, (2.12, 15). In this calcu- 
lation we have used repeatedly the relation ;%ry~r = 

T T - % % + 2 g , ~ ,  f.i. in order to evaluate the homo- 
geneous part of degree one: 

1 eT T T eT c/x +~(y  y - y , y  )clx"=y~ryrclx" 

For the term of highest degree, we used that it is 
proportional to dx ~ A dx 2 A dx  3 A dx% and hence we 
get with help of 7 r y=r = 1 : 

1 T T T ~. yu yv yp dx ~ A dx" A dx  ~ a dx ~ 

_==yc~T ( ) ~  T T T T # dxVAdxO Adx~) .  Y~, 7~ ?p Y~ dx A 

By a similar calculation we can derive with help of 
~ v d x = = ~ A d x ~ - e ~ A s r  (2.16), the formula for 
right v-multiplication: 

Z v dx ~ = z y ~ r  = ( ~  Z~cy;~ ). (2.21) 
c 

The transformation (2.15) can be inverted with help 
of the well-known trace and completeness relations 
[19] of the y-matrices, (2.13): 

Trace (y~(y~:)*) = 4 flu, K, (2.22) 

E ~)I-I ~)II * ~.  4 (~ ac (~ bd " (2.23) gab J'cd 
H 

Applied to (2.15), this gives" 

dx ~ = � 8 8  1)(~ ) Trace (yu* Z): (2.24) 

The equations (2.12, 15, 21-23) allow a complete and 
explicit description of the relation between the DKE 
and the Dirac equation. For this we expand the 
general differential form with respect to the basis Z: 

= ~  p(x,  H) dx  H = ~ o~b)(x) Zab. (2.25) 
H a,b 

Then it follows immediately from (2.12) that the left 
ideal ~(b) is spanned by 

~><'> = E C'>(x) <.<o> Z~beZV , b fixed, (2.26) 
a 

h 
(dx ~ v Z.b ) = (dx ~ A + e~-J) Z = ~ ( -  1)(2)(yu)r(dx= A + e a t )  dx  u = + 7 ~r 

u 

_}_dxOC{_~( ,  , ~ T T T  T ~tT, r 1 ~tT T T T o~T T T T o:r v t2 ~ - ~ , 7  ) d x ' + 7 ~ d x ~ A d x U + ~ . . ( 2  7 ~ Y ~ - 2 , 7  7~+7~Y~2 ) d x ~ A d x  

1 T T ~ # v 1 ocT T T T + ~ . 2 . 7 ~ d x  A d x  a d x  + ~ . ( 7  7. YvYp .T~.T .T.T-- T ,T~,aT~,T ~,T~,T~,T.o~T'~..qvl* -YuY 7vgp~-Y~by r 1 6 2  j , ~  A d x  vAdx ~ 

1 T r T ~t __yc~T z + ~ .  7uyv yvdx A d x U A d x ~ A d x  p -  (2,12') 
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and that the DKE for 4) implies the Dirac equation 
for r 

(~/"c? +m) r 0, 

r b = 1 . . . .  ,4. (2.26') 

This is the explicit interpretation of (2.11). We call 
the (O(~b)(X))= r the Dirac components of the dif- 
ferential form ~. The equations (2.22-25) give the 
transformation between the Dirac components and 
the cartesian components: 

~o(x, H) = Trace(#(x) ( ~ ) * ) -  ~ p~b)(x) (Yn)L, 
a , b  

a t , ~ !  - -  4 
H 

(2.27) 

Right v-multiplication transforms the different sub- 
spaces ~(b). This follows from the associative law 
and repeated application of (2.21). The following 
matrix representation of the right v-multiplication 
describes this fact most explicitly: 

(Z~a v C ) :  (~, Z~a Cdo)----- C-Z. (2.28) 
d 

If C = ~  C ( H ) d x  ~, then it follows from the formulas 
H 

above: 

=Z c(m 
H 

C(H) =�88 Trace ( (CJ  7n*). 

(2.29) 

Shifted on the Dirac components, right v-multipli- 
cation ~' = 4) v C induces the transformation 

tp~(b)(x) --- Y, Cba 0~)(x) �9 (2.30) 
d 

The group of unitary transformations CeSU(4) is 
called the (global) "flavour" group, following a sug- 
gestion of Susskind [20] for the equivalent lattice 
case. Equations (2.28, 29) define the representation 
of the flavour group by right v -multiplication. 

We want to give some applications of these no- 
tions. It follows from straightforward calculation 
that the Or-operator, (2,5), can be written as right 
v -multiplication: 

"~O=4)Ve,  c.:=dx(1234)==_dx 1 v d x 2 v d x  3 v d x  4. 

(2.31) 

Hence, according to (2.29, 13): 

o r  

r  , i=1 ,2 ;  ~ Z a i = + Z a i  , i=3,4.  (2.32) 

The forms 4)~(0,  i=3,4,  are dual with respect to 
the Q-operation, those of ~(0, i=  1, 2, are antidual - 
in the Weyl representation of the y-matrices. 

Another application of these formulas is the con- 
struction of a spectral set {P(~)} of v-idempotent  
elements which characterize the minimal left ideals 
~(b) [10]. The matrix which projects on the ~ ( b )  
is 

(/~(ab)) = cS~b bah . (2.33) 

It iS represented by the right v-multiplication with 
P(~), (2.28, 29): 

Z ~ v po) = Z ab 6b~ ' 

p{b) =�88 + i  sign(12).dx I/x dx  2) v (1 + sign(1234)-e), 

with the sign combinations 

(sign (12), sign (1234))=(-  - ) ,  (+  - ) ,  ( -  +), ( + + )  

for b = 1, 2, 3, 4. (2.34) 

The p(b) have the property of a spectral set 

p(b) V P($)= (~bsP (b), ~ p(b)= 1. (2.35) 
b 

p(b) projects on the irreducible subspace @(b), i.e. on 
the minimal left ideal N(b). All elements ~eN(b) are 
characterized by 

4) v p(b)= ~. (2.36) 

Combining the different results, we can make the 
following statement: The Dirac-K~ihler equation 
(2.1) for differential forms, together with the "sub- 
sidiary conditions", (2.36) with b fixed, is equivalent 
to the conventional Dirac equation, according to 
(2.27). 

For the discussion of the DKE on the lattice, it 
is useful to give the "subsidiary condition" (2.36) the 
form of a symmetry property. For this, we consider 
the group N, called the reduction group, which is 
generated by v-multiplication of the elements r: 
= i d x  1 A d x  2 and e: 

~.@ = {1, "C, g, g V "C}"~Z2 • ~ 2  . (2.37) 

If we regard ~ as a sub-group of the flavour group, 
i.e. acting on 4) by right v-multiplication 

"~-4)=~v r, g-4)=~b vs, (2.38) 
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then the subsidiary conditions (2.36) are equivalent 
to the symmetry properties 

.~. 4)(b)=sign(12) 4)(b), ~. 4)(b)=sign(1234) 4)(b) (2.39) 

with the sign combinations given in (2.34). 
It should be evident how these results on the 

relation of the DKE to the conventional Dirac 
equation can be generalized to arbitrary even di- 
mensions, in particular for the case of dimension 2, 
which is important for model considerations. (In odd 
dimensions the representation theory of the Clifford 
algebra is somewhat more involved [21].) 

2.3. In the following we discuss the symmetries o f  
the Dirac-Kiihler equation and the conserved currents 
related to them. 

The first symmetry we want to consider, is the 
global "flavour" symmetry described by the "fla- 
vour" group SU(4) mentioned in the preceding sec- 
tion (2.28)ff.. It is a simple consequence of the asso- 
ciativity of the v-multiplication, that right v-mul- 
tiplication with a constant differential (f.i. U~S U(4)) 
transforms a solution of the DKE into another so- 
lution: 

4)' = 4) v U, (2.40) 

( d -  6 + m) 4)' - (dx ~' v 8~ + m) (4) v U) 

=((dx" v O u + m) 4) ) v U =0. 

Next we study the symmetry of the Euclidean DKE 
under the 4-dim. rotation group S0(4) with help of a 
general formula which extends the definition of a 
Lie derivative L~ acting on functions, i.e. 0-forms 

L ~ ( x )  = ~U(x) 0,~(x) (2.41) 

to one which is defined on general differential forms 

L~ 4) = ~U(x) ~u 4) + �88 v 4) L 4) v d~) (2.42) 

(see [11] for the assumption which is necessary for 
this procedure), a=~u(x) dx u=c~u(x) gu~dx ~ denotes 
the Killing form associated with the Lie derivative 
L~. Commutator relations between different Lie de- 
rivatives are conserved by this extension. This pro- 
cedure is illustrated by an application to the in- 
finitesimal rotations. The Lie derivative of an in- 
finitesimal rotation in the pv-plane, i.e. the operator 
of the orbital angular momentum (multiplied by i), 
is 

L "~ q~(x) = (x ~ 0 ~ - x ~ 0") ~(x). (2.43) 

Its extension is 

L " ~ q ) = ( x " ~ - x ~ O  ~) 4)+�89 ~ v 4 ) -4 )vSU~) ,  (2.44) 

S ~'~ =�89 ~ =�89 ~ - x ~ d x  ") = d x  u/x dx  ~. (2.44') 

The "Clifford commutator", [S ~', 4)] v: =S"V v 4)-(b 
v S "" in (2.44) describes correctly the infinitesimal 

rotations of the differentials, f.i. : 

1 F~uv ~L- , dx  p] v = g~O dx  u _ gUO dx  �9 etc. (2.45) 

From this, it follows that the extended Lie derivative 
commutes with the DK operator 

L ~ ( d - f i + m )  4)---(d- c5 + m) Lug4) (2.46) 

thus describing the rotational symmetry of the DKE. 
The same discussion for translation invariance ex- 
pressed by the "Lie derivative" pu = 0", (---, de = 0), is 
trivial. 

What is the relation of the rotation symmetry of 
the DKE, (2.44-46), to the well-known rotation sym- 
metry of the Dirac equation? This question is some- 
what intriguing, because (2.44) describes represen- 
tations with integral spin, whereas the symmetry 
transformations of the Dirac equation contain half 
integral spins [22]. Formally the answer to this 
question is the following. The minimal left ideals 
~(b), (2.26, 36), are not invariant under the infinite- 
simal rotations L "~, (2.44). However, there are trans- 
formations JU~ combining the infinitesimal rotations 
L uv with infinitesimal "flavour" transformations S~ 

fi4) = j u r e .  5f l ,=(L; ,~  + ~,~)4). 6fl,~ 

= ( x ' 0 ' - x ~ O ' + � 8 9  "~ v)  r  cSfi,~, (2.47) 

;f"~. 4)=�89 v S "~ ' 

which 
(i) leave the ~(b) invariant (2.12, 26), 
(ii) commute with the DK operator (2.40, 46) 

and 
(iii) satisfy the commutation relations of S0(4) 

[ j ,~, j po] = _ 6up j~o + 6uo j~o _ 6~o j uo + (~vp jua. 

These ju~ are the well-known 4-dim. angular mo- 
mentum operators of a Dirac field (as can be seen 
from (2.12,25) and (2.44')). We may interprete this 
result by the following statement: "The half-integral 
spin of Dirac fields can be described by a coherent 
superposition of differential forms. The coherence is 
formulated with help of an irreducibility condition 
applied to the representation of the Clifford algebra 
on differential forms via left v-multiplication". Such 
a form of a coherence condition is common in quan- 
tum mechanics [23]. 

The chiral symmetry of massless Dirac fields 
plays an important r61e in the discussion of lattice 
formulations of fermions. Hence we consider this 
symmetry here for the DKE. According to (2.12, 25), 
the infinitesimal chiral transformation of a Dirac 
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field: 8 0 = i 7 5 0  �9 8fi corresponds to the "chiral trans- 
formation" of the differential forms: 

6 ~ = ~ v aS. aft =-(dx ~ A dx 2 A dx 3 A dx'*) v ~ .  8 ft. (2.48) 

It can be easily seen that e v (dx u v Ou) = - ( dxu v ~?,) e 
v,  and hence solutions of the massless DKE (d 
- 6 )  ~ = 0  remain solutions under chiral transfor- 
mations. The main automorphism ag, (2.18), trans- 
forms solutions of the massless DKE into solutions, 
too: 

( d -  6) ~d 4) = - ag(d - 6) 4) = 0. (2.49) 

Since we can write ar in the form s g q , = e v  ~ v e ,  
the relation between ~ur and the chiral transfor- 
mation equation (2,48) is similar to that between the 
infinitesimal rotations L "~ and ju~ according to 
(2.44, 47). 

Symmetries imply conserved currents�9 In order to 
relate the symmetries discussed above to currents, 
we may use the following identity for differential 
forms [11] 

d((ib, '-'~) 1 = (~b, (d  - 8)  '-~)0 -~- ( (d  - 8)  ~b, ,--,~)0 �9 ( 2 . 5 0 )  

Here we used expressions (~b, E)v called scalar pro- 
ducts by K~ihler. 6b, E)~ is a (d -p ) - f o rm ,  (d=4), con- 
structed from the forms ~b,,~a~ in the following 
manner: 

(~ ,  ,--,=)o: = ((~'  r v ,_,=) A 

o 1 

1 1 

=(Y~ ~0(x, H) #(x, H)) e, (2.51) 
H 

((b, ~)1: =e~_l(dx" v Oh, E)o =e ,_ l  {(dx ~ v ~b v ~ ~) A e} 

(2.51') 
(r E)/= e,, _i e,~ A...eu, A (dx**" v � 9  v dx": v ~b, Z)o 

=. . . .  (2.51") 

These scalar products are bilinear and symmetric: 

, (9 - ( ~ , S ) p = ( - )  (=,~b)~. (For additional formulas see 
[11]). The complexified scalar products expressed in 
Dirac components, (2.23, 27), get a familiar form 

(@t, qs)o = 4  ~ <~) * (~ (2.52) �9 r176  (x) r  
a, b 

(~t, r = e~ J {(dx ~ v ~t  v ~ ~) a ~} 

=4 .  ~ (@~)(x) * ?~, @~b,)(x)) e~_le, (2.52') 
a,a',b 

where we easily calculate: r e~ A e = dx~. Similarly, 
higher products correspond to higher tensor pro- 
ducts, like T, A, P. 

From K~ihler's formula (2.50), conservation laws 
follow easily. If ~ is a solution of the DKE then ~.. 
=d4~* is a solution of the adjoint DKE: 

( d - 6 - m )  ~ = 0 ,  ~." = ~4~*. (2.53) 

Furthermore, if ~' and ~ are solutions of the DKE 
and its adjoint equation, respectively, then 

j = L d x u  = ~ - 1(~, ~')1 (2.54) 

satisfies a conservation law, as it is seen from (2.50): 

8 j=  - Cg- ~ dCgj= - Cg- ' d(~, #') ,  

= - r  -~ {((d-8) ~, 4)')o +(~,  (d -8)  ~)o} =0,  (2.54') 

o r  

0"j, =0.  

These currents get a familiar form, if we express the 
Dirac components of the adjoint form ~ by 

l ~ ( b ) i v ~  __ 1 o , ~ , - ~  ~ ~(x, m ~o~* (2.55) 
H 

instead of (2.27). Then ~'(b)(X)=(~]b)(X), ..., @~(X)) sat- 
isfies the adjoint Dirac equation 

(~"~ ~ . -  m) <p(b)(x)r = 0 

as a consequence of the adjoint DKE (2,53). Similar 
to (2.52), the expressions for the most familiar con- 
served currents related to symmetries become: 
- from reality of the DKE: 

j = �88 -~(~, ~)i -+Ju(x) = ~  ~(b)(x) 7uO(b)(X), (2.56) 

-- from flavour invariance: 

b,b 

(2.56') 

- from ?s invariance of the massless DKE: 

j : �88 I ((~, ~ V (~)i --->j/~(X): Z @ (b)(x) ~# ,;5 @(b)(x). 
b 

(2.56-) 

Finally we would like to have a look on the real 
solutions of the DKE. These seem even more na- 
tural from a geometrical point of view. The reality 
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of the DK field: ~ * = ~  might be expressed in the 
Dirac components. Of course, this form of the re- 
ality condition depends on the representation of the 
Dirac matrices. In our Weyl basis, (2.13), we have 
for the complex conjugate of Dirac components of 
real Dirac-K~ihler forms 

(~/(ab)*) = -  713(~ / !~  13 , ~)13 = -  ( i ;  2 i~2). (2 .57 ,  

In order to get the physical interpretation of this 
relation, we have to consider the charge conjugation 
of Dirac fields. For euclidean fields, this is some- 
what involved [24]. Therefore we repeat the essen- 
tial points. We start from the well-known definition 
of charge conjugation of Minkowski fields 

(cg~b) (x)= C~(x)  r = C?~162  *, (g2 = + 1. (258) 

o 1 4 
In Weyl basis, (2.13), ~ =77 , it is 

C =  --i]; 02= Ii I ) 0 0 

0 - 

1 

By the continuation to the euclidean region, the 
relation ~(x) = ~b(x)* y 0 becomes [~eucl(X 0, 2) = I//eucl 
( - x  ~ 2)'2 ~ It relates fields at different space-time 
points. Therefore in a consistent treatment of local 
euclidean Dirac fields, one has to consider 
~eucL(x) as an independent field, which satisfies 
the adjoint Dirac equation. The charge conjugate 
field is then defined by C~(x)=C~(x)  r, C=724. It 
satisfies the Dirac equation. We use this formula in 
order to define the charge conjugation of a general 
complex euclidean Dirac-KRhler field by that of its 
Dirac components c@b~(x) = C ~(b~(x)r: 

a,b a,b 

= ~. ~) (x)  (7247 ~3 Z* ? 13)~ b Z~b with (2.57) 
a,b 

= d ~ v d x  24 with (2.12, 49f). 

Although there are no real euclidean Dirac fields, 
there are real DK fields. Following (2.53), we may 
set for real DK fields 

= (~vd ~) V dx 4. (2.60) 

Then we get 

~ = q) v dx  2. (2.60') 

The right-v-factor dx a in (2.60) is necessary to get 
~(~q~) = ~b. Since in our basis: 

( 0 
72 = - -  1 , 

- 1  0 
0 

the flavour transformation related to charge con- 
jugation interchanges the (1-4) and (2-3) flavours. 
This means that for real DK fields, the different 
flavours represent pairwise charge conjugate fields. 

2.4. The Dirac-Kiihler equation in the presence of a 
gauge field follows straightforward from free DKE 
(2.1). This procedure is particularly simple for the 
coupling of a complex DK field to a U(1)-gauge 
field A~,(x). In this case one has only to substitute 
the derivative ~ by the covariant derivative D , =  ~?, 
- ieA~,  in (2.9): 

(dx" v D u + m  ) q)=(dx ~ v (~u- ieAu)+rn)  ~ = 0 ,  (2.61) 

or, with the differential form A =eAu(x )dx" :  

(d -cS+m)  ~ = i A  v q~. (2.62) 

The resulting DKE with minimal coupling to an 
electromagnetic field is then invariant against local 
gauge transformations 

~b(x) w+ d ~ ~(x), (2.63) 

+l 

In the interesting case of a non-abelian gauge theory 
like QCD, the differential forms get an additional 
colour index c~ or, in general, they become vectors 
with respect to a representation of the gauge group 
G. The DKE with gauge interaction then looks like 
(2.61) with D, the covariant derivative with respect 
to G. In the case of QCD the field equation for 
quarks becomes 

(d - 6) q) = iA v ~ (2.64) 

with the Lie-algebra valued differential form [25] A 

= g z~ A~(x) dx  u. In mathematical terms ~b= 

= ~  (G(x,H) dx n is a cross section in the Whitney 
u 

product of the Atiyah-K~ihler bundle of differential 
forms with the vector bundle of local colour spaces 
[10]. This concept is particularly useful for the 
consideration of gauge interactions in curved space- 
time manifolds as in general relativity. 

The proof of the flavour invariance of the DKE, 
(2.40), goes through for the DKE with gauge in- 
teraction (2.64). Hence, the decomposition of this 
equation into elementary Dirac equations according 
to (2.36)ff. is possible, too. However, it is not in the 
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spirit of the geometrical approach to consider the 
DKE always in its Dirac decomposition. The power- 
ful calculus with differential forms allows often a 
direct solution of this equation. The treatment of the 
electron in a Coulomb field by K~ihler [11] may 
serve as an example for such a procedure. 

On the other hand, one should not forget that 
the DKE describes a multiplet of Dirac fields with 
global flavour symmetry, (2�9 40). The discussion of 
the lattice formulation of the DKE will give some 
arguments (Sect. 3.5d) in favour of the consideration 
of the flavour symmetry as a local symmetry�9 For 
this one has to insert in (2.61) the covariant de- 
rivative D r in the form 

D u C~ = (a r + sgr) r  (2.65) 

= ~, A r O  v T i. dr~ 
i 

~ is the differential form which generates infinite- 
simally the flavour group N={C} defined in (2.30). 
The DKE with minimal gauge invariant flavour 
coupling 

(dx ~ v D r + m) 

= (dx r v c~ r + m) g) + Airdx r v ~ v ~i = 0 (2.66) 

is invariant under local gauge transformations 

cb~-+# v C(x), .sgr~--+ C(x) v (sgr + ~?r) v C - l ( x ) .  (2.67) 

This can be shown in the usual way by a simple 
straightforward calculation. We would like to illus- 
trate this scheme by a simple example, which will be 
used in a later discussion. The group N is the Abe- 
lian group generated by ~ = d x  12. 

It follows from (2�9 30): 

C . cb - ~b v C = ~b e -  v0,=~ v(cos 0 -  sin 0 d x I A d x2). 

(2.68) 

Hence, the gauge transformations and covariant de- 
rivatives of such a DK field are 

~b'(x) = ~(x) v (cos O(x) - sin O(x) dx  t A dxZ), 

A'r(x ) = A,(x) + ~,O(x), (2.69) 

D r r = O r ~ + A r ( x  ) Ob v dx  ~ 2. 

For Dirac components this corresponds to 

(b) (~) ~ iO(x) b ~1, 3 
tfi~ (x)~--,O, ( x ) e  , T}for = ( 2 , 4 '  (2.70) 

as might be seen from (2.29, 30). If we consider this 
flavour gauge coupling to a real DK field, then the 
charge generator ~ anticommutes with charge con- 
jugation c~=~vdx2; (2�9 This model describes 

correctly two charged fields coupled to an abelian 
gauge field�9 

2.5. Finally we discuss the Lagrange  funct ion  of the 
Dirac-K~ihler equation and its formal  quantizat ion 
with help of the Feynman path integral formula�9 Let 
us consider first the complex Dirac-K~ihler field ~. 
The Dirac-K~ihler equation might be derived from 
the following action: 

Srn[5' ~)] --:"-1I (5, (dA--~A-~-m) ~ ) 0 ,  ( 2 . 7 1 )  

where the gauge invariant coupling is described with 
help of the covariant exterior differentiation d A and 
its adjoint 3A, formed with help of the covariant 
derivative Dr: 

d a # = d x r  A D r ~ ,  3A(713= --er ADrg). (2.72) 

This action becomes 

S m = ~ ~ d4x  ~(b)(x) (TUDu + m) ~(bl(x) 
b 

when we express Kiihler's scalar product (5, ~b')0 , 
(2.51,52) by the Dirac components 0~V)(x), I#(~b)(x), 
(2.27,55). It is a sum of the Dirac actions of the 
independent flavours, in agreement with our inter- 
pretation of the DK field ~. In deriving the Dirac- 
K~ihler equation from the euclidean S by the action 
principle, we have to consider ~ and ~ as inde- 
pendent fields [26]. By the same reason we have to 
integrate over the independent Grassmann fields 
and ~ in the path integral formula tbr the generat- 
ing functional of the Schwinger functions of the 
Dirac-K~ihler fields [27]: 

r{#, q} = Y{0-, t/I/~e{0, 0}, 

{o, ~} = ~ [A] S ~ [ ~ l  S [5]  
sA~, r +&[A] + ~i#, r +(~, ,7)0 

�9 e (2.73) 

For the Grassmann integration S N [ ~ ] S N [ 5  ] we 
adopt the sign convention " ~ [ ~ b ] ~ [ ~ ] 4 5 # =  
+1".  The action of the gauge field is called SG[A]; 
we suppress all details related to the gauge field 
integration. The action of the DK field has the bi- 
linear form S~=(~,Fq~). Therefore "Gaussian in- 
tegration" allows the evaluation of the Grassmann 
integral [28] : 

~ [ ~ ]  ] ~ [ 5 ]  e s"~e'ml+ s(~176176 

= e-  4 j'(~/, (dA -- 3A + m) -1  q)O. det [�88 A - -  3 A + m)]. (2.74) 

The formal expressions (2.73, 74) are the starting 
points for the derivation of Feynman rules for DK 
fields, effective interactions etc. This is not subject of 
this paper. We only want to add the expression of 
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the propagator for DK fields, which we get from 
evaluating (2.74) for the free case: 

X ~d4x ~d4yq(x, H) (~0(x,/-/) O(Y, K) )  ~(y,/r 
H,K 

= -4~(q, ( d -  6 +m)-Z ~/)o . 

Using ( d - ( 5 + m ) - ~ = ( d - ( 5 - m ) ( U ] - m 2 )  -~, with d 
- ( 5 = d x U v ~  u and ( [ 2 - m  2) A s ( x - y ) = - ( 5 ( x - y ) ,  as 
well as the definition of the scalar product, (2.51), 
leads to 

z-/) 

=4 C [H; ~; K] c~. -m(5 n'K) As(X - y )  (2.75) 

with 

~ dx n v dx ~ v dx K)/x E = [H; p; K] ~ (2.76) 

( (SH K\~.3 if # e K ,  
[H;/2; K]  = jP~u~,K\~.~" 

For the notation see the Appendix. 

The decomposition of the (p(x, H), qS(x, K) in Di- 
rac components shows that (2.75) is in agreement 
with the vacuum expectation values for euclidean 
Dirac fields 

(sb, b' S.~ y), 

S(x) = (7" 8 u - m) As(x ). (2.77) 

We add a short remark on the action of a free real 
Dirac field. Following (2.60, 71) we set 

S[033 =~ ~((d03 v dx 4, (d - (5 + m) 03)0. (2.78) 

With the interpretation of the real DK field 43 as a 
pair of charge conjugate Dirac fields ~;~ O(2)(x), 
q;(3)(x)=-~O(2)(x), O(r +r176 the action S is 
the appropriate Dirac action 

2 

s = Z S + m) 
b = l  

The form {03, Z} is antisymmetric: 

{03, s ) ,  = ( ( d  03) v d x  = - 03). (2.79) 

This follows directly from the properties of the 
Dirac-K~ihler product (03, Z)o=(S, 03)o=(d03, rift)0, 
(2.51), and (d03) v dx r = - d(03 v dx4). Therefore the 
path integral for the generating functional (2.73) can 
be evaluated by Gaussian integration. It leads to a 
2-point function of the form (2.75), with ~ set equal 
to (d03) v dx r 

In this discussion of the Feynman path integral 
formulas for DK fields, the action S,~ could be al- 

ways separated in the actions of the Dirac com- 
ponents; Sm=~, S (b). From this we conclude that we 

b 

can represent, formally, the Green's functions of Di- 
rac fields by path integrals over DK fields which 
satisfy the subsidiary conditions (2.36). 

Let us shortly summarize the results of this sec- 
tion. We discussed Dirac spinors in terms of differ- 
ential forms 03. The general solutions of the DKE 
are equivalent to four (complex 03) or two (real 03) 
Dirac fields. Then we studied several physical con- 
cepts like symmetries, currents, minimal coupling to 
gauge fields and quantization by Grassmann path 
integrals for Dirac-K~ihler fields. The necessary tools 
for relating them to Dirac fields were given. This 
differential geometric description of fermions might 
be a basis for the construction of different kinds of 
field theoretical models. For such purposes we plan 
to develop further the Feynman rules for interacting 
DK fields in a forthcoming paper. Our main interest 
here is to analyse with help of the DKE the prob- 
lems of the lattice approximation of the Dirac equa- 
tion. 

3. The Dirac-Kiihler Equation on the Lattice 

3.1. There is a natural way to find a formal lattice 
approximation to a field theory which is formulated 
in terms of differential forms. In order to express 
such a correspondence between continuum and lattice, 
one considers the lattice embedded in the euclidean 
space-time and the p-forms mapped on functions 
depending on p-dimensional lattice elements: 

p 0 3 ~ f f C i ) =  5 p03. (3.1) 
PCi 

We use sometimes the language of algebraic to- 
pology [13], and consider the lattice as a cell com- 
plex F with its elements eCi as cells: points, links, 
plaquettes, cubes, super-cubes for p =0, 1, 2, 3, 4. In 
this spirit we regard (3.1) as the definition of a 

"cochain", i.e. a linear functional v03(eC) defined on 
the "p-chains": P C = ~ e C ~  of the lattice F. The 

i 

well-known boundary A and co-boundary V of a cell 
PC have an intuitive geometric meaning (for exam- 
ples see Fig. 1). They are extended as linear oper- 
ators acting on chains C of any dimension p. The 
"dual boundary operator A~" and "dual co-boundary 
operator V" acting on co-chains are defined by 

(A~)(C) = ~(A C), (V~) (C) = ~(VC). (3.2) 

It follows from Stokes' theorem, that the mapping 2;, 
(3.1), transforms the exterior differential d into the 
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(x,*) A 
�9 - ZERO 
X 

(x,~) A x 
~ -II, 

X x.eg 

(• (x+%.4 _ (x+ev,~) 

x x+e~ -(x,,,) 

bl I2 
3 J  "-1 

1• v , ,,xel '~-(x,21 x �9 ~ . J , ~ > - e , , 3 )  

x ..4 i -(x,l) - 
-.~, 1 § 

-(x,J~ ,i, - 

(x,l) v ~ ( x _ e 3 , 1 3 )  P 

X x+e 1 

Fig. 1. a The boundary A of elementary zero-, one- and two- 
chains, b The co-boundary V of elementary zero- and one-chains 
in three dimensions 

dual boundary,operator A~: Zd = A~X, i.e. 

d( p t~)= j" p-'ga=Y~(A vC)=(~)(PC). (3.3) 
PC APC 

This is an example of a correspondence between 
objects and operations on the lattice and on the 
space-time manifold. Another example is the cor- 
respondence between 5 and V which might be based 
on formula (2.4). The Or-operation maps the lattice 
on its dual lattice such that V = - O r  - 1 A o .  Trans- 
ferred to the co-chains gives c$~V. Our conside- 
rations up to now lead to the upper half of Table 1 : 

Continuum Lattice 

path chain C 
boundary A boundary A 
differential forms �9 co-chains 
exterior differentiation d dual boundary operator A~ 
d2=0 A~2=0 
co-differential 6 dual co-boundary operator 
82=0 ~2= 0 
Laplace operator - (d5 + 5d) Laplace operator - (A~+P~) 

wedge product A 
contraction operator e"_l 
Clifford product v 

cup product A 
contraction operator e u 
Clifford product v 

The Appendix contains a glossary of all these 
different notions which puts its emphasis on the 
continuum lattice correspondence. 

Applying these correspondences to linear field 
equations in differential form results in a natural 
lattice approximation. This procedure gives for the 
DKE (2.1) the Dirac-Kiihler equation on the lattice 

(A~- V+ m) �9 = 0. (3.4) 

For the further analysis of this equation, the possi- 
bility of extending these correspondences to oper- 
ations like -2r, A, v . . . .  will be decisive. In the 
following we shall consider only cubic lattices. This 
allows us to introduce the following notations (see 
Fig. 1): 

points ~ Ci: = x =a(nl ,  ..., n4), 

links i Ci: = (x, x + eu) -= (x, #), (3.5) 

PCi:'=(x, x + e , , ,  x + % ,  .. ., x +  e,,)=_(x, H). 

a is the lattice constant set equal to 1 in most of the 
general consideration, e u the free unit vector in #- 
direction, H =  {#1,--., #p} as in (2.2). The basis of co- 
chains dual to the cells (3.5) is defined by 

d = (3.6) 

Hence, a general co-chain can be written in the form 

~ =  ~, go(x, H) d x'n. (3.7) 
x,H 

The action of the dual boundary and dual co- 
boundary operator on the basis vectors d ~,~ is ex- 
pressed by the following formulas: 

u ~  plu~,Huu " ' (3.8) 

Cd '" = 2 P .t, mJ (- a;) 

Here, O + and 8 2 denote the forward and backward 
difference operators, respectively' 

+ ~ H d ~ - e ~ , , H _ _ d X ,  t t  
d, d ' := , (3.9) 
82 d~,U : - dX, n d~ +~,,.n 

Applied to a general co-chain (3.7) yields 

0~- r  Z (go(x + % H) - (p(x, H)) d ~'u, (3.9') 
x ,H  

82 ~ =  ~, (go(x, H ) - g o ( x - e u ,  H)) d ~'H. 
x ,H 

This justifies the notation. PH,K is a sign function, 
which is ( -1 ) ' ,  v-=number of pairs (i,j) with 
i eH,  j e K  and i>j ,  f f . H : = { 1 , . . . , 4 } \ H  is the com- 
plementary (ordered) set of H. 

In cubical homology theory [-29] a cup product 
is defined which corresponds to the wedge product 
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of differential forms. It is bilinear, associative and 
therefore determined by 

(11 (~x+emYdx, HuK 
dx, H AdY, K=_~,H, K if H c~K=O, 

(o otherwise, (3.10) 

en:=  ~ e,. Intuitively, A describes the product of 
/~EH 

elementary co-chains on cells with matching bound- 
aries (see Fig. 2). By this matching condition the cup 
product is not local, but combines nearest neigh- 
bours as expressed by the arguments of the Kronec- 
ker symbol 8 ~§ The product rule holds with 
respect to the dual boundary operator: 

A(r A Z) = (A {b) A Z +{s~r A A~, (3.11) 

s~mb=(-1)pp{b like in (2.18). 

A lattice analogue of the Clifford product does 
not have all the nice properties one would like to 
have. However, the following procedure leads to a 
useful definition. First, we define a lattice correspon- 
dence of the contraction operator (2.17): 

( ^ Ax,  HXK 
e~:2d=,n=~pK, HXK, if K c H ,  (3.12) 

(o otherwise, 

e ~ _l(d ~'~' A dY'~)=(eU2d ~'u) A d y-~"'K 

+(s~ d~'H) A e" ~ d  ~'~, e~-- e {"l. (3.13) 

@ A 
X X X 

x x+e~ x+ep 
{x+e~,~) {x,~) 

X+eg X+%. X X+ep 

-(x,~) 

( x ~ e ~  = { x , ~  

x+ep X+ep. X x+ep. 

dX,r dX,{P -} = dX,{l a} 

dX, M A dX§ =dX,M 

d x, {la} A d x +ep.,{v} = P{p.},{v} d x,{p.v} 

d x'{V}A d x+ev'[Ix} =P{v} [p.] dX'{ll'v} 

P {v],[la} =-P{v},{la} 

d X'M A d x,e~,{v,p} : 
:P{g},{v,p} d xl~'v'p} 

A ~ ' p ' )  ~ dX'{v'P} AdX'ev+ep,{g} = 

: d x,{~,v, p } 
= P{~,p},{~} 

Fig. 2. The exterior product of elementary co-chains. The Figure 
illustrates the matching condition for the elementary chains, on 
which the respective co-chains are different from zero 

This allows the generalization of the definition of 
the Clifford product in the continuum 

�9 v s  ,~ (-1)(~) 
__>o P ~  (alp e"l J ' "  e~p d r 

A (e ~1 ~ . . .  eUP _] s (3.14) 

to the lattice: 

~V~=2( - -1 ) (~) (~ l r_eLeL-J~)A(eL- - ]~) ,  (3.15) 
L 

T d~'K:=d x-ell'K, / - n u m b e r  of elements of L. The 
r 

v-product is non-local like the cup product; it is 
even non-associative in general; however, we shall 
show that right-Clifford multiplication with constant 
cochains transforms the solutions of the Dirac- 
K~ihler equation on the lattice similar to (2.40). 

3.2. Now we have sufficiently extended the corres- 
pondences between continuum and lattice for a dis- 
cussion of the Dirac-Kiihler equation on the lattice 

(A~- V+ m) 4~ = 0 (3.4) 

along the lines of Sect. 2. First we want to check the 
energy-momentum spectrum. For this, we multiply 
by the adjoint operator 

(-(#-  B+m)(#- r 
= ( A V + V A + m 2 ) ( O = ( - 8 ~  8-'"+mZ)cI)=O. (3.16) 

The iterated DK equation is indeed the correct Klein- 
Gordon equation on the lattice. If we go to mo- 
mentum space, we consider plane wave solutions on 
the lattice 

qo(x,H)=u(p,H).e_ip,x,  ' n <n - - < P u = a ' a  (3.17) 

With this ansatz (3.16) becomes 

/2 P~ a\2 2\ ~ ~a sin ~ )  + m ]u(p, H)= 0. (3.18) 

2 . p,a 
Because a s l n ~ -  is monotoneous in the cut-off mo- 

Te 7C 
mentum range - - < p ~ < - ,  the energy-momentum 

a a 
spectrum is the same as that of the Dirac-K~ihler 
equation in the continuum. This is in contrast to the 
spectrum problem, which arises from the naive lat- 
tice approximation of the Dirac equation. In this 
sense, the Dirac-K~ihler equation is a realization of 
the most general first order linear lattice formulation 

�9 without spectrum degeneracy of the form discussed 
in [12]. This result was already anticipated in this 
paper. Of course, the DKE on the lattice has a 4- 
fold multiplicity of Dirac components as discussed 
for the continuum in (2.25)ff. 
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In order to study this multiplicity we have to 
discuss the lattice analogue of the reducing group 
(2.37). For this, we bring the Dirac-K~ihler operator 
with help of the Cliff6rd product in a form similar 
to (2.9). By comparison of (3.8) with (3.10, 12) we 
observe that 

A=d~' /x Off , d":= ~ dx'u, (3.19) 
x 

hence, with help of (3.15): 

A -  r  u a + eU A)  c? 2 =d  u v c?~-. (3.20) 

This formula allows an easy calculation leading 
from the first to the second line of (3.16): 

- (A V+ VA) 

=(d u v 0~-) (d ~ v O;-) =(d u v d ~ v ) 02 3;- (3.21) 

= �89 v d ~ v + d ~ v d u v ) ~y O~ 

- -  0 u =3"VTe ~; Q; - + C~-'C 

Here, we have used 

d u V d ~ v +d  ~ v d" v = 26u~ T~, (3.22) 

and - -  + T~? u -O u. Now we get the invariance of the 
DKE under lattice flavour transformations by v-  
multiplication from the right with constant cochains 
C =  ~ C ( H ) d  ~m. Using the definition of the v -  

x, H 

product, (3.15), one can show, that 

d u v (d ~'H v C) =(d u v d ~'u) v C (3.23) 

i.e. the v-product is associative in this special case. 
From (3.20, 23) it follows that the linear transfor- 
mation 

C. ~ = �9 v C (3.24) 

transforms the solutions of the DKE similar to 
(2.40). The linear transformation of the components 
(p(x, H) of ~ might be easily calculated from the v -  
product definition (3.15). However, the resulting gen- 
eral formula is too clumsy. Therefore, we restrict 
ourselves to calculate the transformations of the lat- 
tice analogue ~ = { 1 ,  s 4 s to the reduction group 
N, (2.37): 

"~' ~ = iq~ v d{~2}' g" ~ = (P v d{1234}' (3.25) 

@g" 0 = --  ir~ V d {34} 

with d~: =~" d ~'u. This means for the components: 
x 

('~. q~) (x, H)= - i. ( -  1)(~)pL,{, 2}\t 
(P(x--eLo (t2}, HA {12}), 

~) 
(g- 4) (x, H ) = ( -  1) (2 Preen (?(x - een,CgH), 

~) 
(r q~) (x, H) = i. ( -  1) (2 P~,{34}\~: 
qo(x - e~ a{34}, Hzx {34}), 
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(3.26) 

where L :=H~{12} ,  K:=Hc~{34} and l, k, h are the 
numbers of elements in L, K, H, respectively. H zx H' 
denotes the symmetric difference ( H \ H ' ) v o ( H ' \ H ) .  
Because of the nonlocality in the definition of the v -  
product (3.15), the action of the ~-transformations 
on ~ is non-local, too. This means in contrast to the 
continuum, the transformations of the components 
at fixed x are combined with translations. Therefore 
the operations of ~ don't close under multiplication. 
Rather, r and g generate a group ~ which contains 
the translations along e~ + e z and e 1 + e 2 + e 3 + er as 
a subgroup. ~ is defined by the generators ~ and e*, 
which satisfy the following relations: 

~2 = T ~  {el -b e2)'  ~2 = T ~  (el -ff e2 -{- d3 q- e4)' (3.27) 

-Cv g = d v  ~= Tel+e2r~. 

This abelian group contains the translations generat- 
ed by T (e1+~2) and T (e~+...+e4) as invariant sub- 
group Y. The factor group ~ / Y  is isomorphic to 
the reducing group ~ in the continuum. The reduc- 
ing group on the lattice ~ forms the basis for the 
reduction of the Dirac-K~ihler equation to Dirac 
equations. However, because the flavour transfor- 
mations are intertwined with the translations, this 
reduction is more involved on the lattice. 

We start the further reduction of the DKE with 
a short remark on the representation theory of the 
group 7 .  Since ~ is abelian, its irreducible repre- 
sentations are one-dimensional and can be expressed 
by exponentials: 

~--~ +- e ip~/z, gF--, -}- e I&234/2 . (3.28) 

These irreducible representations are characterized 
by [b, //12, //1234], i.e. the "momenta"  //12, //2234, 
-~z<//12, //2234<rc, and the 4 different sign com- 
binations of r and d: ( -  - ) ,  (+  - ) ,  ( -  +), (+  +)  for 
b = 1, 2, 3, 4, respectively. Since in physical momenta 
exp(i//12/2)= exp(i(Pl +P2) a/2) and exp(i//1234/2 ) 
=exp(i(Pl q-P2 + P 3  + P 4 )  a/2), one sees that in the 
formal continuum limit ~ and d approach the repre- 
sentation of the reducing group on the Dirac com- 
ponents O(b) in the continuum, (2.34, 39). 

The symmetry group ~ allows the decompo- 
sition of the lattice DKE. However, in contrast to 
the continuum case, the intertwining of ~ with the 
translations requires the transition to the momen- 
tum space. Following the usual group theoretical 
procedure, we make for cp(x, H) the ansatz 

i//e 
cp(x, H) = e - 2 "Trace(7*u ~(//)) e-ip~. (3:29) 
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0(fl) denotes a matrix of Dirac components like that 
in (2.27). Now, the equations (3.8, 9) allow the straight- 
forward calculation 

((S- ~ ~)(~, ~/) 

- i ~ e H \ { #  } 
= Y'. p{,}.H\{,}e Trace((Tm{u})t0(fl)) A + e -i#x 

~eH 

iPe 
+ F, &~,~e- ~ ~u~"~Trace((7,~J~(/~)) A; e -~ 
#eWH 

i B 
= e -  -s ~ ( - 2 i s i n ~ )  7.0(fl)) e -'~x. 

(3.30) 

We used the formulas 

A~ e-iax= - 2 i e  -ia./z s in@ e -iax, 

A;  e- ~P~ = - 2 i e  ip"/ 2 s in@ e -~a~, (3.30') 

t t t , (7~/<.~) =(TR) 7.&.~,~/ 

(TR\~.~)* =(7.)* * ,_  7.P{.},m{~,}, 7u-- 7u 

and the definition (A.17) of the Appendix for A i . 
The completeness relations of the Fourier trans- 
forms and of (2.22, 23) allow to conclude from (3.30) 
that the Dirac components o(b)(fl) of solutions of the 
DKE:  ( A -  V+m)~ = 0  satisfy the Dirac equation in 
momentum space 

( ~  ( -  2isin ~ )  Tu + m) t~,(b)(fi)=O. (3.31) 

This result is very similar to that of the continuum 
case, (2.27). It is also possible to characterize the 
different columns ~,(b)(fl) in the matrix of Dirac com- 
ponents by the symmetry properties with respect to 
the reduction group ~.  A direct calculation, similar 
to that of (3.30), leads from the definition (3.26) of 
and g to 

- f le  
('~" ~)(x, H ) =  e/~e12 e -*y ~r Trace((7~/)t 0(fl)i712) e-lP,, 

i f l  e i fl e 
1234  - -  ~ ~ .? . . . .  e_iP x (g. ~b) (x, H ) =  e e Trace((Tn) qltp) 7 s) . 

(3.32) 

The sign combinations (b), which characterize the 
different representation of ~ according to (3.28), are 
produced by right multiplication of O(fl) with the 
diagonal matrices i7 ~z, 75. 

There is an important difference to the con- 
tinuum case. The lattice subsidiary conditions anal- 
ogous to (Z36, 38), are in momentum space: 

~" 0(fl)= sign(12) e ~ / 2  0(fi), (3.33) 
g. O(fi) = sign(1234) e ia .... /2 ~l(fi). 

They cannot be expressed by local relations between 
lattice fields. This is a consequence of the factors 
exp(if112/2), exp(if11234/2), which describe in coor- 
dinate space a translation by half a lattice link. 

Thus we have given a complete analysis of the 
DKE on the lattice, which leads to similar results as 
in the continuum. However, the fact that the sub- 
sidiary conditions which reduce the DKE  to the 
Dirac equation hold only for fields extrapolated 
from the lattice points, will make the description of 
interacting Dirac fields by Dirac-K~ihler fields on 
the lattice much more involved. 

3.3 In the following, we shall clarify the relation 
between the DKE and the naive Dirac equation on 
the lattice. Our result will be that the Susskind re- 
duction of the naive Dirac equation is equivalent to 
the Dirac-Kiihler equation. The naive lattice approxi- 
mation of the Dirac equation consists in the sub- 
stitution of the partial differential operator by the 
symmetric difference operator 

(7" Au + m) O(Y) = 0, (3.34) 

(3,  0)(y) ---(A 2 + A 2) 0(Y) = 2~ (0(Y + e,) - r - e,)). 

There is an algebra of symmetry transformations 
{~H} [30], (the "spectrum doubling group") which 
commutes with the Dirac operator 7u3u and causes 
a 16-fold degeneracy in the energy-momentum spec- 
trum compared to the continuum. ~ n  is defined as 

( ~ H  0) (Y) = ei' ~ ~ M Ho(y)- (3.35) 

Here M r denotes 

MU=i757 u, MH=MUl. . .M uh, #i~H (3.36) 

and 

( n a ) u = ~ / a  for # sH ,  (3.37) 
(0 otherwise. 

It is easy to check, that M" and MU satisfy the 
defining anticommutation relations of the Clifford 
algebra of 7-matrices. Because of the factor 
exp(iYrCH) in (3.35), the symmetry transformation shifts 
the momentum in the solution by rc~/a and pro- 
duces in this way the energy momentum degeneracy. 

In order to prove 

( M 7 " 3 , -  7" 3 ,M)  ~,(y) = 0, (3.38) 

we first state a remarkable symmetry between the 
Clifford algebras {7 H} and {Mr}: 

MU=i757 ", M5=75,  7 ,=  - i M 5 M  ", 

(M r)-  1 7KM • = e i . . . .  7K, (TK)- 1M n 7 K = e i . . . .  M r. 

(3.39) 
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This means that the m n act on the 7's as a group of 
equivalence transformations isomorphic t o  (7L2)4. 
The formulas are proved by iterated application of 

(M ~) - 17 ~ M"  = e ie~xu yv 7.Ct s = 7C{U}. 

Further we have 

A u eirn~r Ill(y) = e i . . . .  eiy~*A , t~ (y). (3.40) 

Combining this with the relations (3.39) yields im- 
mediately (3.38). 

Our aim is to decompose the naive Dirac equa- 
tion by use of the symmetry transformations {/~rH}. 
These transformations do not commute with general 
lattice translations but only with those by a multiple 
of two lattice constants. This suggests considering 
the lattice of blocks with points x: 

y = x + e  n, x = 2 a ( n  1 , . . . ,  n4), (3.41) 

H and e H defined as usual. In this block notation we 
get: 

~(y)=t~(x,  H), eiy~"O(y)=ei . . . .  q(x, H), (3.42) 

(A.O) (~, H) = [(A; ~,) (~, H\{#}) 
((A~- 0)(x, Hw{#}) 

if # e H ,  
(3.42') 

if # ~ H .  

On the four components of O(x, H), (x, H) fixed, the 
Clifford algebra 2~ K is represented by 4 x 4 matrices. 
This representation differs by an H-dependent sign 
factor exp(ieHzCK) from the representation of the M g. 
Because all irreducible representations of these Clif- 
ford algebras are equivalent we can remove this by 
an equivalence transformation 

T 
~(x, H}---- /P(x ,  H) = (yH) , ~(X, H). (3.43) 

We use (3.39) in order to show 

(~/H) *_~IK O(x, H ) = e  i . . . .  (TH) * MK O(X, H) = MI~ qo(x, H), 

which means TIVI=MT.. In the basis (p(x, H) the 
spectrum doubling group acts particularly simply: 

j~IK I T > M K .  Since the Dirac operator commutes 

with this group, 7~3~ decomposes in the (p-basis. 
This means: 

equation [32]: The co-chain 

~b = ~ (pi(x, H) d x'H (3.45) 
x, H 

satisfies the lattice Dirac-K~ihler equation iff 
Oa(x,H) according to (3.42), is a solution of the 
naive Dirac equation. It is 

T~;UAu ~ =(A~- P) T 0. (3.46) 

In order to prove this, we have to perform the 
following calculation: 

(x, H) 

= (r H \ M )  
tteH 

+ ~, (yH)*y~'Aut~(x, Hw{p})  (3.42') 
#E~'H 

= Z P(u},H\{u} A+ (p(X, H\{#}) 
,ueH 

+ ~, p{u},uA;q)(x, H w { # } )  (3.30') 
~ueCgH 

r n). (3.8) 

Because of this equivalence we also may say that the 
Dirac-K~ihler equation is the formal continuum limit 
for the Susskind formulation of Dirac fields on the 
lattice. 

3.4. Although the DKE on the lattice is equivalent 
to the Susskind formulation of lattice fermions, we 
have the strong opinion, that the description in the 
framework of K/ihler's formalism is the superior one. 
It is geometrically more intuitive. The close cor- 
respondence to the continuum makes many of the 
lattice definitions and manipulations more trans- 
parent. This is illustrated by the definition of cur- 
rents and by the derivation of their conservation laws. 
For this we define scalar products analogously to 
the continuum, (2.51), using the lattice correspon- 
dences, (3.10), (A.35, 42): 

= F,(P*, pz)0, 
P 

(3.47) 

@a(X ' H H) = ])ai ql i( x '  H), 
i=1,  2, 3, 4, 
i fixed (3.44) 

is invariant under the application of 7uAu. Equation 
(3.44) is called the Susskind reduction of the naive 
Dirac equation [31]. 

Now we can formulate our main result relating 
the naive lattice Dirac equation to the Dirac-K~ihler 

We get for elementary cochains 

(d  x ' n ,  dY' K)o =(~H'K ox'Y dX'(1234} (3.48) 

and therefore in general 

(~,~)o = ~, (P(x,H)~(x,H)dX'{1234}=(~,Cb)o . (3.49) 
x,H 
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The first derived scalar product is defined as 

((7~, ~"~)1 : = eu-I (T_udU v ~, ~)o 

P 

(3.50) 

A direct calculation using the product rule, (A.37), 
leads to 

(Ave, Z)o-(~, r = S(y~'~/,  *' + ~ ) ,  (3.51) 
P 

P 

From (3.50, 51) the lattice correspondence (A.81) of 
the Green's formula (2.50) follows" 

((zl- ~ as, S)o + (~, (A~- ~ ~)o = A~(~b, 8)~. (3.52) 

By the same reasoning as in (2.54) ff. we can define 
conserved currents in the form of 1-cochains 

j =  Or-~(~, ~b')~. (3.53) 

From solutions of the DKE and its adjoint 

(A~- V+ m) ~' = 0 and (A ~ -  V- m) ~ = 0 (3.54) 

current conservation follows 

VJ= - r  i A~Crgr-i( ~, ~')i =0.  (3.55) 

Examples of such conserved currents are the lattice 
correspondences of (2:56): 

Dirac current: j=�88 t, (3.56) 

�9 _ _ 1  1 - -  flavour current: j - z ~  ( ~ , ~ v  Ch, (3.57) 

chiral current: j= �88162  l(~, e v ~b)l. (3.58) 
(for m = 0) 

3.5. Finally we want to make some first remarks on 
the problem of the minimal coupling of a DK field to 
a gauge field. As in the case of the continuum, the 
first steps look straightforward within the well- 
known scheme of lattice gauge theories. We assume 
that the coefficients of the cochains ~o(x,H) allow 
the transformations of a symmetry group G={g}. 
Then we can define the local gauge transformations 
of qo(x, H) and of the lattice gauge field U(x, e,): 

~o(x, H)~g(x) ~(x, H), 
V(x, eu)~--,g(x + eu) V(x, e~) g(x)- i 

(3.59) 

Geometrically, U(x, e,) describes the parallel trans- 
port of the local symmetry transformation along the 
link (x, #). Hence, we define the positive and nega- 
tive covariant lattice derivatives D + and D2 as the 

gauge covariant generalizations of 8 +, (3.9'): 

(D 2 (o) (x, H ) : =  U(x, eu)-x (o(x + eu, H) - (o(x, H), 

(D~- cp) (x, H): = cp(x, H) - U (x - e u, e u) (p(x - e u, H). 
(3.60) 

This allows us to define the covariant dual boundary 
and dual coboundary operator 

AA(b: = ~ ( ~ p{u},m{u}(D~ (p)(x, H\{#})) d x'n, (3.61) 
x ,  H # e l l  

~Aq~:= - ~ ( ~ P{~,},n(D~(p)(x, Hu{#}))  d:''n. 
x ,H  #e~fH 

The gauge invariant DK equation on the lattice 
becomes 

(A A -  V A +m) ~ = 0 .  (3.62) 

This equation is related to an action which is similar 
to (2.71): 

S =�88 (A~ a - VA+m)~)o (V). (3.63) 

The volume V is represented by the constant 4- 
chain 

V= ~ (x, (1234)). (3.64) 
x 

This action is the starting point for the calculation 
of the euclidean Green's functions by the path in- 
tegral formula, As only one illustration of the spe- 
cial feature of the quantized DK field on the lattice 
we give its free propagator: 

(,p(x, H) O(Y, K)> 

=4(~ ,  E H ; # ; K ] A ;  + ~ [ H ; g ; K ] A ;  
ge K #e(s K 

-ma ",K) As(x-y) 
with 

+ # ,  (A u A - m 2 ) A s ( x - y )  = -ax,  r, 

As(x)=(2n)-r ~, d4fle-iax (~  (2s in~)Z+mZ ) - i  

and A, +, [ H ; # ; K ]  according to (A.17), (2.76), re- 
spectively. The calculation is completely analogous 
to that of the continuum, (2.74-76). The propagator 
does not suffer from a spectrum degeneracy. 

These simple-minded remarks don't even touch 
the most fundamental problems of interacting DK 
fields on the lattice. We mention some questions 
which should be pursued: 

a) In the continuum we discussed a large variety 
of interacting DK fields: real or complex fields 
coupled to abelian or non-abelian external or 
flavour-type gauge groups. Our first attempts to 
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translate these models to the lattice showed that it is 
difficult to treat them in the same way. The 
geometrical interpretation of the differently interact- 
ing fields must be considered separately. In this sen- 
se, (3.59-63) describe only the simplest case of the 
coupling of an external gauge field to a complex DK 
field. 

b) The currents defined in (3.56-58) show nearest- 
neighbour point splitting. For interacting DK fields they 
must be formulated gauge invariant. It is an 
important question to answer whether these fields 
lead to the correct anomalies [33] like for example 
the point-split current of the Susskind field of Sha- 
ratchandra, Thun and Weisz [31]. 

c) The reduction of the DKE to a simple Dirac 
equation can be performed for free fields with help 
of the reduction group or subsidiary conditions. On 
the lattice, the reduction group ~, (3.26)ff., gets in- 
tertwined with the translation group; the subsidiary 
conditions, (3.33), are non-local. This fact makes it 
difficult to find a gauge invariant flavour separation. 
Therefore, the problem of the description of a simple 
interacting Dirac field on the lattice is still open 

d) As an approach to this problem one can con- 
sider in the continuum a model where only one 
flavour is coupled to a U(1)-flavour gauge field. The 
other Dirac components are free. The coupling of a 
real DK field to the flavour charge dx12v�89 
similar to (2.69) is such an example. The lattice 
version of this model might be considered as the 
lattice approximation to a simple interacting Dirac 
field. It will be accompanied by auxiliary Dirac 
fields which decouple in the continuum limit. The 
complete exposition of this model still requires the 
solution of the problem of flavour gauging men- 
tioned in point a). 

4. Conclusions 

It was the aim of this paper to discuss the problem 
of the lattice approximation of Dirac fields from a 
geometric point of view. For this, we used an exten- 
ded correspondence between the calculus of differen- 
tial forms and lattice concepts known from algebraic 
topology. A suitable basis was given by Kiihler's 
formulation of a generalized Dirac equation. After 
having discussed the open problems of interacting 
Dirac fields on the lattice at the end of the last 
sections, we want to conclude with a summary of 
the results of our approach: 

a) The lattice approximation of the Dirac-K~ihler 
equation is straightforward. There is no spectrum 
degeneracy problem caused by the lattice approxi- 
mation. 

b) We describe explicitly the decomposition of 
real or complex Dirac-K~ihler forms into simple Di- 
rac fields, The application of the corresponding 
methods to the lattice leads to a decomposition of 
the Dirac-K~ihler equation into Dirac equations in 
momentum space. 

c) The decomposition of Dirac-K~ihler forms 
into Dirac fields sheds some new light on the geo- 
metric meaning of spinor fields as coherent super- 
positions of differential forms. 

d) We gave a coordinate-free description of the 
Susskind reduction of the naive lattice Dirac equa- 
tion and established their equivalence with the lat- 
tice Dirac-K~ihler equation. This implies that we 
found the formal continuum limit for Susskind fer- 
mions. 

e) The construction of conserved currents from 
symmetries was given in the continuum and on the 
lattice in complete analogy. 

t) We considered the quantization of Dirac-K~ih- 
ler fields by the path integral formula. In particular, 
we calculated the DK propagator in the continuum 
and on the lattice. Because of its simple form, we 
expect that perturbation theory for Sussking fer- 
mions becomes more straightforward in the frame- 
work of DK fields. 

g) We gave first hints on gauge interactions of 
Dirac-K~ihler fields in the continuum and on the 
lattice. 

h) The description of matter by Dirac-K~ihler 
fields opens the possibility of new types of models 
which are inspired by geometric intuitions. In this 
spirit one should look for generalizations of gauge 
theories with fermions and supersymmetric theories 
in the continuum and on the lattice. 

At the end we want to state again that we were 
inspired by the special feature of "differential geo- 
metry as a field in which geometry is expressed in 
analysis, algebra and calculations and in which anal- 
ysis and calculations are sometimes understood in 
intuitive steps that could be called geometric" (Kui- 
per [34]). We believe that the relevance of this geo- 
metric viewpoint for physics is revealed by the suc- 
cess of quantized gauge theories and the increasing 
understanding of renormalized field theory as the 
description of the dynamical continuum structure of 
physical spacetime. 
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for the k ind  hosp i t a l i t y  e x t e n d e d  to  h i m  in  a s t i m u l a t i n g  a t m o s -  
phere .  

Appendix 

The Dirac-K~ihler spinor field is a purely geometric 
object. The essential point of our approach to lattice 
fermions is the systematic transcription of this object 
to the lattice. The possibility to do so is illustrated 
best by de Rham's theorem which states the equiva- 
lence of the de Rham cohomology theory (in terms 
of differential forms) with the cubical cohomology 
theory of any smoothly triangulated manifold 
[13,29]. In this Appendix we supplement our dis- 
cussion by a short continuum-lattice glossary. For 
this, we restrict ourselves to the flat, 4 dimensional 
euclidean space-time manifold and to a hypercubic 
lattice. Also, for the reader's convenience we do not 
try to formulate coordinate free, we introduce car- 
tesian coordinates from the very beginning. For ge- 
neralizations we refer to the literature. 

a) Cubes. In the language of algebraic topology 
the hypercubic lattice is a geometric cubical complex 
which defines a triangulation of the space-time ma- 
nifold. The complex consists of p-cubes (x, #a...#p), 
/2~, ..., #p= 1, ..., 4, #a <#2 < ... <#p , p=0,  1, ...,4. 
The 0-cubes x are the lattice points with x" =a.  n u, 
n ~ integer, a the lattice constant. For p > 1, a p-cube 
is the set 

(x,/~ 1-.. #p) 

= {yUly,, = x " ' +  {"' and y~ = x  ~ for v ##~, (A.1) 

{"~ el,  i = 1, ..., p}, 

I the open interval (0, a). We introduce the follow- 
ing 

b) Muhiindex-Notation (see f.i. [35]): we write 
generically H,K, . . .  for the ihdex set {/~l.../~p}, 
~1 ( ] 2 2 < " '  ( ~ p ,  such that x=(x,O), 0 the empty set 
and (x, #l . - -#p)-(x,  H). For any two ordered index 
sets H , K  we define the union H u K ,  the intersec- 
tion H c~K, the difference H \ K ,  the symmetric dif- 
ference HA K : = ( H \ K )  w ( K \ H )  and the comple- 
ment CgH:={1234}\H. These new index sets are 
again taken to be in their natural order. In order to 
account for permutations which are necessary for 
this ordering, we introduce a sign function Pn, K if 
Hc~K=O. Pn,~: is equal to ( -1 )  ", where v is the 
number of pairs (i , j)eH x K with i>j, and for the 
trivial case pr o = + 1. 

c) A chain is an element of the vector space cg of 
formal linear combinations 

C = ~ a(x, H)-(x, H) (A.2) 
x, H 

of cubes, where the coefficients e(x, H) are real or 
complex numbers. ~ is the sum over all ordered 

H 
index subsets of {1, 2, 3, 4}. The chains with c~(x, H) 
=6x'Y6n'~ are called elementary. They can be iden- 
tified with the oriented cubes (y, K). If all coefficients 
~(x, H) in (A.2) are zero except those with cardi- 
nality of H equal to p, the chains are called p-chains. 
They constitute the subspace peg of cg: cg=@pcg. 

p 

d) The boundary operator A and the co-boundary 
operator V are linear operators on W: 

A: Pc~-+P-lC~, g: pcg-+P+ lcg. (A.3) 

For elementary chains they are defined according to 

A(x, H)= ~ P{u~,m~u~E(x + eu, H \ { ~ } ) -  (x, H\{#})], 

u~H (A.4) 

V(x, I-I) = ~ p{.~, ~ [ (x -  % H u {~})- (x,/-/u {~})]. 
#e~H 

(A.5) 

Here, e u is a 'free' vector of length a in ~t-direction 
and ~ =0  if H =r It follows 

#e/-/ 

A2=-AA=O, V2=VV=O. (A.6) 

(Hence, fig, A) is a cubical chain complex F.) 
e) The dual spaces c{ and pc{ of %, and Peg are the 

spaces of cochains and p-cochains, respectively. The 
basis vectors d xm of c{ dual to the basis vectors 
(x, H) of (g are defined by 

dX, l~((x ', , ~ H )) = ~ ,  3t~,. (A.7) 

They are called elementary cochains. The most gen- 
eral cochain ~bEcg is given by 

�9 = ~ (p(x, H) d x'~, (A.S) 
x, H 

(p(x, H) real or complex. If ~ runs only over H with 
n 

cardinality p, ~ P ~  is called homogeneous of degree 
p. For constant (p(x, H)= 1 we introduce 

dn: = ~ d x, u, d" - d {u~ = ~ d ~' {"} (A.9) 
x x 

for the resulting constant cochain. The boundary 
and co-boundary operators can be dualized by the 
Stokes formulas 

(zl~b)(C)=~b(A C) and (Vq~)(C)=q~(VC) (A.10) 

with ~sc~ and CeCg according to (A.8, 2). A~ is the 
dual boundary operator, V is the dual co-boundary 
operator. They are linear operators on c~: 

A~: pc~_~ p + ~c~ ~: e%Y__~ p- * c~. (A.11) 
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In order to express the action of A~ and V on elemen- 
tary cochains, we introduce the linear translation 
operator T~, on eft: 

T~d~'K:=d . . . . .  ~, en'.= ~ e u. (A.12) 
#ell 

For H={#} we write T#=T~{u} and we define the 
difference operators 

8~- : = r u -  1, 82 := 1 - T _ , ,  T_u--= (T,)-~, (A.13) 

such that 

8 2 = TuSff. (1.14) 

With help of (A.10, 4, 5) we calculate: 

A~d='n= E P{.},H O+d:~'nU{ul, (A.15) 
#e~gH 

~d; ,~=_  ~ ,~ ,~-,t~,u\{u} (A.16) F{#}, H\{#} ~# ~ 
# e l l  

and, for a general cochain (A.8): 

Y~= ~ ( Y. p{.},.\{.~(a+ ~o)(x,H\{#}))d ~,', (1.15') 
x ,H  #EH 

V ~ = -  ~ ( ~ p{u}.u(A2cp)(x, Hw{#}))dx'H, (A.16') 
x ,H #eWH 

where 
(Au + ~o) (x, H) :=  q0(x + e,, H) - ~o(x, H), 

(1.17) 
(A~- (p) (x, H) :=  (p(x, H) - (p(x - eu, H). 

It follows from (A.6, 10) that 

((cg, A) is the cubical cochain complex dual to the 
chain complex (g, A).) 

f) The exterior algebra A of differential forms 
eN over the 4dim. flat euclidean space-time ma- 
nifold is generated by the 1-forms 

dxUelA, #=1 ,2 ,3 ,4 .  (A.19) 

The cartesian basis on the space PA of p-forms is 
given by 

dx u~ /x .../x dx u, - dx H, 
(A.20) 

H = {#a, .-., #p}, #1 <-.- <#p. 

Here, we use the multiindex notation introduced 
above. A is the bilinear, alternating, associative and 
distributive exterior (Grassmann) product on A 
=@~A: 

P 

/x :VA x qA---~P+qA, 
(A.21) 

( p d x n '~ K dx H A dNK=~ oI1, if H c~K=O, 
otherwise. 

g) A general differential form can be expanded 
with respect to the basis (A.20) according to 

= ~ (p(x, H) dx H. (A.22) 
H 

A change of coordinates x f (y)  transforms 45 into 

of: = y~ q,;(y, ~ dy/~ 
H 

with 

Of(Y, #1 "~ #p) 

= ~ sign(a) 8yU~...3yU~ . 
~1 , . . . ,  "~p 

Vl<. . .<Vp 

�9 ~o(f(y), Vl... vp), 

@ the symmetric group of p elements, p-forms 
PcPEPA can be integrated over p-chains PC 
= ~ 0c(x, H). (x, H)eP~g: 

X, H 

f v r  • a(x, H) I P~, (1.24) 
PC x, H (x, H) 

especially 

Z(x,m(Y) dY H -  ~ H - 6~, 6 H, (A.25) 
(x', H') 

if )~(x,m is the characteristic function of the elemen- 
tary p-chain (x, H): 

, , ((l/a) v if ye(x, H), (x, H)eVcg, 
z(~, mtY) = ).0 otherwise. 

By comparison of (A.25) and (1.7), we conclude tha t  
the differential form Z.~ re(Y)dY H corresponds to the 
elementary cochain d Z~" on the lattice-triangulation 
of space-time. 

The integration of p-forms over more general p- 
dimensional domains S can be done by mapping the 
standard p-cube (x = 0, H) onto S :f:(x = 0, H) ~ S. S 
is called a singular p-cube. The integral over S is 
then given by 

S p@:= S P~~ (A.26) 
s (0, H) 

where P~bof is the f-transform of P~b according to 
(A.22). This definition with help of the transfor- 
mation of variables can be readily extended to the 
more general cubical singular chains as integration 
domains. 

h) The exterior differential d is a linear operator 
on A: 

d: PA ~ P+ I A (A.27) 
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defined by 

dO:= dx ~ A c~u O, (A.27') 

where 

0, 0 : =  ~,, (O~,cp) (x, H)dx H (A.28) 
H 

for the general differential form (A.22). It follows 
that 

d 2 =dd=O. (A.29) 

With help of (A.21) we calculate 

dO = ~  (Ourp) (x, H) dx u A dx H 
H 

= ~  ~ P{u},.v,(9,g~ dxm~ 
H gec~tt 

= ~  ( ~ p{,}.m{u}(Oucp)(x, H\{#})) dx u. 
H ~eH 

(A.30) 

Comparing (A.30) and (A.15') we conclude that the 
lattice analogue of the exterior differential d is the 
dual boundary operator ~ This can also be seen 
from the Stokes formulas 

dO= ~ 0, (AO) (C) O(A C), (A.31) 
C AC 

which are valid in the continuum and on the lattice, 
respectively. 

i) It is convenient to define the main automor- 
phism sr and the main antiautomorphism .~ on A and 
d: 

sgO:=( -1 )PO if OePA or OePcg. (A.32) 
~) ,:/,: = ( -  1)(~)0 

Some properties of d and ~ are 

~ / 2  = - ,~2  = l ,  , N ' ~  = ~4~/ ,  

d d = - d d ,  d~=-Z~r 
~ d = d d . ~ ,  ~A  = A . d ~ .  

(A.33) 

(A.34) 

k) The exterior product of forms has a lattice 
analogue, which is bilinear and associative on the 
space ~ of cochains : 

r,~ ,s~+e~,y,/~,m,K ~(A.35) 
dX, U AdY,,=jvu, K. ~ if Hc~K=O, 

otherwise, 

(compare (A.21)). The definition is such that the 
product formula 

d(O A E) =(dO) A E -Ji- (~.W~ O) A dE, (A.36) 

which holds for differential forms O, ff in the con- 
tinuum is also valid for cochains O, E on the lattice: 

Y(o A s)  = (A~O) A s + ( d  o) A A~E. 

The formula 

~ ( o  A s ) =  (~r o) / ,  ( d  ~) 

(A.37) 

(A.38) 

holds in the continuum and on the lattice, whereas 
the continuum equation 

~(O A ,.~)=(~E) A (~O) (A.39) 

has no simple lattice analogue. 

Remarks. 1) The exterior product A on the lattice is 
not alternating in the simple form as it is in the 
continuum. On the other band, for constant 1-co- 
chains we have 

d" A d ~ A + d  ~ A d ~ A =0.  (A.40) 

2) In the literature on algebraic topology the 
exterior product is usually called "cup product", in 
notation "vo". We do not adopt this convention in 
order to make the analogy between continuum and 
lattice notions more striking and in order to avoid 
confusions in the notation with respect to the Clif- 
ford product " v ". 

1) The Hod,ge star operator r is a linear opera- 
tor on A and cg: 

r 4-PA, r :PgY~ 4-Pg y (A.41) 

defined by 

~r: = �9 ~ ,  (A.42) 
,dxU: =pm~udx ~n, ,dX'U: =pH,~udX+e~, ~H 

in the continuum and on the lattice, respectively. 
Some properties of this operation are 

4 

r = 1 on A, r = I~ T-u on c~ (A.43) 
#=1 

~ a C = a g C r  / on A or ~ a n d  for space-time (A.44) 
"A'~ =agNCrJ dimension 4, 

From (A.43): 

r -1=r  on A and 
(A.45) 

7 ~ ' - l d x ' H = p ~ u , n ~ d x - e ~ m ~ e n  o n  (t~ 

The dual boundary and the dual co-boundary oper- 
ator on,the lattice are related by 

V= - r - 1 A~Cr. (A.46) 

In the continuum, the analogous relation defines the 
co-differential or generalized divergence (~: 

c~= - Or- ld-~. (A.47) 
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The co-differential 6 and dual co-boundary V are 
corresponding operations. It follows from (A.29) that 

3 2 = 6 3 = 0  

and from (A.47, 46, 44, 34): 

, .d6=-a~,  d ~ = - r  
(A.48) 

m) The dif ferent iat ion with respect  to a differen- 
tial etC_J is a linear operation on A and on c~ de- 
fined by 

e~ A d x n _  [p<m~dxm~, if K c H,  (1.49) 
- [0  otherwise 

and 

{ 0  d ~ ' m K i f K c H '  er~ ~ d ~ , H =  ~,u\I~ (A.50) 
otherwise, 

respectively. For  K = {/,} we write e {u}A ---e"_J. The 
comparison of (1.50) with (1.16) yields 

V= - e ~_J a~- ( A . 5 1 )  

on the lattice; similarly we get 

A= d" A a~- (A.52) 

from (A.15, 13, 35, 9). The corresponding continuum 
formulas are 

3 = - e**_l ~?, (A.53) 

and 

d = d x  ~' A 8 u. (A.27) 

Note the properties 

(e u/)~,d' = - sd(e u / ) ,  
(1.54) 

(e" ~) ~ = ~d ~(e" ~) 

on A and on c~ The product rules for e" A are 

e ~ 2 (dx u /x  d x  K) = (e ~ A dx  H) A d x  ~ 
+ (~r  u) A (e" A d x  K) (A.55) 

in the continuum and 

r  A d~',~)=(e*'_~d:',I~) A Tud,, K 

+ ( r i d  ~, H) A (e u A d y" ~r 
(A.56) 

on the lattice. Successive derivations are antisym- 
metric: 

e U A e ~ A  + e ~ A e U A  = 0  on A and on ~.  (A.57) 

n) The Clif ford product  of differential forms is a 
bilinear, associative and distributive mapping of 

A x A into A defined by 

( b v ~ : =  ~ ( - )  ( sdPG_J . . . eup~b)  
p=>o P !  

A (e u' ~...e"~_A 3). (A.58) 

For the generating 1-forms this yields 

d x  u v ~ = d x ~  A ~ + e*'_.J ~,  
(A.59) 

cb v dx*' = ~ A dx"  - e" _l sd  cI) 

and 

d x  ~ v dx  ~ v + dx  ~ v dx"  v = 26"L (A.60) 

Equation (A.60) is the defining relation for the Clif- 
ford algebra of the metric g"~=b ~ of euclidean 
space-time. 

On the lattice, it is possible to define a Clifford 
product as well. The lattice version of (A.58) is 

"l 
v z = y ,  ( -  1)(2)(~d~ T . e  ~ z ~)  A (e ~ J Z), 

L 
(A.61) 

l the cardinaiity of L, which can be written in the 
form 

(~  L d x, n v d y' K = ( _ 1) 2,( _ 1)x( h -x). PA, KPH\A, H A K\A  (A.62) 
. ( ~ x + e ~ , y .  d X + e A ,  H a K  

for elementary cochains. Here, A = H  m K and 2 and 
h are the cardinalities of A and H, respectively. For 
constant 1-cochains d ~ and arbitrary cochains ~b,& 
(1.62) yields 

d u v 3 = d  ~' A 3 +  e U 2 3 ,  
(A.63) 

eb v d ~' = (b A d u - T_ , e ~ d d (b 

and 

d ~ v d ~ v  +dVvd~v  =25~T~ (A.64) 

as lattice analogues of (A.59) and (A.60). In general, 
the product (A.61) is not associative, however, the 
relation 

(d u v 4)) v d K = d ~ v (~ v d K) (A.65) 

which holds for an arbitrary cochain ~ and the 
constant cochains d ",d K is enough to discuss the 
global flavour symmetry of the Dirac-K~ihler equa- 
tion. The Or-operation is a special Clifford product: 

r �9 = ,/) v ~ (A.66) 

where e = d x i A . . . A d x  r in the continuum and 
g = 2 d  x'{1234} on the lattice. Also, the automorphism 

x 
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~'  can be written with help of the Clifford product: 

~/~b =(g v 4) v ~ =e v (~b v e) (A.67) 

on A and on c{ This relation follows from 

e v ~b = (a t ~ )  v ~  (A.68) 

and 

e v e = l  (A.69) 

in the continuum and the corresponding equations 

~ v ~b= (~Ot T,) ((s~C O) v e ) (1.70) 

a n d  

on the lattice. The equations (A.38, 39) for the ex- 
terior product are valid also for the Clifford product. 

~r v E) = (ag@) v (seE) (A.72) 

holds in the continuum and on the lattice, whereas 
the continuum equation 

N(q~ v E)= (~'E) v (N~) (A.73) 

has no simple lattice analogue. The Dirac-Kiihler 
v 

operator d - 6  and its lattice version A - V  can be 
written with help of the Clifford product, too. For 
this, we use (A.27, 53, 59) and (1.51, 52, 63), re- 
spectively. The result is 

d-cS=dxUvO u on A, (A.74) 

A~- V=d~ v 0s - on cCv. (A.75) 

The differentials dx u and the cochains d" satisfy the 
Clifford relations (A.60) and (A.64), respectively. 

o) The scalar product between two differential 
forms or cochains q~, E is given by 

(~}, '.~)o: = Z  (Np~) A "~ivE =(E, ~)o, (A.76) 
iv 

where P~b is the part of �9 which is homogeneous of 
degree p. The first derived scalar product is defined 
according to 

(~, S)~:= e u _J (dx" v ~b, E)o (A.77) 

=y~  ( ~ o ) / ,  r ~- ~ + ( ~ s )  A -s iv + ~O~A 
P 

in the continuum and 

(45, E), : = eu l (T_ud" v #, E)0 (A.78) 

iv 

on the lattice. Higher derived scalar products are 
necessary for the discussion of higher tensor cur- 
rents. These are, however, not considered in this 
paper. From the identities 

(d~, E)o-(45 , 6E)o = d(~(~P~b) A " ~  P +  1 E ) ,  (1.79) 
P 

(a #,  S ) o -  (~, dS)o = - d(Y, (~ive) A Oiv +*e) ,  
iv 

which hold also on the lattice, if we substitute d--+ A~ 
and a--* V we derive the Green's formulas 

A (A.S0) 

and 

((A- ~ ~ , S ) o + ( ~ , ( A -  F)S)0=A]~, -  % on ~. 
(A.81) 

They are the starting point for the discussion of 
conserved currents. 
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