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Abstract. We calculate the 0* and 2% glueball masses
at several values of the coupling and verify compatibi-
lity with the desired renormalisation group behaviour.
The calculation uses momentum smeared glueball
wave functions on a large 8* lattice and confirms our
previous results obtained on smaller lattices.

Introduction

Recently, there have been several calculations of
glueball masses in SUQ) [1,2] and SU(3) [3,4]
non-abelian gauge theories. The calculations involved
Monte Carlo simulations [5] of the lattice regulated
theories [6], and all employed the variational method
[7] as an important ingredient, although they differed
in other important technical details.

For such a calculation to be relevant to the theory
in the continuum (infinite momentum cut-off) limit,
we must certainly require that the glueball size, I,
should be (much) greater than the spatial lattice
spacing, a, and (much) less than half the spatial extent
of the lattice, 3 La, (half because of periodic boundary
conditions):

a<lg<jLa, (1

To provide a connection with the parameters of
perturbation theory, we should also like the lattice
spacing to be small enough for the coupling to be well
represented by the usual two-loop perturbative for-
mula. Fortunately, on the basis of previous work [6, 8]
in SU(2) lattice gauge theory (which is the theory of
interest in this paper), we already know that in the

1 Supported by Bundesministerium fiir Forschung und Tech-
nologie, Bonn, FRG

region of B(=4/g*) of interest to us here this will
always be so.

Relation (1) is represented pictorially in Fig. 1. The
lattice spacing is expressed in physical units via the
two-loop formula
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as are 3La for L=4 and L=8. The shaded area
represents a crude estimate of the glueball size, I;, as
inferred from our previous work [1]. The overall
normalisation is unimportant. However, for the rea-
ders orientation we have expressed the vertical scale
in “fermi”, using a value of 270 MeV for 4,,,,, as would
be appropriate for a string tension of 400 MeV.

In our previous SU(2) calculations [1] we worked
on L=4 and L=6 lattices at  =2.3. The reason for
choosing this value of § is apparent if one considers
Fig. 1 in the light of (1). It is also apparent that if one
wishes to calculate glueball masses over a range of
values so as to check that they are independent of f
(in physical units), and hence to check that the correct
continuum renormalisation group behaviour has been
achieved, a larger lattice needs to be employed.
Unfortunately, using the techniques of [1-4], the
computing time for a given statistical error increases
as I?, and hence the use of large lattices is prohibitively
costly. In this paper we calculate glueball masses using
a modification of the techniques in [1], which enables
us to work on a large 8* lattice as efficiently as on a
43-8 lattice.

In the next section we introduce our notation and
the method to be used. We then calculate the 0% and
27" glueball masses using only our measurements on
the 8* lattice, assuming that we are in the continuum
limit (as we did in our previous work). The results are

mom
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Fig. 1. The lattice spacing a(p), the glueball width /; and half the
lattice spatial size $La for L=4 and L =38 lattices are plotted
against f§ in physical units (see text)

consistent with our previous results indicating that
lattice size effects are smaller than our statistical errors.
This justifies combining our data on an 8* lattice at
B =22,2.3, and 2.4 with our previous data at f =2.3.
This combined data is used to calculate 0" and 27
glueball masses at the above three values of § and to
compare with the desired continuum renormalisation
group behaviour. We end with some wave function
estimates.

Crucial to the usefullness of such an investigation
is a reliable error analysis. In an appendix we outline
our error analysis.

Method

Let ¢(t,p) be a colour singlet operator at (Eucli-
dean) time t with momentum p. Then, using the
notation I', = (Q|¢(t,p)¢0,p)|Q2> (Where |2 is the
vacuum), we have [1]

I, <2160, pe” ™60, p)I2>

r,  <{Q|¢0,po0,p)|2)

S e Bl $(0, )| Q)1
_n=o_ )
S 1<nlg0, 1P
=0

ée—an
(where E, < E, <...) and

Ty, _<Q10.pe” "¢ 0,p)|2>
r, <Q|¢0,pe” "0, p)|2>

Y. =B Cnlg0, mI0) 1

)

so that

1. r,
n— (5)

Ey,=-
°=a| T,

and (for not too large |p|)

1| r
Ey~—|In—-24|.
al I

(6)
a
In [1] we have measured Iy, ', and I',, with operators
of zero momentum, p =0, definite quantum numbers
J? and zero projection onto the vacuum to give us the
glueball mass estimates

1|, T
m=—\n—* ™
a| I,
and
r
A~ |In=2 |,
ma nFa (8)

The variational part of the calculation consists of
varying the operators ¢ such as to maximise the
right-hand side of (3) (i.e. to minimise the right-hand
side of (5), (7)). In the hope that the higher mass
intermediate states in (3) get sufficiently suppressed by
this means, the minimum value of the right-hand side
of (7) can then be used as a first estimate of the glueball
mass. It is clear however that I, /I’ will, for a not
small (as in the case here), provide a much better
estimate for m than I',/I"; as higher mass intermediate
states in (4) are double suppressed by the variational
method and the exponential. This advantage of using
I,,/T,is to be set against the disadvantage of a much
larger error-to-signal ratio. The situation improves a
lot however, if this is supplemented by the variational
calculation (which maximises the signal) as has success-
fully been employed in [1,3].

The difficulty in extending this approach to large
lattices lies in the fact that we have one wave function
at any given time irrespective of the size of the lattice,
whereas computing time increases roughly as L’.
Hence, the computing time required to achieve a given
signal-to-error ration also increases as L*. A solution
to this problem would be to consider wave functions
not just with p = 0, but with any p> < m? (or p*> < cm?
for some ¢ < 1 if one is conservative). For such a low
momentum we expect the simple dispersion relation
E? @ m? + p?, and hence we can use (4) to give us

I 2
m? (% In 2“) -p> ©)

For a lattice of spatial extent La, the number of such
low momentum states, and hence measurements, in-
creases as L3, so that one looses nothing in going to
larger lattices (to the extent that the various measure-
ments are indeed statistically independent).

In this paper we employ a slight variation of this
idea. The basic components of our wave functions will
be 1 x 1 or 2 x 2 plaquettes (see Fig. 2). To construct
ap=0 0" wave function one would simply sum up
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x

{a) (b)

Fig.2a and b. The basic componenis of our wave functions:
aa 1 x 1 plaquette, b a 2 x 2 plaquette

X+ 2ak +
Teak .

fd g2 -

-
X

Fig. 3. A 2* momentum smeared wave function formed out of some
of the planes of a cube (3 links each side) with a corner at site x

Fig. 4. The distribution of the three wave functions amongst the 8
links of a one-dimensional section of the 8* lattice

all the elementary plaquettes at a given time [1]; the
wave function is translationally invariant and hence
has zero momentum. Our wave functions will not be
translationally invariant but will consist of summing
up all the plaquettes contained within spatial cubes,
three lattice spacings on each side. For 27 wave
functions we take three parallel planes in such a cube
and subtract an orthogonal set of three parallel planes;
see Fig. 3. We construct such cube wave functions
using separately the two basic operators in Fig. 2, and
we restrict ourselves to 0* and 2% wave functions. At
each time, in the 8* lattice which we shall use, we can
construct 27 (= 3%) wave functions. These wave func-
tions overlap very little as can be seen from the one
dimensional section shown in Fig. 4. It is clear that
populating an equal time slice of a lattice of spatial
extent La will give us a number of wave funcfions
increasing as L*, so that our computing time does not
grow with increasing lattice size.

Since the wave functions are not translationally
invariant, they clearly involve some momentum smear-
ing. However, we have deliberately chosen rather
extended wave functions so that this momentum
smearing should be small. We parametrise the effect

of this smearing by writing
E*=m’ 4+, (10)

where p? is some average momentum squared. Since
the smearing is geometric, we expect that as we vary
the lattice spacing, a,

— 52

P’ = 2 (11)
where 8% is independent of a. Hence, our mass estimate
would be given by

1, I,,\* &2
m2z<aln%> — (12)

where I', /I, is obtained using our “cube” wave
functions.

The above procedure should be reliable as long as
m* R 6%/a?. For the 0" glueball this will be the case
for B <2.4. For heavier glueballs such as the 2% we
shall always have m?> §%/a®, and the cube wave
functions are effectively zero momentum.

The momentum smearing parameter 3> will be
estimated from our data. It will not be determined
very precisely, but it will turn out that this does not
matter. Analytic estimates fall into the same ball-park.

The measurements taken will be entirely on an 8*
lattice. At various stages we shall compare and
combine these measurements with those taken pre-
viously [1] on 43-8 and 6* lattices. We have taken
measurements at four values of f, ie. f=22,23,2.4
and 2.5. We shall disregard the § =2.5 data for now
because, as we shall see, our techniques are no longer
reliable at such large f. Our old data [1] was taken
at f=23.

a

Glueball Masses on the 8* Lattice

We begin with a calculation of the 0* and 2* glueball
masses using solely our 8* data. The calculation will
be in the same spirit as our previous work. That is to
say, we assume that if (1) is satisfied we are indeed in
the continnum limit. We see from Fig. 1 that (1) is
indeed satisfied for f =2.2,2.3 and 2.4 on an 8* Iattice.

We average I',,/I', as obtained for our two types
of wave function and present the results in Table 1.
We apply (2) and express the lattice spacing a(f) in
terms of a(f = 2.3) which we simply call ¢ from now

Tablg 1. Measured values of I',,/I', for momentum smeared wave
functions on the 8* lattice

Ir,
g 0t 2%
2.2 015240015 0.054 + 0.024
23 0.183+0.009 0.048 + 0.014
24 0230+0025 0.123 + 0.031
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on. Using (2) at our three values of § we obtain for
the 0% glueball

+0.40
1.66m2a? + 52 = 3.55
ma 035’

+0.18
ety s=288 T L (13)

+0.35
—029°

We also calculate I' /T, for p=0 wave functions at
B =2.3, and this gives us a lower bound for §*:

0.605 m*a* + 6* =2.16

(m?a®+ 8%)*? —ma = m{w_ﬁﬂ} =0.44.

Fa/rolcuhe
(14)
Taking (13) and (14) together we obtain
+05
=15
-03 15)
and for the 0% glueball mass
+0.11
=1.15 .
ma o (16)
Our previous result [1] on smaller lattices was
+0.11
=1 .
ma=124 " (17)

The results agree within errors.
We now repeat the above procedure for the 2%
glueball. Analogously to (13) we have

+3.10
166 m2a? + 52 =855 ,
66m”a” + —2.00

+221
m?a® 4 6% =9.18 sy’ 18)

+1.30
605m2a® + 62 =4.39 .
0.605m*a” + 089

Using the value of 6% in (15) (although it is clear that
mis insensitive to 5%) we obtain for the 2* glueball mass

+0.07
=2 19
ma 46 021 (19)
(the upper error is derived from the upper bound
provided by I',/I'y at f=22; see Table2). Our
previous result {1] on smaller lattices was

+0.60
=2 . 20
ma=221 3 0

The results again agree within errors.
In Fig. 5 we plot our new and old mass estimates.
The vertical scale is in GeV in the same sense that the

scale in Fig. 1 was in fermi; more significant are the
mass ratios. It is interesting to note that the ratio of

Table 2. Measured values of I' /T, for momentum smeared wave
functions at $=22,2.3, 2.4 and p =0 wave functions at §=2.3 (as
indicated) on the 8* lattice

I'jr,
B 0 2%
(Ix1 2x2) (Ix1) 2x2)
5> 0.0857 0.0604 0.0328 0.0288
) +0.0014 +0.0021 + 0.0009 +0.0014
0.0821 0.0732 0.0301 0.0342
2.3 (cube)
+0.0009 +0.0011 + 0.0006 +0.0007
0.105 0.122 0.028 0.046
23 (p=0)
+0.007 +0.007 +0.005 +0.005
4 0.0662 0.0662 0.0286 0.0399
' +0.0023 +0.0023 +0.0015 +0.0015
T T
mass
(Gev)
3k J
25 -

05} p

0 1 [
438 8t

lattice size

Fig.5. 0" and 27 glueball masses as measured on the 8* lattice
and on the 4°-8 lattice [1]

0" to 27 masses as calculated here is very close to the
same ratio as calculated in the SU(3) theory {3].

The current calculation involved measurements on
about 9000 lattice configurations in contrast to the
~ 30000 configurations in our previous calculation
[1]. The relative error bars indicate the efficiency of
using momentum smeared wave functions, particularly
so for higher mass glueballs where the momentum
smearing is less important.
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Fig.6. I' /T, as a function of lattice size for a variety of zero
momentum wave functions

Finite Size Effects

In our calculation we also have measured I' /", for
p=0 wave functions at f=2.3. Together with our
previous calculations we thus have I',/I'y|,_, for 1 x 1
plaquettes on 44, 43-8, 6* and 8* lattices, and for 2 x 2
plaquettes we have data on 4°-8 and 8* lattices. It is
interesting to search for finite size effects by comparing
our various results. InFig. 6 we plot I' /T |, -, separa-
tely for 1 x 1 and 2 x 2 plaquettes, and for 0* and 2*
wave functions. We observe that the only appreciable
variation with lattice size occurs for the 0% wave
function consisting of 2 x 2 plaquettes, and even here
the change in going from 4°-8 to an 8* lattice is only
about 209,. In view of our results of the previous
section, this is presumably mainly due to changes in
wave function overlaps rather than in masses. In any
case this comparison again confirms that a 43-8 lattice
at § = 2.31is adequately large for a mass gap calculation
at the current level of statistical accuracy.

Renormalisation Group Behaviour

Up to now we have assumed that for f =22 we are
indeed in the continuum limit, so that the glueball
masses are independent of 5. We shall now analyse
our data to see to what extent we can substantiate
this assumption.

We shall calculate the 0* and 2% glueball masses
as functions of § and verify to what extent we have
the desired renormalisation group relation

m(f) = constant, =22, (21

where we relate § and the lattice spacing, a, by (2) (the
validity of (2) for p = 2.2 follows from Wilson loop [5]

and finite size scaling [8] studies). We shall combine

our present data with our previously obtained data

[1]. As we have seen at the level of mass estimates

these measurements are consistent with each other.
We estimate m(f) fiom the relation

[m(B)a(p)]? + 6> =<ln%> ) (22)

To begin with we must calculate 62, Working at f =2.3
{(and dropping the argument f where its value is clear)
we have from our old calculation [17 of the 0" mass
+0.28
-023

while our present momentum smeared measurements
at f=2.3 give us

(ma)? = 1.53 (23)

2 oo +018
(n@ +8°=288" 7 (24)
Froni (23) and (24) we find
4029
2 _ )
#=135 032 (25)

Using I',,/I", as in Table 1 and this value of 62 enables
us to calculate m(B) for 0 and 2% glueballs. We find
that the § dependence is comparable for all 62 allowed
by (25), and so we show in Fig. 7 m(8) only for the
most probable value, 6> = 1.35 (varying 67 shifts the
overall normalisation slightly).

Within statistical errors we see that we have the
desired renormalisation group behaviour for both 0
and 2% glueball masses. For the 0" any § varation
is certainly small compared to the variation in the
lattice spacing as f changes from 2.2 to 2.4 (a factor
of 3/5). For the 27 the errors are larger, but a change

mass
(GeV) o of
3L A 2% .

0 L 1 I L
2.2 23 2.4 25

g

Fig.7. 0% and 2% glueball masses, extracted separately at each f,
expressed in physical units
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of more than 409, looks ruled out. We especially note
that there is no evidence for anomalously low glueball
masses at § =2.2. This possibility was a serious one
in view of the specific heat peak [8,9] located near
=22

Wave Functions and Mass Corrections

Our calculations so far have depended on the assump-
tion that, for the wave function we have used, both
I,, and I', are dominated by the lowest glueball
contribution (when we expand as in (3)):

{‘ . 202 2y1/2
Lo = affe rp 1, 6)
Y
F 242 n1/2
20 = ()~ 2D, @7
Iy

so that I',/I", gives us m as in (12). In the same spirit,
having determined m and &%, we can use our data on
I'JT, to determine the wave function overlaps, o(f).
This will enable us to make some estimates of the
errors in the approximation (26) and (27) and
to indicate how this will affect our previous mass
estimates.

For the masses and 4% we use our previous results
in (15), (16) and (19). Using the I" /T’ data in Table 2,
we then obtain four o(f); two each for 07 and 27
corresponding to the two basic operators in Fig. 2.
These are plotted in Fig. 8. Errors are shown only for
the points at §=2.2. The errors are comparable at
other values of  and are mainly systematic in the
sense of being strongly correlated amongst differing
B. The «(f) decrease rapidly with increasing f§ as
expected: for increasing ff the glueball becomes rapidly
larger in units of the lattice spacing, and the simplest
and smallest loops will rapidly come to have little
overlap with the true glueball wave function. Already
at B =2.4 we are perhaps optimistic in regarding our
wave function as “reasonably good”.

a T
o* 2
O 1x1 Q 1~
1.0+ A 2%2 a 2:2 ]
? A
0.5f - E
o o]
3 a a
o
g k4 1 1 1 1 1
22 2.3 24 2.2 23 24 B
B B

Fig. 8. The wave function overlaps, «(f), extracted as functions of
B for our various momentum smeared wave functions

A similar analysis for the 0* glueball of our p=0
data at §=2.3 on the 4°-8 lattice yields « =~0.41 for
the 1 x 1 plaguette and a = 0.55 for the 2 x 2 plaguette.

We now wish to estimate the sizes of the terms we
have dropped in (26) and (27) and hence to calculate
the corresponding corrections in our previous mass
estimates. We begin with the example of the 2 x 2
plaquette, p = 0 wave function for the 0" glueball that
was taken at § = 2.3 on a 4*-8 lattice in our previous
work [1]. We parametrise the corrections to the p=10
versions of (26) and (27) as

r
ce” 2 =28 (046, (28)
FO

_ _ r
ce ™+ (1 —a)e ™ =—"=0.16. 29)

FO
For the moment we neglect the much smaller correc-
tions in (28). We have represented the correction as
being located at one average mass cm > m. We do not
know what ¢ is, but it 1s clear that ¢ should increase
with B (decreasing @) and that the correction increases
the smaller is ¢. Since the 0% glueball has a next higher
spin admixture of 4%, a plausibly conservative choice
for ¢ might be ¢ = 3. With this choice of ¢ we can solve

(28) and (29) and we find

ax 042, ma~111 30)

in contrast to our previous results, without the correc-
tions, of

+0.11

~ 0.55 =124 .
* oma=124_ 010

(1)
The mass is decreased (as it must be) but only by about
10%,, which is almost covered by the statistical errors.
The correction term neglected in (28) is only a negli-
gible 29 or so.

We now repeat these calculations for our results on
the 8* lattice. At § = 2.2 using ¢ = 3 leads to negligible
corrections. At § = 2.3 the mass is reduced by about
59, which is within statistical errors. At =24 the
solution becomes sensitive to the choice of c. However,
if ¢ has increased to ¢ & 5 we again find very small cor-
rections. In every case the corrections to I',,/I, are neg-
ligible. For 8= 2.5 the o is now so small that we can-
not claim I',,/I", to give anything more than a mass
upper bound. Moreover, the mass is now much smaller
than the momentum smearing, so that for our momen-
tum smeared wave functions the values of I', and I',,
are little affected by the actual masses. For these
reasons we do not use our f§ = 2.5 data in this paper.

We now turn to the 2% glueball mass. If we use
(19) to estimate I',,/T,l,~o for our 8* lattice, plus
I/lol,—¢ =046 as measured for the 2 x 2 plaquette
wave function and choose ¢ ~ 2, we find « ~ 0.42 and
ma =~ 2.35, that is a reduction in the mass that is
well within the statistical errors of our “naive” mass
estimate in (19).
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Conclusions

The results of this paper provide evidence that in the
region of coupling 22< <24 the 0% and 27
glueball masses possess the asymptotic freedom re-
normalisation group behaviour characteristic of the
continuum theory. This supports our expectation that
the glueball masses we have previously calculated [1]
at f=2.3 are indeed good approximations to the
masses of the continuum theory.

To be able to vary f over a non-trivial range, we
were forced to work on a large 8* lattice. To reduce
the computing time on such a large lattice to a
reasonable level, we modified the straightforward
approach of using zero momentum wave functions.
Our technique of using momentum smeared wave
functions is particularly powerful for higher mass
states, and has allowed us to obtain a much tighter
value for the 2% glueball mass than previously.

Comparing our previous results [1] with those
obtained on the 8* lattice confirms that a 4°-8 lattice
is already large enough for quite accurate mass gap
calculations.

We were also able to estimate how good our wave
functions were, and it is apparent that calculations for
B Z2.5 will probably require harder work on the
wave functions in order to be useful. We estimated
the corrections to our mass estimates due to our
approximations and find that these will typically be
0(5%) and hence will be covered by our statistical
errors. However, the lesson is that any further re-
duction of statistical errors needs to be also accom-
panied by improvements in technique (in obvious
ways) if it is to be useful.

We finally point out that if we take all our SU(2)
data together we find a mass ratio

m2*) +0.18

SU@: 57y =205 _ gy (32)

that is very similar to the corresponding ratio in the
SU(3) theory [3]:

m(2*)
m(0™)
This supports speculations that even for 2 or 3 colours

the theory is already in some sense in the large number
of colour limit.

SU3):

=2.25+033. (33)

Note Added

After completing this work we received a paper by
Berg, Billoire and Rebbi [10] in which the SU(2) 0+
glueball mass is estimated by a pure variational
calculation on a (smaller) 4°-16 lattice at various values
of B. There is some evidence for the desired renormali-
sation group behaviour, but only for 8 <2.25. This is
presumably due to the small spatial extent of their
lattice as can be inferred from Fig. 1. We show the
renormalisation group dependence of their 0% glueball

T T T T T T
mass

(Gev) o* *
x t=1 3
3F Berg et al. on 4716 —
o t=2
A ours on 8%
x
2 3 -

20 21 22 23 24 2.5

B

Fig. 9. Comparison of the renormalisation group dependence of
the 0" glueball mass of [10] to ours

mass (final maximised best values) and compare it to
ours in Fig. 9. Their errors are not shown but fort =1
are presumably small and do not overlap. The estimate
of the 0% glueball mass of these authors is similar to
ours. The recent paper by Miitter and Schilling [11]
also addresses some of these questions but from a
different approach.
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Appendix : Error Analysis

Consider a wave function ¢ (1) with {¢ > = 0. We wish
to estimate the correlation functions

I,=<¢®)e0)> (A1)

for t=0, a, 2a from n independent measurements
of the product ¢(¢)¢p(0) from n different field con-
figurations

12 .
= 2. $:0¢:0). (A2)

What is the error in such an estimate, a(I")?
Because I 1s a large signal, the error on I'S*? is
negligible, so we may assume

Ie?=r,. (A.3)

Furthermore, as long as I",, I',, < I',,, which is always
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the case in our work, we may assume to a good
approximation (for the error analysis) that ¢{a) and
¢(2a) are independent of ¢(0). Then

1
o({9(@)$(0)>) =\7;<(yy')2>”2, (A4)

where y and y’ are independent random variables with
the distribution of ¢(0). One may easily show that in
this case

Ly =< =T} (A5)

The same argument holds for o({¢2a)¢p(0)))
and so we have

r\= I 1

)= — (A6)
(1)

F2a exp_rza (Fa/FO)_l
< T ) -7 +__/H : (A7)

In (A.7) we neglect the error from I'S** as compared
to that on I'$P.

Having obtained (A.6) and (A.7) we must determine
n. In practice we obtain on each configuration of our
L2 L, size lattice m separate measurements at each
time. If we have N, such configurations we may write

n=mLN /(i) (A.8)

where {,, is a measure of the correlation amongst the
m wave functions at a given time, {, a measure of
the correlation between neighbouring times and {;
between neighbouring configurations.

For p=0 wave functions m=1 for 0" and m=3
for 2*. For the cube wave functions on the 8* lattice
m is increased by a factor of 3> =27. On the basis of

our measurements of ma we expect {, & 1. Our cubed
wave functions are separated enough that we expect
(.~ 1. An 8* lattice is large enough that subsequent
sweeps should not be highly correlated, so that
Crr =0(1).

An analysis of our experimentally observed errors
shows that a choice of

n0*)=mL,N g, (A9)

n2*) = mL,N,T<£) (A.10)

2

is appropriate. Our errors in Table 1 and Table 2 are
then calculated from (A.6), (A.7), (A.9) and (A.10), after
first having checked that the measured errors are
distributed around these theoretically determined
values.
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