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Abstract. We calculate the 0 + and 2 + glueball masses 
at several values of the coupling and verify compatibi- 
lity with the desired renormalisation group behaviour. 
The calculation uses momentum smeared glueball 
wave functions on a large 84 lattice and confirms our 
previous results obtained on smaller lattices. 

Introduction 

Recently, there have been several calculations of 
glueball masses in S U(2) [1,2] and S U(3) [3,4] 
non-abelian gauge theories. The calculations involved 
Monte Carlo simulations [5] of the lattice regulated 
theories [6], and all employed the variational method 
[7] as an important ingredient, although they differed 
in other important technical details. 

For  such a calculation to be relevant to the theory 
in the continuum (infinite momentum cut-off) limit, 
we must certainly require that the glueball size, l~, 
should be (much) greater than the spatial lattice 
spacing, a, and (much) less than half the spatial extent 
of the lattice, �89 (half because of periodic boundary 
conditions): 

a < l G <�89 (1) 

To provide a connection with the parameters of 
perturbation theory, we should also like the lattice 
spacing to be small enough for the coupling to be well 
represented by the usual two-loop perturbative for- 
mula. Fortunately, on the basis of previous work [6, 8] 
in S U(2) lattice gauge theory (which is the theory of 
interest in this paper), we already know that in the 

1 Supported by Bundesministerium ffir Forschung und Tech- 
nologie, Bonn, FRG 

region of fl(= 4/0 2) of interest to us here this will 
always be so. 

Relation (1) is represented pictorially in Fig. 1. The 
lattice spacing is expressed in physical units via the 
two-loop formula 

575 /6x2  \51/121 
a(fl) = - ' -  e-t3~Z]l 1 ) f l / - - f l |  (2) 

Amo~ \ 1 1  / 

as are �89 for L = 4  and L = 8 .  The shaded area 
represents a crude estimate of the glueball size, lG, as 
inferred from our previous work [1]. The overall 
normalisation is unimportant. However, for the rea- 
ders orientation we have expressed the vertical scale 
in "fermi", using a value of 270 MeV for Amo m as would 
be appropriate for a string tension of 400 MeV. 

In our previous SU(2) calculations [1] we worked 
on L = 4 and L = 6 lattices at fl = 2.3. The reason for 
choosing this value of fl is apparent if one considers 
Fig. 1 in the light of (1). It is also apparent that if one 
wishes to calculate glueball masses over a range of fl 
values so as to check that they are independent of fl 
(in physical units), and hence to check that the correct 
continuum renormalisation group behaviour has been 
achieved, a larger lattice needs to be employed. 
Unfortunately, using the techniques of [1-4] ,  the 
computing time for a given statistical error increases 
as L 3, and hence the use of large lattices is prohibitively 
costly. In this paper we calculate glueball masses using 
a modification of the techniques in [1], which enables 
us to work on a large 84 lattice as efficiently as on a 
4 3. 8 lattice. 

In the next section we introduce our notation and 
the method to be used. We then calculate the 0 + and 
2 + glueball masses using only our measurements on 
the 84 lattice, assuming that we are in the continuum 
limit (as we did in our previous work). The results are 

0170-9739/82/0016/0069/$01.60 



70 K. Ishikawa et al: 

distance 
{fermi) 

1.5 

L=8 

1.0 

0.5 / }1~ 

I I I a I I 
0 2.1 2.2 2.- 2s  2.5 2.6 

P 

Fig. 1. The lattice spacing a(fl), the glueball width I~ and half the 
lattice spatial size �89 for L = 4 and L = 8 lattices are plotted 
against fl in physical units (see text) 

consistent with our previous results indicating that 
lattice size effects are smaller than our statistical errors. 
This justifies combining our data on an 8 4 lattice at 
fi = 2.2, 2.3, and 2.4 with our previous data at fl = 2.3. 
This combined data is used to calculate 0 + and 2 + 
glueball masses at the above three values of fi and to 
compare with the desired continuum renormalisation 
group behaviour. We end with some wave function 
estimates. 

Crucial to the usefuttness of such an investigation 
is a reliable error analysis. In an appendix we outline 
our error analysis. 

Method 

Let ~b(t,p) be a colour singlet operator at (Eucli- 
dean) time t wi th  momentum p. Then, using the 
notation F, = (f2lqS(t,p)~b(0,p)l~2) (where If2) is the 
vacuum), we have [1] 

Fo ( Ol~b(0, p)e- u%~(0, p)l f2 ) 

Fo (QI4~(0, p)qS(0, p)10) 

e-E"a[( n[dp(O,P)[f2)l 2 
_ " : ~  (3) 

I(nlq~(0,p)lO)l 2 
n = 0  

< C-- Eoa 

(where E o =< Ej -< . . . )  and 

F2a (~2[c~(O,p)e-n2adp(O,P)[O) 

Fa (OI ~b(0, P)e- Haq5 (0, P) [ O ) 

e-E"2q <nlqS(O,P)[O>[ 2 

= " : ~  (4) 
L e-~"a[(n[qS(O'P)[Q)[2 

n = 0  

..~ e -  Eoa 
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so that 

Eo -- 1 in ra (5) 
- a [  F o 

and (for not too large IPl) 

..~ 1 F2a 
E~ "~ a In ~ - .  .(6) 

In [1] we have measured Fo, F a and F2a with operators 
of zero momentum, p = 0, definite quantum numbers 
JP and zero projection onto the vacuum to give us the 
glueball mass estimates 

1 F a 
m_-< a ln~o (7) 

and 

m ~ 1 In  F 2 a  (8) 
a F a 

The variational part of the calculation consists of 
varying the operators 4) such as to maximise the 
right-hand side of (3) (i.e. to minimise the right-hand 
side of (5), (7)). In the hope that the higher mass 
intermediate states in (3) get sufficiently suppressed by 
this means, the minimum value of the right-hand side 
of (7) can then be used as a first estimate of the glueball 
mass. It is clear however that F2JF a will, for a not 
small (as in the case here), provide a much better 
estimate for m than Fa/F o as higher mass intermediate 
states in (4) are double suppressed by the variational 
method and the exponential. This advantage of using 
F2JF a is to be set against the disadvantage of a much 
larger error-to-signal ratio. The situation improves a 
lot however, if this is supplemented by the variational 
calculation (which maximises the signal) as has success- 
fully been employed in [1, 3]. 

The difficulty in extending this approach to large 
lattices lies in the fact that we have one wave function 
at any given time irrespective of the size of the lattice, 
whereas computing time increases roughly as L 3. 
Hence, the computing time required to achieve a given 
signal-to-error ration also increases as L 3. A solution 
to this problem would be to consider wave functions 
not just with p = 0, but with any p2 ~ m 2 (or p2 < c m  2 

for some c ~ 1 if one is conservative). For  such a low 
momentum we expect the simple dispersion relation 
E 2 ~ m E + p2, and hence we can use (4) to give us 

~ ( l l n F 2 a ~ 2 _ p  2. 
m2 \ a  F . I  (9) 

For  a lattice of spatial extent La, the number of such 
low momentum states, and hence measurements, in- 
creases as L 3, so that one looses nothing in going to 
larger lattices (to the extent that the various measure- 
ments are indeed statistically independent). 

In this paper we employ a slight variation of this 
idea. The basic components of our wave functions will 
be 1 • 1 or 2 • 2 plaquettes (see Fig. 2). To construct 
a p = 0 0 + wave function one would simply sum up 
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F i g .  2 a a n d b .  The basic components  of our wave functions: 
a a 1 x 1 plaquette, b a 2 x 2 plaquette 

[ 

J f J J  
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Fig, 3, A 2 + momen t um smeared wave function formed out of some 
of the planes of a cube (3 links each side) with a corner at site x 

r 

r Ca 

Fig. 4. The distribution of the three wave functions amongst  the 8 
links of a one-dimensional section of the 8 a lattice 

all the elementary plaquettes at a given time [1] ;  the 
wave function is translationally invariant and hence 
has zero momentum.  Our  wave functions will not  be 
translationally invariant but will consist of summing 
up all the plaquettes contained within spatial cubes, 
three lattice spacings on each side. For  2 + wave 
functions we take three parallel planes in such a cube 
and subtract  an or thogonal  set of three parallel planes; 
see Fig. 3. We construct  such cube wave functions 
using separately the two basic operators in Fig. 2, and 
we restrict ourselves to 0 + and 2 + wave functions. At 
each time, in the 84 lattice which we shall use, we can 
construct  27 ( =  33) wave functions. These wave func- 
tions overlap very little as can be seen from the one 
dimensional section shown in Fig. 4. It is clear that  
populat ing an equal time slice of a lattice of spatial 
extent L a  will give us a number  of wave functions 
increasing as L 3, so that  our  comput ing  time does not  
grow with increasing lattice size. 

Since the wave functions are not  translationally 
invariant, they clearly involve some m o m e n t u m  smear- 
ing  However,  we have deliberately chosen rather 
extended wave functions so that this m o m e n t u m  
smearing should be small. We parametrise the effect 
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of this smearing by writing 

E 2 = m 2 _1_ p 2  (10) 

where p2 is some average m o m e n t u m  squared. Since 
the smearing is geometric, we expect that  as we vary 
the lattice spacing, a, 

_ _  52 
p2 = _ (11) 

0 2 7  

where 5 2 is independent ofa.  Hence, our  mass estimate 
would be given by 

m 2 ( 1  l n F 2 ~ 2  52 (12) a 2 '  

where F 2 , / F  . is obtained using our "cube" wave 
functions. 

The above procedure should be reliable as long as 
m 2 ~ 52/a 2. For  the 0 + glueball this will be the case 
for f iG2.4.  For  heavier glueballs such as the 2 + we 
shall always have rr/2>~ 5 2 / a  2, and the cube wave 
functions are effectively zero momentum.  

The m o m e n t u m  smearing parameter  5 2 will be 
estimated from our  data. It will not  be determined 
very precisely, but  it will turn out  that  this does not  
matter. Analytic estimates fall into the same ball-park. 

The measurements taken will be entirely on an 8 4 
lattice. At various stages we shall compare  and 
combine these measurements  with those taken pre- 
viously [-1] o n  43 -8  and 64 lattices. We have taken 
measurements  at four values of fl, i.e. fi = 2.2, 2.3, 2.4 
and 2.5. We shall disregard the fl = 2.5 data  for now 
because, as we shall see, our  techniques are no longer 
reliable at such large ft. Our  old data  [ l J  was taken 
at fl =2.3.  

Glueball  Masses  on the 8 4 Lattice 

We begin with a calculation of the 0 + and 2 + glueball 
masses using solely our  8 4 data. The calculation will 
be in the same spirit as our previous work. That  is to 
say, we assume that if (1) is satisfied we are indeed in 
the cont inuum limit. We see from Fig. 1 that  (1) is 
indeed satisfied for fi = 2.2, 2.3 and 2.4 on an 8 4 lattice. 

We average F z , / F  ~ as obtained for our  two types 
of wave function and present the results in Table 1. 
We apply (2) and express the lattice spacing a(fl) in 
terms of a(fi = 2.3) which we simply call a from now 

T a b l e  1. Measured values of Fza/-Va for momen tum smeared wave 
functions on the 84 lattice 

F2~/F~ 
fl 0 + 2 + 

2.2 0.152+0.015 
2.3 0.183 + 0.009 
2.4 0.230 + 0.025 

0.054 + 0.024 
0.048 + 0.014 
0.123 • 0.031 
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on. Using (2) at our  three values of/1 we obtain for 
the 0 + glueball 

+ 0.4O 
1.66mZa 2 + 62 = 3.55 

- 0 . 3 5 '  

+0 .18  
mZa 2 + 62 = 2.88 _ 0.16' (13) 

+0 .35  
0.605 m2a e + 52 = 2.16 

- 0.29" 

We also calculate F , / F  o for p = 0 wave functions at 
/? = 2.3, and this gives us a lower bound  for 52: 

( m  2 a z + 32) 1/2 - -  ma > ln~ F " / r ~ 1 7 6  ~ =0.44. 
= ( Fa/Fol~uUo J 

(14) 

Taking (13) and (14) together we obtain 

+O.5 
5 z = 1.5 (15) 

- 0 . 3  

and for the 0 + glueball mass 

+0 .11  
rna = 1.15 (16) 

- 0.22" 

Our  previous result [1] on smaller lattices was 

+0 .11  
ma = 1.24 (17) 

- 0 . 1 0 '  

The results agree within errors. 
We now repeat the above procedure for the 2 + 

glueball. Analogously to (13) we have 

+ 3.10 
1.66 m2a 2 + 5 2 = 8.55 

-- 2.00' 

+ 2.21 
m 2 a  2 4- 52 = 9.18 (18) 

- 1.51' 

+ 1.30 
0 . 6 0 5  m 2 a 2 ~- 52 = 4.39 

- 0.89" 

Using the value of 52 in (15) (although it is clear that  
m is insensitive to 52) we obtain for the 2 + glueball mass 

+ 0.07 
rna = 2.46 (19) 

- 0.21 

(the upper  error  is derived from the upper  bound  
provided by F, /F  o at /~ =2 .2 ;  see Table 2). Our  
previous result [13 on smaller lattices was 

+ 0.6O 
ma = 2.21 (20) 

-0 .38"  

The results again agree within errors. 
In Fig. 5 we plot our  new and old mass estimates. 

The vertical scale is in GeV in the same sense that  the 
scale in Fig. 1 was in fermi; more  significant are the 
mass ratios. It is interesting to note that  the ratio of 
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Table 2. Measured  values of FffF o for m o m e n t u m  smeared  wave 
funct ions at  fl = 2.2, 2.3, 2.4 and  p = 0 wave funct ions  at  fl = 2.3 (as 
indicated)  on the 84 lat t ice 

FdFo 

,6 0 + 2 + 
( l x l )  ( 2 x 2 )  ( l x l )  ( 2 x 2 )  

2.2 
0.0857 0.0604 0.0328 0.0288 

_ 0.0014 ___ 0.0021 ___ 0.0009 + 0.0014 

0.0821 0.0732 0.0301 0.0342 
2.3 (cube) 

_ 0.0009 • 0.0011 _ 0.0006 • 0.0007 

0.105 0.122 0.028 0.046 
2.3 (p = 0) 

+ 0.007 + 0.007 _+ 0.005 +_ 0.005 

2.4 
0.0662 0.0662 0.0286 0,0399 

• 0.0023 +_ 0.0023 • 0.0015 _+ 0,0015 

mass 
(GeV) 

3 

1 I 

25 

2 '~ 24" 

1.5 

, i } o .  
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0 I I 
~.3. 8 8 4 

la t t ice  s i z e  

Fig.  5. 0 + and  2 + g luebal l  masses  as measured  on  the 84 la t t ice  
and  on the 43.8 la t t ice  [1] 

0 + to 2 + masses as calculated here is very close to the 
same ratio as calculated in the S U(3) theory [3]. 

The current calculation involved measurements on 
about  9000 lattice configurations in contrast  to the 

30000 configurations in our  previous calculation 
[1]. The relative error bars indicate the efficiency of 
using m o m e n t u m  smeared wave functions, particularly 
so for higher mass glueballs where the momen tum 
smearing is less important.  
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Fig. 6. rjro as a function of lattice size for a variety of zero 
momentum wave functions 

Finite Size Effects 

In our  calculation we also have measured F J F  o for 
p = 0 wave functions at /7 = 2.3. Together  with our  
previous calculations we thus have Fo/Foip =o for 1 x 1 
plaquettes on 44, 43-8, 64 and 84 lattices, and for 2 x 2 
plaquettes we have data  on 43.8 and 84 lattices. It  is 
interesting to search for finite size effects by compar ing  
our various results. In  Fig. 6 we plot Fa/F o Ip =o separa- 
tely for 1 x 1 and 2 x 2 plaquettes, and for 0 + and 2 + 
wave functions. We observe that  the only appreciable 
variat ion with lattice size occurs for the 0 + wave 
function consisting of  2 x 2 plaquettes, and even here 
the change in going from 43. 8 to an 84 lattice is only 
about  20%. In view of our  results of  the previous 
section, this is presumably mainly due to changes in 
wave function overlaps rather than in masses. In any 
case this compar i son  again confirms that  a 43- 8 lattice 
at/7 = 2.3 is adequately large for a mass gap calculation 
at the current  level of statistical accuracy. 

Renormalisation Group Behaviour 

U p  to now we have assumed that  for ]7 ~ 2.2 we are 
indeed in the con t inuum limit, so that  the glueball 
masses are independent  of/7. We shall now analyse 
our  data  to see to what  extent we can substantiate 
this assumption. 

We shall calculate the 0 + and 2 + glueball masses 
as functions of p and verify to what  extent we have 
the desired renormatisat ion group relation 

m(~) = constant ,  /7 > 2.2, (21) 

where we relate/7 and the lattice spacing, a, by (2) (the 
validity of (2) for/7 > 2.2 follows from Wilson loop [53 
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and finite size scaling [8] studies). We shall combine 
our  present data  with our  previously obtained data  
[1]. As we have seen at the level of  mass estimates 
these measurements  are consistent with each other. 

We estimate m(/~) from the relation 

/ F \ 2 
[ m ~ ) a ( / ~ ) ]  2 + 6 2 = | l n "  2 . |  . (22) 

\ to) 
To begin with we must  calculate ~2. Work ing  at/7 = 2.3 
(and dropping  the argument/7 where its value is clear) 
we have from our  old calculation [1] of the 0 + mass 

+ 0.28 
(ma) 2 = 1.53 _ 0.23' (23) 

while our present m o m e n t u m  smeared measurements  
at/7 = 2.3 give us 

+0 .18  
(m~a) 2 + 62 = 2.88 -0.16" (24) 

Froi~ ,(23) and (24) we find 

+ O.29 
62 = 1.35 _ 0.32" (25) 

Using FZa/[' a as in Table 1 and this value of 62 enables 
us to calculate m(fl) for 0 + and 2 + glueballs. We find 
that  the/7 dependence is comparable  for all 62 allowed 
by (25), and so we show in Fig. 7 m(/~) only for the 
most  probable  value, 5 2 =  1.35 (varying 62 shifts the 
overall normalisat ion slightly). 

Within statistical errors we see that  we have the 
desired renormalisat ion group behaviour  for bo th  0 + 
and 2 + glueball masses. For  the 0 + any /7 variation 
is certainly small compared  to the variat ion fn the 
lattice spacing as/7 changes from 2.2 to 2.4 (a factor 
of 3/5). For  the 2 + the errors are larger, but  a change 

mass 
(GeV) 

3 

I i 

0 0 § 

zx 2 + 

0 I I 
2.12 2.3 2.4. 215 

P 
Fig. 7. 0 + and 2 + glueball masses, extracted separately at each fl, 
expressed in physical units 
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of more  than 40~o looks ruled out. We especially note 
that there is no evidence for anomalously  low glueball 
masses at fl = 2.2. This possibility was a serious one 
in view of the specific heat peak [8, 9] located near 
/~ =2.2.  

Wave Functions and M a s s  Corrections 

Our  calculations so far have depended on the assump- 
t ion that, for the wave function we have used, both 
F2~ and F .  are dominated by the lowest glueball 
contr ibut ion (when we expand as in (3)): 

F~ _ ~(/~) e - ~ ; " ~  + a~v a, (26) 
Fo 

F2~ _ ~(fl)e- 2(,,~a~(~)+a?)'/~, (27) 
Fo 

so that  F2o/F,  gives us m as in (12). In  the same spirit, 
having determined m and 62, we can use our  data  on 
F J F  o to  determine the wave function overlaps, e(fl). 
This will enable us to make some estimates of the 
errors in the approximat ion (26) and (27) and 
to indicate how this will affect our  previous mass 
estimates. 

For  the masses and 62 we use our  previous results 
in (15), (16) and (19). Using the F J F  o data  in Table 2, 
we then obtain four e(fl); two each for 0 + and 2 + 
corresponding to the two basic operators in Fig. 2. 
These are plotted in Fig. 8. Errors are shown only for 
the points at fi = 2.2. The errors are comparable  at 
other values of /3  and are mainly systematic in the 
sense of being strongly correlated amongst  differing 
ft. The ~(/3) decrease rapidly with increasing /3 as 
expected: for increasing fl the glueball becomes rapidly 
larger in units of the lattice spacing, and the simplest 
and smallest loops will rapidly come to have little 
overlap with the true glueball wave function. Already 
at/3 = 2.4 we are perhaps optimistic in regarding our 
wave function as "reasonably good". 

Ct 

1 . 0  

0.5 
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O 1.1 
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O l m l  
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A 
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;2 2,  2; ' 2. t~  

P 
Fig. 8. The wave function overlaps, c~(fl), extracted as functions of 
/~ for our various momentum smeared wave functions 
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A similar analysis for the 0 + glueball of  our p = 0 
data  at fl = 2.3 on the 4a.8 lattice yields ~ ~0.41 for 
the t • 1 plaquette and ~ ~ 0.55 for the 2 x 2 plaquette. 

We now wish to estimate the sizes of the terms we 
have dropped in (26) and (27) and hence to calculate 
the corresponding corrections in our  previous mass 
estimates. We begin with the example of  the 2 • 2 
plaquette, p = 0 wave function for the 0 + glueball that  
was taken at fl = 2.3 on a 43.8 lattice in our  previous 
work [1]. We parametrise the corrections to the p = 0 
versions of  (26) and (27) as 

c~e- 2~  = F 2 a  = 0.046, (28) 
Fo 

F~ 
ae  - "a  + (1 - a)e-Cm~ _ = 0.16. (29) 

Fo 

For  the moment  we neglect the much smaller correc- 
tions in (28). We have represented the correction as 
being located at one average mass cm > m. We do  not  
know what c is, but it is clear that c should increase 
with fl (decreasing a) and that  the correction increases 
the smaller is c. Since the 0 + glueball has a next higher 
spin admixture of 4 +, a plausibly conservative choice 
for c might be c = 3. With this choice of c we can solve 
(28) and (29) and we find 

c~ ~ 0.42, ma ~ 1.11 (30) 

in contrast  to our  previous results, without the correc- 
tions, of 

+0 .11  
c~ ~ 0.55, ma = 1.24 _ 0.10' (31) 

The mass is decreased (as it must  be) but  only by about  
10~o, which is almost  covered by the statistical errors. 
The correction term neglected in (28) is only a negli- 
gible 2 ~  or  so. 

We now repeat these calculations for our  results on 
the 84 lattice. At fl = 2.2 using c = 3 leads to negligible 
corrections. At fl = 2.3 the mass is reduced by about  
5 ~  which is within statistical errors, At fl = 2.4 the 
solution becomes sensitive to the choice ofc. However,  
ifc has increased to c ~ 5 we again find very small cor- 
rections. In every case the corrections to F2a/F,  are neg- 
ligible. For /3  = 2.5 the c~ is now so small that  we can- 
not  claim ['2a/Fa t o  give anything more  than a mass 
upper bound.  Moreover,  the mass is now much smaller 
than the momentum smearing, so that  for our  momen-  
tum smeared wave functions the values of Fa and F2, 
are little affected by the actual masses. Fo r  these 
reasons we do not  use our fl = 2.5 data  in this paper. 

We now turn to the 2 + glueball mass. If we use 
(I9) to estimate F2,JF,~]p= o for our  8r lattice, plus 
F j F o  lp =o ~ 0.46 as measured for the 2 • 2 plaquette 
wave function and ct~oose c ~ 2, we find ~ ~ 0.42 and 
ma ~ 2 . 3 5 ,  that  is a reduction in the mass that  is 
well within the statistical errors of our  "naive" mass 
estimate in (19). 
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Conclusions m a s s  

The results of  this paper  provide evidence that  in the (GeV) 
region of  coupling 2 . 2 < / ~ < 2 . 4  the 0 + and 2 + 
glueball masses possess the asymptot ic  freedom re- 
normalisat ion group behaviour  characteristic of the 
con t inuum theory. This supports  our  expectation that  
the glueball masses we have previously calculated [-1] 
at /? =2 .3  are indeed good  approximat ions  to the 2 
masses of the con t inuum theory. 

To be able to vary/~ over a non-trivial range, we 
were forced to work on a large 84 lattice. To reduce 
the comput ing  time on such a large lattice to a 
reasonable level, we modified the straightforward 
approach  of  using zero m o m e n t u m  wave functions. 
Our  technique of using m o m e n t u m  smeared wave 
functions is particularly powerful for higher mass 
states, and has allowed us to obtain a much tighter 
value for the 2 + gluebalt mass than previously. 0 

Compar ing  our  previous results [1] with those 
obtained on the 84 lattice confirms that a 43. 8 lattice 

is already large enough for quite accurate mass gap 
calculations. 

We were also able to estimate how good our  wave 
functions were, and it is apparent  that  calculations for 
/~ >2 .5  will p robably  require harder  work on the 
wave functions in order  to be useful. We estimated 
the corrections to our  mass estimates due to our  
approximat ions  and find that  these will typically be 
0(5%) and hence will be covered by our  statistical 
errors. However,  the lesson is that  any further re- 
duct ion of statistical errors needs to be also accom- 
panied by improvements  in technique (in obvious 
ways) if it is to  be useful. 

We finally point  out that  if we take all our  S U(2) 
data  together we find a mass ratio 

m(2 +) + 0.18 
S U(2): m(0 +) - 2.05 _ 0.22 (32) 

that  is very similar to the corresponding ratio in the 
S U(3) theory [-3]" 

m(2 +) 
SU(3): m(0+ ) = 2.25 _-L- 0.33. (33) 

This supports  speculations that even for 2 or  3 colours 
the theory is already in some sense in the large number  
of colour  limit. 

N o t e  Added 

After complet ing this work we received a paper by 
Berg, Billoire and Rebbi [10] in which the SU(2) 0 + 
glueball mass is estimated by a pure variational 
calculation on a (smaller) 43.16 lattice at various values 
of  ft. There is some evidence for the desired renormali-  
sation group behaviour,  but only for/~ ~ 2.25. This is 
presumably  due to the small spatial extent of their 
lattice as can be inferred from Fig. 1. We show the 
renormalisat ion group dependence of their 0 + glueball 
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Appendix : Error Analysis 

Consider  a wave function ~b (t) with (q5) = O. We wish 
to estimate the correlation functions 

F t = <q~(t)q~(0)) (A.1) 

for t = 0, a, 2a from n independent measurements 
of the product  gb(t)~b(0)from n different field con- 
figurations 

1 " 
r ? ,  = -  ~ 6,(0~,(0). (A.2i 

Fti= 1 

W h a t  is the error  in such an estimate, a(F~)? 
Because F o is a large signal, the error  o n  /P~xp iS 

negligible, so we may assume 

F~ xp = F0. (A.3) 

Furthermore,  as long as F,, Fza ~ F0, which is always 
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mass (final maximised best values) and compare  it to 
ours in Fig. 9. Their errors are not shown but for t = 1 
are presumably small and do not  overlap. The estimate 
of  the 0 + glueball mass of  these authors  is similar to 
ours. The recent paper  by M/itter and Schilling [11] 
also addresses some of these questions but f rom a 
different approach.  

Fig. 9. Comparison of the renormalisation group dependence of 
the 0 + glueball mass of [10] to ours 
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the case in our  work,  we m a y  assume to a good 
approx imat ion  (for the error analysis) that  qS(a) and 
qS(2a) are independent  of  ~b(0). Then 

1 
a(< q5 (a)q~ (0) ) )  =~((yy , )2>1/2 ,  (A.4) 

where y and y '  are independent  r andom variables with 
the distr ibution of ~b(0). One  may  easily show that  in 
this case 

((yy,)Z) = (y2 >2 = F~. (A.5) 

The same a rgument  holds for o-((qS(2a)~b(0)>) 
and so we have 

F a ~exp Fa 1 (A.6) 

to/  =Vo -+,/; ' 

K. Ishikawa et al: Renormalization Group Behaviour of 0 § and 2 + Glueball Masses 

our  measurements  of ma we expect (t ~ 1. O u r  cubed 
wave functions are separa ted  enough that  we expect 
(m "~ 1. An 8 4 lattice is large enough that  subsequent  
sweeps should not be highly correlated, so that  
~ir = 0(1). 

An analysis of  our experimental ly observed errors 
shows that  a choice of  

n(O § = mLtN1r, (A.9) 

n(2+) = m L t N , r ( ~  ) (A.10) 

is appropr ia te .  Our  errors in Table 1 and Table  2 are 
then calculated f rom (A.6), (A.7), (A.9) and (A.10), after 
first having checked that  the measured  errors are 
distr ibuted a round  these theoretically determined 
values. 

( Fzo~ exp r2~ (fo/ro) -1 
to /  

(A.7) 

In (A.7) we neglect the error  f rom F,  ~xp as compared  
pexp to that  on - 2 a .  

Having  obta ined (A.6) and (A.7) we mus t  determine 
n. In  practice we obta in  on each configurat ion of our  

3 L s L t size lattice m separate  measurements  at each 
time. If we have N i t  such configurations we m a y  write 

n = m L t N Ir/(~m ~t ~IT), (A.8) 

where ~r, is a measure  of  the correlat ion amongs t  the 
m wave functions at a given time, (t a measure  of  
the correlat ion between neighbouring times and ~Ir  

between neighbouring configurations. 
Fo r  p = 0 wave functions m = 1 for 0 + and m = 3 

for 2 + . F o r  the cube wave functions on the 84 lattice 
m is increased by a factor of  33 = 27. O n  the basis of 
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