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The condition of confinement of quarks and gluons in QCD is derived. It is shown that color confinement is realized 
when there exist massless scalar color-octet bound states of two Faddeev-Popov ghosts. 

The problem of confinement of quarks and gluons 
occupies a central position in quantum chromodynam- 
ics (QCD). In the lattice gauge theory the condition 
for quark confinement is given by the area law for the 
Wilson loop [1]. In the present paper we look for the 
corresponding condition within the framework of the 
conventional field theory. This condition is expressed 
in terms of certain properties of the Faddeev-Popov 
ghost as we shall see in what follows. The lagrangian 
density in QCD is given in the Pauli metric by 

J2= 1 .F~v +A u + - g F . v  • 3 ,B  ½aB " B 

+ i ~ e "  Due - f f ( r~D~ + m ) • ,  (1) 

where covariant derivatives D u are defined by 

Duc=Duc+gA u X c ,  D u~k =(0 u - i g T ' A u ) ~  , 
(2) 

and use has been made of the abbreviations, S • T 
= SaT a and (S X T) a =fabcSbT c. 

Next we introduce the BRS transformation of 
fields [2]. 

6A~ = D~c, 6B = O , 

6c = -½gc X c, 6~ = iB, 

6 ~ = ig(c .  T ) ~ .  (3) 

In terms of the generator QB they can be expressed as 

60 = i[QB, O] _+ 

where we choose the - ( + )  sign when O involves an 
even (odd) number of  the hermitian ghost fields c and 

~. Kugo and Ojima [3] have also introduced another 
charge Qe satisfying 

i[Qc, c(x)] = c(x), i[Qc,~(x)] = - o ( x ) .  (4) 

It commutes with all other fields, and it defines the 
ghost number, namely (+1) for c and ( -1 )  for ~. These 
charges are known to satisfy the relations. 

i [ac ,  aB] =QB, 02  = 0 "  (5) 

The second relation is equivalent to 62 = 0, so that the 
BRS transformation is nilpotent. 

We can also define the BRS transformation for 
asymptotic fields. Due to infrared singularities in QCD 
their presence is doubtful, nevertheless we shall simply 
assume that they exist in this paper. Then the BRS 
transformation for the asymptotic fields is linear. 
When 6a(x) = b(x) :~ O, {a(x), b(x)} is called a BRS 
doublet. Notice that 6b(x) = 62a(x) = 0. The asymp- 
totic fields a(x) and b(x) carry the same set of  quan- 
tum numbers but for the ghost number. When 6a(x) 
= 0 but its parent f(x) ,  defined by 6f(x) = a(x), does 
not exist, a(x) is called a BRS singlet. 

In what follows we shall assume the naive asymp- 
totic completeness and introduce the state vector space 
c19 for QCD. By applying only singlet operators to the 
vacuum state 10), a subspace of qY, denoted by C)YS, 
is generated. When 1o~), I/3)eC)Ys, the unitarity of the 
S matrix is expressed as 

</31a> = (/~lS+Sl~> = (BIS+e(C~s)Sl~>, (6) 

and similarly for SS +. This relation is a consequence 
of the Kugo-Ojima theorem [3]. P(qYS) stands for 
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the projection operator to the subspace c)3 S, so that 
no doublets appear in the intermediate states. In this 
sense, doublets in QCD are analogous to longitudinal 
and scalar photons in QED, and doublets are confined 
consequently. This defines confinement in the present 
paper. Interpreting that singlets represent hadrons, 
the problem of color confinement reduces to that of 
demonstrating that both quarks and gluons are BRS 
doublets. 

We shall further assume that the BRS invariance is 
exact, so that QB 10) = 0 and utilize the BRS identity, 

1016 T(...)10) = 0 .  (7) 

We shall abbreviate (01T(...)[0) as (...) below. Then by 
making use of the BRS identities we find the follow- 
ing Ward-Takahashi (W-T) identities * 1 

Ox((Da?.)a(x), 8 ~0 (y), ~(z)} 

+ Oa((Dxe)a(x) ,  if(y), 8~(z)) 

= igT a [84(x - y )  - 84(x  - z)] SF(Y - z ) ,  (8) 

a2v((D~,e)a(x), b c 8 A u ( y ) , A v ( z ) )  

+ Ox( (D~e)a(x ) ,Ab(y) ,  6AC(z)) 

= igMabe[84(x  - y )  -- 84(x - z)]DFuv(y  - z ) ,  
(9) 

where Mabc = ifbac; and S F and D F denote propaga- 
tors of the quark and gluon fields, respectively. Then 
we write 

(Wxe)a(x), 8 ~(y), ~(z)~ 

f d4z ' ga~,(vz'  " x ) S v ( z '  - z ) ,  

<(Dae)~(x), ~ f y ) ,  8~(z ) }  

= f d 4 y ' g S v O ,  - y ' ) ~ , C v ' z  : x ) .  (10) 

The Fourier4ransform of eq. (8) can be expressed as 

( P "  q)x"  G~(p, q )SF(q  ) + SF(p)(p -- q)k " G ~ o , q )  

= iT a [SF(P) -- SF(q) ] . (11) 

In this equation we can replace G~ and G~ by their 
spin 0 projection defined by 

G~(p ,q )  (0) = [(P - q)x (P - q)u/(P - q)2]G~ (p ,q )  • 
(12) 

q=l A similar relationship has been derived by Hata in a dif- 
ferent context [4]. 

In order to simplify our argument we shall choose the 
Landau gauge (a = 0) in what follows. In this gauge 
we have OxDxO = 0, and possible poles in G a due to 
massless vector particles will disappear in the projec- 
tion. A pole due to massless scalar particles is still 
present as is clear from the W-T identity 

( (Dxe)a(x) ,  cb(v))  = -- iSabaxDF(X -- y )  , (13) 

where D F denotes the free massless propagator. Then 
this equation shows that DxO generates a massless sca- 
lar particle as 

Dx~ -+ ~aP, c -+ P .  (14) 

We then replace Dx~ by Dx~ - ~xP and write F for G 
in eq. (10). The functions F~(p, q)(0) and P~(p, q)(0) 
so defined are free of the poles at (p - q)2 = 0 except 
for the projection operator in eq. (12). 

According to Nakanishi's theorem [5] the asymp- 
totic field P carrying the ghost numer ( -1 )  cannot be 
a BRS singlet, but it must be a member of a BRS dou- 
blet. Confinement is realized when P is the second 
generation of the doublet expressible as 

8d(x)  = P(x) .  (15) 

Then the BRS identity leads to 

<aaP(x), 8 ~(y), ~(z)~ + <a~P(x), ~(y), 8 ~(z)> = 0 ,  
(16) 

and by subtracting eq. (16) from eq, (8) we Fred 

(P - q)x" F~(p,q)(O)SF(q)  + SF(P) (P " q ) x "  ff~(p,q)(0) 

= iT  a [SF(P ) -- SF(q)] . (17) 

We then put p - q = eP with p2 =~ 0, and apply the 
limiting procedure lime__, 0 0/0e to eq. (17). Since the 
individual terms on the lhs of eq. (17) are of the order 
of e because of the absence of poles at (p - q)2 = 0, 
we obtain 

Px" F~(p, p:  P)(0)SF(P) + SF(P)P x • ~ ( / ) ,  p :/9) 

= i T a p x  • (b /Opx)SF(P) .  (18) 

F x and F~. gain a possible dependence on the direc- 
tion of P through the factor PxPu/P2 originated from 
the projection operator in eq. (12). Eq. (18) shows 
that F x and/or fix must have a pole corresponding to 
ip7 + m = 0. For the symmetry reason both must have 
this pole implying that both 8 ~k and 8 ~ generate a 
pole at the quark mass. Hence (~in, 8 ~in} represents 
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a BRS doublet, and quarks are confined. A similar ar- 
gument starting from eq. (9) shows that gluons are 
also confined. 

We shall reexpress the condition (15) in a more con- 
venient form by using the BRS identity. 

0 =/= (P(x),  poe)) = (Sd(x), r (y) )  = -(d(x) ,  8 r (y) ) ,  (19) 

This implies tile existence of  8 P. Since P is the asymp- 
totic field of  c and 6c ~ c  X c, there must exist the 
asymptotic field o f  c X c carrying the same set of  
quantum numbers as that o f  c but for the ghost num- 
ber. Quarks and gluons are confined when they form 
bound states with the ghost c as is dear from the ex- 
plicit expressions for 8 ff and 6At, in eq. (3). When 
the ghost c iself forms a bound state with another 
ghost, the ability of forming a bound state with the 
ghost is communicated to other colored particles 
through the BRS identities. 
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was visiting II. Institut fiir Theoretische Physik der 
Universit//t Hamburg. He would like to thank Rudolf  
Haag for his warm hospitality there and also for use- 
ful criticism. He is also indebted to Taichiro Kugo for 
stimulating correspondence which motivated the pre- 
sent work. 
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