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Abstract .  In this paper we attempt to find, within the 
framework of perturbative QCD, an improved de- 
scription of the small-x region of deep-inelastic scat- 
tering. Motivated by results on the Pomeron in 
QCD, we investigate diagrams with a system of an 
arbitrary number of gluon lines in the t-channel. 
The gluon lines are allowed to interact pairwise in 
all possible combinations. We find that the leading 
behaviour of these diagrams comes from configu- 
rations where the gluon lines arrange themselves 
into non interacting, non-forward ladders. We then 
analyse couplings between gluon ladders, in particu- 
lar non-planar ones. We compare our results with a 
previous study of Gribov, Levin, and Ryskin. In 
agreement with them we conclude that the sum of 
these diagrams leads to a tempered increase of the 
structure function in the small-x region. 

I. Introduction 

It is well-known that the standard approximation of 
perturbative QCD which nicely describes deep in- 
elastic scattering in the Bjorken limit becomes in- 
appropriate when the scaling variable x tends to 
zero. One might hope that by including more and 
more Feynman diagrams into the analysis, the per- 
turbative description in the small-x region becomes 
better, although the limit x~0,  is expected to re- 
quire non perturbative effects. It is the aim of this 
paper to find an improved description within per- 
turbative QCD. 

A leading logarithmic analysis in the axial gauge 
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[1, 2] shows us that the relevant Feynman diagram 
for the structure function in the small-x case, but x 
not too small, corresponds to a forward gluon lad- 
der, more precisely to the discontinuity of a gluon 
ladder which begins at a valence quark and ends 
with a quark loop, that interacts with the external 
photon. The virtualities of the partons along the 
ladder are strongly ordered when going from the 
valence quarks to the photon. In the limit x--,0 this 
diagram, however, leads to an answer for the struc- 
ture function which violates the Froissart bound. 
This means that the naive single ladder approxima- 
tion is not sufficient, and, therefore, it is mandatory 
to include another type of diagrams which could be 
relevant in the small-x region. The motivation for 
the choice of these diagrams in the hard regime 
comes from the Regge limit [3]. 

We know that at the level of a single ladder, the 
hard regime in the small-x region and the Regge 
limit are intimately connected. By studying the Po- 
meron kernel of the Regge limit in the regime of 
high transverse momenta, Dokshitzer [1] has shown 
that this kernel turns into the small-x kernel in 
Bjorken's regime. 

In the Regge limit it is known [3] that diagrams 
with only two gluon lines in the t-channel violate the 
unitarity bound. In order to improve this behaviour 
we have to take into account diagrams with more 
gluon lines in the t-channel. This fact motivates us 
to study, now in the hard regime, diagrams with n 
gluon lines. Following the Regge limit analysis, we 
allow these gluon lines to interact in pairs, by ex- 
changing gluons, in all possible ways as it is shown 
in Fig. 1. 

The full system of n gluon lines has to be in the 
forward direction in order to contribute to the struc- 
ture function. Any subsystem, however, where two 
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Fig. 1. A system of n gluon lines in the t-channel which can 
interact in pairs in all possible ways 
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Fig. 2. The l ~h cell in a non-forward gluon ladder 

gluon lines interact corresponds to a non-forward 
cell. In a previous paper [4] we have studied the 
properties of non-forward gluon ladders in the hard 
regime for the small-x case. The ith cell of such a 
ladder is shown in Fig. 2. In this paper we want to 
use the properties of the non-forward ladders to 
analyse the more complicated diagrams shown in 
Fig. 1. 

Our analysis will enable us to conclude that in 
the hard regime, the maximum enhancement for 
such a class of Feynman diagrams corresponds to a 
configuration of non interacting non-forward lad- 
ders. Any possible gluon exchange between the lad- 
ders diminishes the enhancement of the amplitude. 
Moreover configurations with an odd number of 
gluon lines are not significant. These gluon ladders, 
as we will explain later, can be in planar or non- 
planar configurations. 

It is important to study this system of interacting 
gluon lines also from another point of view, namely 
starting from the Regge limit. If we use the Po- 
meron kernel (without trajectories) in the regime of 
high transverse momenta, we get, as we should, an 
agreement with the above result. This consistency 
check is necessary in order to understand the tran- 
sition from hard scattering (in the small-x limit) to 
Regge physics. On the other hand, if we include the 
trajectories we find some regions of the phase space 
where the interaction between the gluon ladders 
cannot be neglected. This new transverse enhance- 
ment, however, is sensitive to the infrared region 
and comes directly from the trajectories. As we 

know the trajectories are not present in the hard 
regime. These terms, therefore, signal the beginning 
of Regge physics. 

Having decided in which configuration t-channel 
states of n gluons contribute to the structure func- 
tion, it is necessary to study transitions from n gluon 
states to m gluon states and to decide how these 
configurations couple to valence quarks inside the 
hadron and to the photon at the upper end of the 
diagram. As to the transition: n g luons~m gluons 
(re<n) we find that the dominant vertex is the com- 
bination of two gluon ladders into a single one. It 
could also be possible to have vertices where, in 
general, three or more ladders come together pro- 
ducing a smaller number of ladders. We will argue 
that such possibilities are not important. The ladders 
have to recombine in steps. At each step two ladders 
come together producing a single ladder. The vertex: 
2 gluon ladders~ l  ladder is studied in detail. In 
particular we show that the non-planar vertex, in 
the relevant region of phase space, has the same 
form as the planar one. A space-time argument, 
however, indicates that the non-planar vertex is 
more likely than the planar one. The vertex where 
two ladders recombine into a single ladder enables 
us to go to smaller-x values. As we will see, the 
vertex does not belong to the leading logarithmic 

approximation because it behaves like ~s(Ik• 
[k l l2  ' 

where G is the usual running coupling constant. We 

can compensate the decreasing factor G(rk• ik• 2 by 

taking smaller-x values which leave a longitudinal 
enhancement. 

We then study the maximal non-planar loop 
(multiladder) diagram with two ladders, introducing 
a non-planar branching vertex, where a ladder 
branches into two ladders. We conclude that in the 
relevant diagram the number of gluon lines cannot 
increase while going from the valence quark up to 
the external photon. The non-forward ladders couple 
directly to the valence quarks. 

Finally it is necessary to take the discontinuity of 
the full diagram and there are several possibilities 
how to choose the cuts of the amplitude. At this 
point an analysis of the validity of the AGK rules 
[5] turns out to be essential. We show for the non- 
planar vertex of two ladders, that the AGK rules 
are, in fact, valid. This rather technical point, which 
will be discussed in detail, turns out to by very 
important in order to get an alternating series for 
the summation of the relevant diagrams. Otherwise 
we cannot justify the convergence of the sum of 
infinitely many diagrams. 
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Fig. 4. The most general multiladder "fan" diagram. The wavy 
lines represent gluon ladders, and the points correspond to ver- 
tices where two ladders come together producing a single ladder 

The idea of introducing diagrams with more 
gluons in the t-channel has first been considered by 
Gribov, Levin, and Ryskin [-6, 71 (GLR). These au- 
thors have investigated what they call multiladder 
diagrams. The simplest example of a multiladder 
diagram is shown in Fig. 3. Here we have a loop of 
two independent gluon ladders in a planar con- 
figuration. It is clear that these ladders are non- 
forward ladders, and we have to integrate over the 
momentum which flows through the ladders. The 
choice of these diagrams: independent ladders which 
do not interact by means of gluon exchanges, apart 
from the lower branching vertex and the upper cou- 
pling where the ladders come together producing a 
single ladder, was not justified by GLR. We can 
understand this point from our previous discussion. 

By studying the planar diagram of 'Fig. 3, G L R  
then showed that it will be relevant if there is no 
single ladder underneath the loop consisting of the 
two non-forward ladders. This means that the non- 
forward ladders nmst couple directly to the valence 
quarks. Such a diagram was called multiladder 
"fan" diagram and the upper ladder goes up to the 
external photon. It was found to be necessary that 
the momentum which flows through the ladders is 
kept small by hand, otherwise it destroys the possi- 
ble enhancement of the diagram. As to the small-x 
behaviour, G L R  found that this diagram violates the 
unitarity bound more strongly than the single ladder 
approximation. They, therefore, summed all possible 
"fan" diagrams getting an expression for the struc- 
ture function consistent with unitarity in a well de- 
fined phase space region. 

The most general "fan" diagram taken by G LR 
corresponds, if we start at the valence quarks, to a 
certain initial number of gluon ladders coming from 
the quarks. In the next step a pair of two ladders 

come together producing a single ladder which then 
combines with another ladder of the system in the 
same way. This is shown in Fig. 4 where the wavy 
lines represent gluon ladders. The number of gluon 
lines decreases when going to the external photon. 

Compared to these results of GLR, our analysis 
provides an independent answer to the question, 
which diagrams should be summed in order to ob- 
tain a valid description of the small-x region. As to 
the general topology of the diagrams, we come to 
the same conclusion: t-channel states consisting of n 
gluons arrange themselves into non interacting 
gluon ladders, and when moving upwards from the 
valence quarks to the photon, the number of these 
ladders never increases. In more detail, however, we 
find that non-planar configurations are more impor- 
tant than the planar ones of GLR. 

Since, nevertheless, the analytic form of the non- 
planar vertices coincides with the planar one (up to 
AGK rules and related questions of signs), the final 
conclusion of G L R  remain valid. The infinite sum of 
all "fan" diagrams temper the small-x increase o f  
the structure function, such that, in a well defined 
region of phase space, it is consistent with unitarity. 
This description is valid as long as x is larger than a 
certain function of Q2: 

Q2 
8N In 1_<_1 21nln-- 2 

e A2, b = l l  (1.1) b x 4 - ~ n y .  

If x is smaller than this function, we have to take 
into account other contributions, and the above pic- 
ture is not sufficient. Our  argument which connects 
the small-x limit of the hard regime with the Regge 
limit indicates that other contributions which are 
infrared sensitive will come in. In fact, it is known 
[8] from unitarity that non perturbative effects have 
to enter. 
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It is important to note that the small x-region in 
e+e--physics has been treated in a different way. 
We know, since the work of Gribov and Lipatov 
[9], that at the leading logarithmic level the parton 
distributions in e§ - and deep inelastic scattering 
are the same. However, if we go beyond the leading 
approximation the parton distributions become dif- 
ferent. In connection with the small x-case for e § e-, 
Mueller [10] was able to derive an expression for 
the anomalous dimension, by calculating up to three 
loops, which is no more divergent when n ~ l .  Re- 
cently, Bassetto et al. [11] have confirmed this result 
by considering all the terms in the leading series of 
powers g2/(n-1) 2. Such a calculation is not possible 
in the ep-case because the subdominant contri- 
butions present infrared problems. 

This paper is organized as follows: 
In Sect. II we analyse the system of n interacting 

gluon lines in the hard regime. Only independent 
ladders turn out to be important for the transverse 
enhancement of the amplitude. 

Section III is devoted to a consistency check: we 
study the n gluon system starting from the Regge 
limit. We find agreement with the results of Sect. II. 

In Sect. IV we study couplings between gluon 
ladders. In particular we analyse the non-planar 
coupling where two ladders come together produc- 
ing a single ladder. We confirm the validity of the 
AGK rules and show that the maximal non-planar 
multiladder diagram with two ladders will be rel- 
evant only if there is no ladder underneath a loop 
consisting of two ladders, in agreement with GLR. 
The non-planar vertex also gives the same answer as 
the planar vertex. The main conclusions of this sec- 
tion can also be understood in a space time picture. 

Finally in Sect. V we summarize our conclusions. 

II. General Discussion of Diagrams 
with n Gluon Lines 

In a previous paper [-4] we have analysed QCD 
gluon ladder diagrams. This analysis was done in 
the axial gauge and applies to the small-x limit of 
the hard regime which is characterized by strong 
ordering of both the virtualities and longitudinal 
momenta. In what follows we will use the same 
techniques and notations of [4]. We briefely want to 
review here the attributes that characterize these 
ladder diagrams. For the details see [4]. 

a) The effective transverse kernel K for the ith 
gluon cell Fig. 2 is given by: 

1 1 
K• pi-r)=l(p~-r)•  2 + Ipi• ~ 

Ir• (2.1) 
I(p, - r) . l 2 [pi ~ ! 2 " 

This kernel is regular for pi• and pla=r  I. In the 
above expression the denominators of the gluon prop- 
agators have been taken into account. In order to 
get the maximum number of logarithms coming 
from the transverse integrations, the rz component 
of the r momentum that flows through the ladder 
has to be as small as possible. In fact, Ir• 2 gives us 
the lower bound for the set of transverse integrals. 

b) The longitudinal kernel for the i th gluon cell is 
given by: 

[3i-* - fii (2.2) K ,  ~ ( ~ -  3 r )  

We get the maximum small-x enhancement coming 
from the longitudinal integration only if fir and x--+0 
together. The larger variable of x and fir sets the 
scale in the small-x region. This means that 
max(x, fl,) gives the lower bound for the longitudinal 
integrations. Only in the small-x region, where the fl 
components also have a strong ordering, we can get 
logarithms from longitudinal integrations. 

According to b) and c), if we do the longitudinal 
and transverse integrations for the ith gluon cell, the 
leading contribution is given by: 

df l  i d2pi• {ith gluon cell} 

( IP,+I• 2 ( ,]~i 1 
=gsZln ~ m A ~ # 2 )  ) In \max(x, fl,))" (2.3) 

In the above expression g~ corresponds to a fixed 
strong coupling constant, As usual, if we take the 
running coupling constant, the transverse 

l n (  IPi+1• 
\m~tx(lr• #2)] 

is replaced by 

( IP,+I• 2 
In In l m ~ # 2 ) -  } . 

These are the crucial characteristics for our non- 
forward gluon ladders. The single gluon ladder ap- 
proximation for the singlet deep inelastic structure 
function in the small-x region is not sufficient be- 
cause it violates the Froissart bound. In this approx- 
imation the structure function behaves like 

e x p t l / a l n l ~ .  In order to obtain a valid description 
k v  ~ j  

of the small-x region of deep inelastic scattering we, 
therefore, have to take into account other diagrams. 

The motivation for the choice of these diagrams 
comes from the Regge limit. There it is known that 
diagrams with only two gluon lines in the t-channel 
violate the unitarity bound. In order to cure this 
situation, diagrams with more gluon lines in the t- 
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channel have to be considered. Because of the in- 
timate connection of the hard regime for small-x 
and the Regge limit [1], we expect that the dia- 
grams with more gluon lines in the t-channel will 
improve also the behaviour of the structure function 
in the small-x region�9 

These gluon lines can interact, in principle, in all 
possible ways according to our kernel (Fig. 1). Ob- 
viously, any two gluon subsystem forms a non-for- 
ward ladder�9 We assume that for every interaction 
between two gluon lines the longitudinal integration 

1 
has already been done and gives a l n - .  

x 
The question is the following: in the hard re- 

gime, which configuration of the Feynman diagrams 
shown in Fig. 1, gives us the maximum number of 
transverse logarithms and hence the maximum en- 
hancement for the amplitude? 

We will now answer this question, first for the 
case of a four gluon system. In order to simplify we 
only consider a fixed strong coupling constant. We 
know that if we decompose the four gluon lines into 
two independent ladders, we get a certain number of 
transverse logarithms�9 The point now is to study the 
effect of introducing an interaction between these 
two ladders�9 We therefore shall compare the situa- 
tion in Figs. 5 and 6. 

There the loops 1) and 2) belong to the previous 
independent non-forward ladders I and II, respec- 
tively. These ladders are indicated by the arrows. In 
Fig. 5 we add a new loop to the first ladder, and in 
Fig. 6 we consider an interaction between the two 
ladders�9 

The first case of Fig. 5, according to what we 
said previously, gives for the transverse integrals: 

(1K1• /1k2• ~ 
Fig. 6 : ~ g 2 1 n 2  \ ir• 2 ] l n  ~ [ r ~ - ] '  (2.4) 

Here we have not considered the other logarithms 
from the previous ladders. The logarithms in the 
above formula come, as usual, 
phase space: 

Ir• 2 ,~ Ik'LI 2 <{ Ikl.cl 2 ,~ Ig 1.el 2 

Ir• 2 ~ Ik~sl 2 ~ Ik2• 2. 

from the following 

(2.5 a) 

(2.5b) 

Now we consider Fig. 6. If the interaction between 
the two ladders is to be important for the leading 
behaviour, we want a) that the new loop does not 
destroy previous logarithms and b) that it provides a 
new hard logarithm. 

As in the previous case, loops 1) and 2) give: 

g~ln ([k1• (1k2• (2.6) 
\ ir• z ] in \ ir• 2 ] .  

K d K ,  r 

Try- 

](2 

k; 
> 

Fig. 5. A system of two independent non-forward ladders where 
we have added a new cell to the first ladder 

c..gr- 

k2 

Fig. 6. An interaction between the two non-forward ladders of 
Fig. 5 

These logarithms come from the phase space given 
in (2.5a) up to IG• 2 and (2.5b). The momenta kl• 
and k21 are independent variables. We can have the 
case where [kl•177 2 or, for example, 
IklzI 2 ~ Ik2zI 2. 

For the loop 3) we have: 

d2 { ] ] 5 r• -r)A I(k2-r),l 
I(kl - k2)• 2 } 

I(kl - r)• I(k2 -r)• 2 

�9 In ~ i r~T-  ] In \ iril 2 ].  (2.7) 

We first assume that Ikl• 2. The term inside 
the bracket in the above formula gives a logarithm 
only if 

I1r177 ~ Ik2• 2 ~ I~[ 2 ~ Igl• 2. (2.8) 

This condition, however, violates the initial phase 
space conditions given in (2.5), which are necessary 
in order to get not only the logarithms from the 
loops 1) and 2), but also all the previous enhance- 
ment from the two independent ladders. In the op- 
timal case we would get only one logarithm of the 

(IK1• 
type In ~lk~ll2 ).  

For all other possibilities for the phase space we 
also destroy the possible enhancement of the ampli- 
tude. 
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Fig. 7. A non-planar configuration of two 1adders 

By comparing this interacting case with the pre- 
vious non interacting one (2.4) we conclude that the 
case without interactions between the ladders gives 
the maximum possible enhancement. Of course, for 
the interacting case any other possible rung, between 
the two ladders leads to the Same conclusion. 

From this considerations we conclude that, for 
the four gluon system in t he  hard regime, the maxi- 
mum transverse enhancement is given by a con- 
figuration of two independent non-forward ladders 
where the momentum r a has to be small. This was 
also the choice of GLR. From our analysis we find 
that not only planar diagrams can be relevant. In 
fact the non-planar diagram also gives the maximum 
transverse enhancement. In Sect. IV we will give a 
space time argument that even favours the non- 
planar situation over the planar one. Actually the 
definition of "planar"  or "non-planar"  depends on 
the coupling of the ladders to the external lines. This 
will be discussed also in Sect. IV (Fig. 7). 

We will now study the situation where we have 
an odd number of gluon lines. For  this it is suf- 
ficient to consider the case of three gluon lines in 
Fig. 8. In this figure the arrow indicates the exis- 
tence of a non-forward ladder between the first two 
lines. As we know, loop 1) gives us a hard transverse 
logarithm in the usual phase space. If we now add 
the second loop, which connects the ladder with the 
other gluon line, we can repeat our previous argu- 
ment that we used for the four gluon system: we 
compare with the case where the second loop is 
added to the first ladder, and we arrive at the same 
conclusion as before. If we want to get a new hard 
transverse logarithm from the "connecting" loop 2), 

Fig. 8. A system of three interacting gluons in the t-channel 

we have to pay the price of destroying the previous 
enhancement. 

We could then think that, for the three gluon 
case, the leading behaviour will be given by a non- 
forward ladder and a gluon line, such that there is 
no interaction between them. However, such a con- 
figuration cannot survive. If we couple the three 
lines at the upper end of the diagram to a quark 
loop with high virtuality, we will have to integrate 
over Ir• 2. We know that Ir~] 2 has to be small in 
order to provide a transverse enhancement for the 
ladder. In principle we can restrict the integration 
over r 2 such that the upper bound will be small. 
This condition will ensure that the logarithms from 
the ladder are large. However, this restriction of Irl[ 2 
cannot be justified in perturbative QCD where the 
momentum k that labels a gluon propagator G"~(k) 
has to be large. In our case we will have a GU~(r). 
This means that we have to integrate Ira[ 2 up to the 
large external momentum, thus destroying the loga- 
rithmic enhancement from the ladder. Therefore, in 
the hard regime such a three gluon system is un- 
important. Our conclusion for the three gluon sys- 
tem can be generalized to any configuration with an 
odd number of gluon lines. Such a configuration 
cannot be possible in the hard regime. 

Finally we want to study the situation for a 
system with n gluons in the t-channel, where n is an 
even number >6. In order to do this we need to 
generalise our analysis of the four gluon system that 
we have done for the forward direction. We once 
again take the four gluon system, but now we permit 
the existence of a new momentum v that flows 
through the amplitude (Fig. 9). This configuration is 
not in the forward direction. The diagram in Fig. 9 
will give two hard transverse logarithms for the 
loops 1) and 2) if 

Ivll 2 ~ Ir• 2 ~ Ik'ail 2 ~ Ika~[ 2 

[r• 2 ~ tkh• 2 ~ Ik2• 2. (2.9) 

Our analysis for the loop 3) is not altered by the 
existence of the momentum v. In any case the in- 

k~-K~ k2-K I k 2 

Fig. 9. A non-forward system of four interacting gluons in the t- 
channel 



M. Loewe: Improved Description of the Small-x Limit 

C.I~ Ir~ ZI ) 

Fig. 10. A possible parametrization for the momenta of a system 
of six gluon lines organized into three independent non-forward 
ladders 

tegration variable will be r,, and then we can use 
our argument for the four gluon system in the for- 
ward case. 

We consider now a configuration of six gluon 
lines. In this case we have a freedom how to para- 
metrize the momentum of the gluon lines. There are 
five independent momenta  and the total system 
must be in the forward direction. We cannot a priori 
favour any one of the parametrizations. In Fig. 10 
we show an example, where the arrows indicate the 
existence of three independent gluon ladders. This 
means that the maximal enhancement for this sys- 
tem comes from the phase space where 

[q•177177177 i=1 ,2 ,3  (2.10) 

If we introduce a connection between two ladders it 
is always possible to choose a parametrization for 
the momenta  such that the four gluon system given 
by the two interacting ladders corresponds to the 
non-forward four gluon system we discussed pre- 
viously (see Fig. 9). The connecting loop destroys 
the enhancement of the amplitude. 

We can repeat this analysis for every other possi- 
ble rung between two ladders with the same answer. 
Such kind of reasoning can be extended to 8, 10, ... 
etc. gluon lines. 

These considerations enable us to give an answer 
to our initial question: For  a system of n gluon lines 
in the t-channel (n even) which, in principle, can 
interact in pairs in all possible ways, the maximum 
transverse enhancement in the hard regime is given 
by a configuration of n/2 independent non-forward 
gluon ladders, and these ladders are not necessarilly 
in a planar configuration. If n is an odd number, all 
possible configurations can be neglected. 

So far we have considered a system of n gluon 
lines organized into inpendent ladders. As we will 
discuss in Sect. IV, these diagrams will, in fact, be 
increasingly important  in the small-x region. For 
this process we then have the following intuitive 
picture shown in Fig. 11. A highly virtual photon 
coming from the electron interacts with a quark in 

75 
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Fig. 11. The contribution of the gluon sea to the structure func- 
tion in deep-inelastic scattering 

I 
1 

I I I 

I 
I 

Fig. 12. A particular possible contribution to Fig. 11. The wavy 
lines represent gluon ladders, and the points are possible vertices 
where a certain number of ladders come together producing a 
smaller number of outgoing ladders 

the gluon sea inside the photon. The sea is produced 
by the initial valence quarks. The scattering process 
finishs with the production of any possible number 
of hadrons, and therefore we have to take the dis- 
continuity of the amplitude, as shown in Fig. 11. 

According to our analysis the gluon sea, when 
looked at in the t-channel, organizes itself into inde- 
pendent ladders. At the upper end of the diagram 
these ladders must couple to a quark loop. It is also 
possible that two or more ladders come together 
producing a smaller number of ladders which also 
can interact again with other ladders or directly 
with the quark at the upper end of the diagram. A 
particular contribution to Fig. 11 is shown in 
Fig. 12 where the wavy lines represent gluon ladders 
and the points indicate that two or more ladders 
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come together producing a smaller number of lad- 
ders. A technical point in this picture corresponds to 
the fact that we have to integrate over the momenta 
that flow through the non-forward ladders. If we 
want to retain the maximum enhancement we have 
to keep all these momenta small. Finally, we have to 
take the discontinuity of our diagram (Fig. 11): this 
will be discussed in Sect. IV where we also will 
discuss in more detail the possible couplings be- 
tween the ladders (Fig. 12). 

Note that in our picture the number of ladders 
in the t-channel never increases if we go from the 
valence quarks at the bottom to the external photon 
at the top. This point will be also be discussed in 
Sect. IV. 

III. Connection with the Regge Limit 

In this section we want to analyse our problem from 
a different point of view. We start from the Regge 
limit and then take the limit of large transverse 
momentum. The idea is to see how we arrive at the 
hard regime of Sect. II by starting from the effective 
Pomeron kernel [3]. This will give us further insight 
into our results of the previous section. This is the 
analog what Dokshitzer [1] has done for the one 
single ladder. 

In the Regge regime one starts with a small but 
fixed coupling constant. We have also Regge trajec- 
tories for the gluons. These trajectories are not pres- 
ent in Bjorken's hard regime because the diagrams 
that contribute to the reggeization of the gluon in 
the Regge regime belong, in the hard regime, to that 
class of Feynman diagrams which gives the running 
coupling constant�9 

The diagrams which are relevant in the Regge 
limit are shown in Fig. 1 where now the wavy lines 
represent reggeized gluons, and we have to take all 
possible pair interactions, mediated by the Pomeron 
kernel which we want to describe in a few lines. The 
bubbles in Fig. 1 represent here, in a first approxi- 
mation, a sum over possible configurations of gluon 
system with __<n gluon states. These diagrams, 
strictly speaking, are valid only in the neighbourhood 
of multiregge cut singularities; that is where reggeon 
unitarity and direct s-channel unitarity can be 
shown to be satisfied. For details see [8, 12]. In 
particular, the diagrams of Fig. 1 must be restricted, 
in the Regge regime, to the region of phase space 
where all K~• 2 (A is the QCD parameter), and 
we introduce an infrared cutoff in order to avoid 
divergences�9 

The Pomeron kernel which includes the trajec- 
tories [3, 13, 14] is given by: 

2 

Kij(ki• k'i• k2• kj• =(2@) 3 (group factor a) 

2 t2 r2 2 
�9 _ (ki• + k j• 2 -[ k~k)~_ + k~_kj• ] 1 

, 2 t2 ~2 (ki• -- k/• ] ki• k j• 

+ (group factor b)(c~(k2• + ~(k~• (3.1) 

where 

~(k~l)_ - g~ 2 ~ dZq• 
- 2~5-~3 ki• J q 2 ( q ~ j g  (3.2) 

are the Regge trajectories. The necessity for having 
two group factors is discussed in [13]. 

If we use the Pomeron kernel without trajectories 
and take the phase space conditions (2.5a) and 
(2.5b) then it reduces exactly to our kernel in the 
hard regime. This means, of course, that we get the 
same conclusions as before. Only independent lad- 
ders are dominant in the hard regime. 

Apart from the configuration of two separate 
ladders where the transverse logarithmic factors 
arises in the standard way, there is now still another 
source of logarithmic enhancement factors. In con- 
strast to the "hard logs" these factors, however, are 
sensitive to the infrared region and, hence, not 
purely perturbative. 

In a recent paper [15] Jaroszewicz and Kwie- 
cifiski tried to solve the integral equation for a sys- 
tem of three gluon lines in the Regge limit. In their 
analysis they considered the possible sources for 
large transverse logarithms. They found two sources: 
a) the usual phase space conditions for the enhance- 
ment of a non-forward ladder, and b) larger ratios of 
virtual• of the interacting gluon lines. If the three 
momenta are scaled uniformely the integral equation 
does not lead to logarithms. 

We now want to do the same analysis for the 
forward four gluon system, using the full Pomeron 
kernel with trajectories. In particular we will analyse 
the interacting case of Fig. 6 where we take large 
differences between the virtual• of the interacting 
gluons. 

For the loop 3) of Fig. 6 we than have: 

~ d 2 r •  2~ (kl•177 2 
~ [(k~ - ri) (k2-r• (Kl~-r• -r• 2 

(k -Kli) 2 ] 
-~ ( K l ~ ~ - r •  j �9 (group factor a) 

[ ( k l l - K l i )  2 (kz-Ki•  2 ] 
- [r ( ry 

�9  group factor b }ln ,ri (k i, in 
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Here the two logarithms come from the first two 
loops in Fig. 6 and the second square bracket repre- 
sents the trajectory functions of (3.1). As we said 
before, we take different virtualities. We choose 

k 2, ~(kl•  --r• 2 <k22• ~(k2~ - r , )  2 (3.4) 

for the momenta before the interaction between the 
two ladders. 

The point now is to get new logarithms without 
destroying the previous enhancement. If we insist on 
having the same relative kinematical configuration 
(3.4) also after the interacting loop 3), i.e. 

k~• ~(kl• -KI•  2 <k~:  ~(k2• -KI• 2 (3.5) 

this means that r2~K2• and we will not get a jus- 
tifiable logarithm from the term inside the bracket 
in formula (3.3). By justifiable we mean that in this 
case we have a gluon propagator G u~ ((Kli-r• 2) 
where the virtuality (Kl•177 2 is very small. We feel 
here the infrared unstability and the necessity for an 
infrared cutoff. 

In order to get a logarithm it is necessary to 
allow other kinematical configuration after the in- 
teracting loop. For example, we try 

k~>>K~•177 (3.6) 

If we take an integration interval for r 2 such that 

, ~K~l ] (3.7) 

then the leading contribution for the r• integral in 
(3.3) is given by 

[k2• 
d2r• ~(group factor b)In 3 \k~• (3.8) 

Owing to the phase space condition (3.6), we see 
that the integral gives us a new hard logarithm 
without destroying the contribution of the previous 
two logarithms. This new logarithm, however, comes 
from the trajectories. It is clear that if we scale the 
momenta of the four gluon lines uniformely we do 
not have this type of effect. In the case of three 
gluons [15] it was not necessary to take different 
kinematical configurations but for our case this con- 
ditions turns out to be essential in order to get this 
new type of hard transverse logarithm. If we take 
new loops into account it would be possible to col- 
lect such type of logarithms by using a complicated 
set of coupled kinematical configurations. 

In the hard regime, as we said, there are no 
trajectories but a running coupling constant and we 
will not have these logarithms. However, if we go to 
extreme small values, such that our analysis and also 

that of GLR is no longer valid, it is not clear what 
happens with the running coupling constant. It 
could be that the trajectories become important, 
and, therefore, the above logarithms cannot be ig- 
nored. We would have then a connection between 
Bjorken's hard regime and the Regge limit. In any 
case we know from unitarity that there will be non 
perturbative effects [8] which build the Pomeron 
and hadronic total cross sections. 

The conclusions for this section are the follow- 
ing: 

a) If we analyse the system of gluon states that 
we studied in the previous section, using now the 
Pomeron kernel without trajectories in the limit of 
high transverse momentum, we get an agreement 
with our results of Sect. II. The leading behaviour is 
given by a set of independent non-forward gluon 
ladders. 

b) If we include the trajectories, there are some 
regions of phase space where these trajectories yield 
transverse logarithms for the interaction between 
two ladders if the interacting gluons have vastly 
different virtualities. However, these logarithms are 
not entirely "hard" but sensitive to the infrared re- 
gion, and one needs the existence of an infrared 
cutoff. 

IV. Non-planar Couplings Between Ladders 

We now have to analyse in somewhat more detail 
how the gluon configurations of Sect. lI contribute 
to the small-x behaviour of the structure function of 
deep inelastic scattering. Our main result of Sect. II 
was that, among diagrams with n gluon lines (n 
even) only configurations with independent non- 
forward ladders dominate. These ladders are able to 
come together producing a smaller number of lad- 
ders or, in a particular case, a single ladder. Alter- 
natively, a single ladder can split into two non- 
forward ladders. In this section we want to discuss 
such couplings. 

The simplest situation corresponds to the case 
where two ladders come together producing a single 
ladder. We have different possibilities for such a 
coupling: 

a) The first case is the planar coupling shown in 
Fig. 13. This was the configuration taken by GLR in 
their analysis. 

b) The second possibility corresponds to the max- 
imal non-planar case shown in Figs. 14a, b. In Reg- 
ge physics this case is the so called Mandelstam 
crossing. 

c) The third case is given by a mixed configu- 
ration between the planar and the maximal non- 
planar situation as shown in Figs. 15a, b. 
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Fig. 13. The planar vertex where two ladders go into a single 
ladder 

| | 
Fig. 14. a The maximal non-planar vertex for two ladders with a 
single outgoung ladder, b A different perspective of the maximal 
non-planar vertex in a 

| | 
Fig. 15. a A mixed vertex for two ladders with a single outgoing 
ladder, b Another example of a mixed case where one of the 
incoming ladders in Fig. 13 has been twisted 

Figure 15b represents a planar coupling between 
two ladders where one of them is twisted. Of course 
the diagram is a non-planar one. 

So far we have considered the full amplitude 
with n independent gluon ladders. If we want to 
decompose this amplitude into its possible discon- 
tinuities we need to know how the different cuts 
contribute. This question has been an old problem 
in Regge physics, and the answer is given by the so 
called AGK rules (Abramovskii, Gribov, Kancheli) 
[5]. We will see that in our case the AGK rules are 
in fact valid. 

First we want to study the maximal non-planar 
coupling (Fig. 16). In this figure we have taken the 
double multiperipherical cut. In our analysis we will 
assume a running coupling constant. For the phase 
space conditions we choose first 
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P1 Pl'-r 

, v 

v '  
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PI' R *r 

F i g .  16. The maximal non-planar vertex where two ladders go 
into one single ladder with the double multiperipherical cut 

(4.1) 

This condition defines the hard regime where the 
two ladders are significant in the small-x region. 

The non-planar coupling without color factors, 
which give only a group coefficient, is given by: 

•d4P2 1 6 g  2 (X2 ([P2LI 2) 27c~ +((P1 - ~ - P~ + r) 2) 

�9 (p1 - Pz)- 2 (PI - P2 + r)- : P2 -4 

�9 {d . , , . , (Pe)G,  o(P> P2,/'1 - P9  d . , (P~ - P 9  

. G, ,  ,(P; - r ,  1"1-1"2, P~ -P2 -1 ' ;  + r) d.,(Pt -P2 - P; + r) 

- G,~(P~ -P2-P;+r,P;,P~ - P: + ~)d~,(P~ - P: + ~) 

�9 ffTa, v,(P1 - r , P  1 - P 2 - r ,  P2)d~,~,,(P2)bu~(5~ }. (4.2) 

In this formula F~v(P1,P2,P3) denotes the well 
known three gluon vertex coupling and d~(k) cor- 
responds to the numerator of the gluon propagator 
G~(k) which is given by: 

d~p(k) (4.3) 
G~B(k)- k 2 q- ig" 

In the axial gauge we have 

k~c~ + Gk~ (4.4) 
d~ = g~, (k. c) 

For the gauge fixing vector G we choose, following 
[7], the Sudakov momentum q'~. This is very con- 
venient because we can read directly the fi depen- 
dence of the coupling. We have c2=0 which sim- 
plifies the calculations. 
From the a function in (4.2), using the phase space 
conditions (4.1) we get the c~ component of P2 

-]P2• (4.5) 
an = 2(fie 1 _ tip; + fir)v . 
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The important terms which dominate in the small-x 
case will be proportional to 

Pzu"Pz~"IP2• (4.6) 

If we use the phase space (4.1) we obtained a very 
long and complicated expression for the coefficient 
of (4.6) which is not interesting. It is possible to 
simplify enormeously our calculation if we regard 
the non-planar coupling from a different perspective, 
as shown in Fig. 17. In this figure we see that ac- 
tually the gluons with momentum P1-P2 and P~-P2 
+ r  are the last gluons of the non-forward ladder 
indicated by the arrow. Therefore, in order to have 
the maximum longitudinal enhancement for this lad- 
der we need to take the new phase space conditions 

I/'~• ~ >> IE• 2 ~ IP;• 2 >> Ir• 2, (4.7) 

which replace condition (4.1). 
The phase space conditions (4.7) simplify our 

initially complicated expression. For the term inside 
the bracket in (4.2) we get 

{ }(4.2) ~lP21l fle, fl'er. (4.8) 

This expression coincides with the result for the 
planar case. 

Actually, as we will show in a few lines by study- 
ing the full diagram, the relevant phase space con- 
ditions for the coupling of the two ladders will be 
given by 

t 

Fig. 17. A different perspective of Fig. 16 

IP2• 2 >> tPI• 2 ~ 1P~'• a >> tr• 2. (4.9) 

Other cuts of the diagram give the same answer for 
the vertex. If we take the multiperipherical cut 
shown in Fig. 18a (in this figure we have also shown 
a rung of the second ladder which is denoted by the 
arrow), we do not have a 3-function for the %2 
integral but three propagators. By using the + i s  
precription for the propagators we see that the prop- 
agator with momentum P ~ - P 2 - P [ + r  has a pole in 
the lower complex half plane %2 because fi~i >>/~P1/?r. 
The other two propagators have a pole in the upper 
half plane. We close then our % - c o n t o u r  in the 
lower half plane, getting the same answer as for the 
double multiperipherical cut. 

If we take now the diffractive cut, Fig. 18b, the 
cS((P~ - P2 + r) z) implies 

-[P2112 - IPz •  2 
cfi,~-(Bp~+fir)v ~ fip V ' (4.10) 

where we have used (4.7). 
The AGK rules are, in fact, valid, because the 

result for the vertex, in the relevant phase space 
(4.9), does not depend on which cut we take. 

We have also studied the mixed cases 
(Figs. 15a, b). We again get an answer of the form 
(4.8) if we demand the phase space condition (4.9). 

At this point we can discuss other possibilities 
where, for example, three ladders come together in 
the maximal non-planar configuration producing a 
single ladder (Fig. 19), or the case where three lad- 
ders combine into a final configuration of two lad- 
ders (Fig. 20). 

In both cases we have more powers of the run- 
ning coupling constant than in the previous situa- 
tion. They depend on transverse momenta with the 
largest virtuality at each vertex. There are also more 
propagators depending on these highly virtual mom- 
enta, The crucial point, however, is that we do not 
have here new loops with could give a transverse 
enhancement in order to compensate the effect of 
the running coupling constants and of the propa- 
gators. We conclude that the contribution of such 

I 

P( - r ~  
| 

Pl*r 

a ' - r  "~ ~ P,' 
| 

Fig. 18. a One of the multiperipherical cuts 
of the diagram in Fig. 17. We have added a 
rung which belongs to the second ladder, b 
The diffractive cut of the diagram in Fig. i7 
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~Pl-r /P~.. P1 § 

~..- ~-.~J 

Fig. 19. The maximal non-planar vertex where three ladders come 
together producing a single outgoing ladder 

Fig. 2l. The non-planar branching vertex where a ladder goes 
into two non-forward ladders 

% 

Fig. 20. Three ladders in a maximal non-planar configuration 
come together producing two outgoing ladders 

couplings will be small. If three ladders have to 
combine, it is, therefore, more profitable that this 
occurs in steps: first two ladders combine producing 
a single ladder, then this ladder combines with the 
other one. 

We can generalize this argument to more com- 
plicated diagrams where 4, 5. . .  etc. gluon ladders 
come together producing a smaller number of lad- 
ders. The most convenient way to do this is to 
organize the process in steps where, at each step, 
two ladders combine producing a single ladder 
which, in the next step, comes together with another 
ladder, and so on. 

In order to complete our analysis of the maximal 
non-planar configuration we want to study the low- 
er vertex where a forward ladder branches into two 
non-forward ladders (further up in the diagram, 
these ladders come together again according to the 
coupling we discussed above). The branching vertex 
is shown in Fig. 21, and the full diagram in Fig. 22. 
We are doing this in order to estimate the relevance 
of diagrams 5_ la Fig. 22: is it possible that, when 
going from the valence quarks at the bottom to the 
photon at the top of the diagram, we start with two 
gluon lines, then the number of gluons increases, 
and, eventually diminishes again? In agreement with 
GLR, we will see that such a diagram is not impor- 
tant. The leading contribution will always be given 
by a diagram where the number of gluon lines never 
increases. 

Now we will discuss the lower branching vertex 

I 
I 
I 

6 
P 

K K 

I 
I 
I 

Fig. 22. A maximal non-planar multiladder diagram with the 
double multiperipherical cut 

shown in Fig. 21. Here we have taken the double 
multiperipherical cut. After calculations along the 
lines of I-4] we find for the numerator of the lower  
vertex. 

Numerator 8Ng2(lhl]2) cos~ 

Lower vertex /~(1 -/~) 

�9 [fl(1-~)+~-+lfl~fi]l(h-r)•177 (4.11) 

In this formula c~ represents the angle between h• 
and (h-r)•  fi the fraction of the longitudinal com- 
ponent of K carried by h (here we have taken ~K = 1) 
and g2(lh• is the running coupling constant. Dur- 
ing the calculation we have neglected fi, because 
/ ~ , ~ h  if the ladders have to give a non vanishing 
contribution, and we have taken the hard regime 
condition Ih• >> IK• 2. 

In formula (4.11) we recognise the Altarelli-Parisi 
[16] kernel for the three gluon system and, if we 
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consider f l~ 1 (i.e. the small-x case), we recover es- 
sentially our old expression for one rung in the non- 
forward ladder [4]. 

Now we can study the full maximal non-planar 
diagram shown in Fig. 22. We assume the existence of 
the running coupling constant, as a result of which 

the transverse in turns into lnln ~ r~ ] '  and we 

introduce our old variable 

Lk' l C s(IkZI2) d lk l l  2 

max(#2lr• Ik',l 2 4re 

1 
By Yk we want to denote ln~[.  We further remem- 

ber that a non-forward gluon ladder with external 
variables fix and IKzl 2 where IKzla>~lr• 2 and 
flK > fl~ behaves like 

D({K ' YK)y~rg e er 6NCKyK, N = 3. (4.12) 

If we glue to Fig. 17a ladder beginning at P2 which 
goes up to the external photon and a lower non- 
forward ladder to the lines with momentum P~ and 
P~ + r, we get a factor five from the next rung in the 
upper ladder and a factor 

1 ~s(le,• 2) 
flPt(flP~+flr) [Pl• 2 ' (1P1• >~ ]rm]2) 

from the fact that we have now a cell in a non- 
forward ladder. 

We must combine this with (4.8) where we in- 
troduce a @,~,,. For this coupling, appart from 
numerical factors, we have then 

~2(IP2• O:s(lPl • ]2) 
flve(flP, q- fir)IPI• 2 Ie2• 4" (4.13) 

The factor fl~,,, in (4.8) has been combined with the 
1 

factor o~2 coming from the corresponding cell in 

the non-forward ladder (fl'ef}>flr) producing the de- 
sired longitudinal logarithm. 

After this preliminaries we can write a formula 
for the multiladder diagram shown in Fig. 22:  (yq 
and {q refer to the photon external variables) 

Fig. 22: c~ 5dyved~ve Sd/3~d21r• j ' ~  d~p 1 

~: ~: , ~s(lP2• 2) 
"Sdfihd2h• [P2• 2 

{D(min(yp~, Yr) - Yh; {P,-- m~tX(~h, 4r)) B 

�9 D(min(yp~, Yr) -Yh, ~ve --max({h, ~r)) 

.IdfiKd{Kfl~ %(]h• 2) } 
/?2 [(h-r)• lh• D(gK'/?K) �9 (4.14) 

Before we analyse the dominant contributions in 
this formula we want to make some remarks: a) In 
the above expression we have calculated ~h and % 
from the branching vertex and, therefore, we have 
left only two propagators for this vertex, b) For the 
branching vertex we have taken into account only 
the most singular contribution, assuming the strong 
ordering /?h ~ fl~: which is valid in the small-x region. 
c) The min's and max's in the argument of the non- 
forward ladders take into account what we said in 
Sect. II about the transverse and longitudinal en- 
hancement of a non-forward ladder, d) The above 
expression assumes the phase space condition 

]q,I 2 > IN2• 2 >~ IPI• 2 >~ [hk[ 2 ~ [r• 2 >~ IK• 2 

fi q = x ~ flve ~ fl P1 ~ flr ~ fl h ~ fi K (4.15) 

which is the natural one for the longitudinal and 
transverse enhancement 'of  the ladders in the hard 
regime for the small-x case. 

In order to get a large longitudinal enhancement 
from the integration in tiP1 we need a small fir. We 
know that /?r plays the r61e of a longitudinal cutoff 
for the non-forward ladders. If we have a region of 
phase space where fivl <fir we can neglected its con- 
tribution to the integration. Only if fl,. <fly2 ~flel we 
will have a significant longitudinal enhancement. 
This justifies the phase space conditions given by 
(4.9). The lower bound for the fly, integration will 
then be given by five. It is also clear that we need 
fih ~1 in order to get a large longitudinal contri- 
bution. Concerning the {v, integral, the natural up- 
per bound is given by ~ve. The dominant contri- 
bution for the integrals will come from a region 
where flve<flv~ and ]pl•177 2. 

For the transverse enhancement it is crucial that 
[hal 2 must be very small and also ]r• 2, other- 
wise the non-forward ladders become irrelevant. All 
these conditions, combined with the necessity that 
flh4~fiK, Ih•177 2, imply that there is not suf- 
ficient phase space in order to have the lower ladder 
D(~K, yK) without destroying the possible enhance- 
ment. 

The most convenient situation corresponds to 
the case where we do not have the lower forward 
ladder, and, therefore, the non-forward ladders cou- 
ple directly to the valence quarks. Another argu- 
ment for this conclusion is the existence of the run- 
ning coupling constant at the lower v e r t e x  0~s(lk• 
It is clear that the diagram shown in Fig. 22 will 
become more significant if Ih• 2 and the loop 
actually has to begin at the valence quarks. This 
conclusion agrees with the planar analysis of GLR 
and gives support to our picture at the end of 
Sect. II. From our discussion we see that fir and Irl z 
have to be kept as small as possible. 
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The vertex where two ladders come together pro- 

ducing a single ladder behaves like ~s([P2• and, 
IP2.12 

therefore, such diagrams do not belong to the lead- 
ing logarithmic approximation�9 This bey• howev- 
er, enables us to go into smaller-x values. We com- 

pensate the ~s([P2• contribution by an enhance- 

ment in ln/~ . 

Like in the planar case, the leading contribution 
for (4.14), neglecting the lower ladder will corres- 
pond to. 

I ~Y~d~D(Yq-Y~, ~q-~) 
~(IP2• 2) 

ipz_d2 D2(Y~ ' ~ )  

3 /i oy , SXy d 
~exp (4.16) + 4 V  b ~ q ~ m b 2 ~ q J "  

The contribution of (4:16) to the structure function 
turns out to be more dangerous for unitarity than a 
single ladder. Therefore we need to sum an infinite 
number of diagrams. In Fig. 4 we have shown how 
these diagrams look like. (The wavy lines represent 
gluon ladders.) Apart from the non-planarity of the 
relevant diagrams and connected with this the sign 
structure of the various discontinuities, our con- 
clusions so far basically agree with those of [7]. As 
a result of this, the technique of how to sum all the 
diagrams in the small-x limit can inmediately be 
taken from [7]. We, therefore, do not need to repeat 
this part of their analysis and only quote results. We 
first remark that these diagrams are important in the 
phase space region where 

_ 8 N  2 b ~  1 e2b~ob~<~ff_yq< e q 
2 

- -  are the external photon ~q= lnln A2' x 

variables). 40 in this expression corresponds to 
/ 

ln ln~-f  where q2 is the target mass which must be 

large enough (es(q2)< 1) so that perturbation theory 
8N 

remains valid. If ~ - y q > e  2b~q we need other contri- 

butions, and, as we said in Sect. III, we cannot ex- 
pect to analyse the limit where x ~ 0  with these 
methods. 

A crucial point concerning the summation of the 
dominant multiladder "fan" diagrams is the nec- 
essity for an alternating series in order to get con- 

vergence. This can be justified only by means of the 
AGK rules. 

It is interesting to remark that for our branching 
vertex of Fig. 21 it is not true, as we said in [4], that 
the diffractive cut gives the same answer as the 
double multiperipherical cut we used here�9 However, 
for the dominant diagrams where the number of 
gluon ladders never increases when going from the 
valence quarks to the photon, the branching vertex 
does not play any r61e and, therefore, the analysis of 
GLR, where the AGK rules are needed, remains 
valid. 

In order to complete the discussion we give now 
the structure function coming from the summation 
of the dominant planar diagrams [7]. According to 
our analysis there will be also diagrams which corre- 
sponds to non-planar configurations, but their con- 
tribution do not alter the qualitative behaviour of 
the structure function which is given by: 

D(y~, ~q) 

�9 exp []/16 N(~q - ((~q, yq))(yq - ~(~q, yq) 

+ eb~(r (4.17) 

The parameters ((~,y) and ~(~,y) temper the en- 
hancement of the structure function for small-x val- 
ues. As we said, this formula is only valid for 

QZ 8~  e 2 ebr < lnl_< 21nln-- e A 2 . 

x 

Before we conclude this section, we want to men- 
tion a space-time argument which shows that the 
vertex where two ladders combine into one ladder in 
a planar configuration will be less probable than the 
case where the two ladders are in maximal non- 
planar configuration. 

Space-time considerations can be found in 
[17, 18], and also in the paper by GLR [7]. 

In Fig. 23 we have represented the planar situa- 
tion in a time picture. In this figure the first ladder 
results from an excitation of the sea where an initial 
gluon produces other gluons which become slower 

1 t 

| | 

Fig. 23. a A time description for the interaction of two ladders in 
a planar configuration, b A time description for the interaction of 
two ladders in a maximal non-planar configuration 
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and slower and, at the same time, get larger vir- 
tual• At a certain point the partons start to 
recombine again, first the slow gluons with large 
virtual• until the fluctuation has come to an end. 
It is important to note that the lifetime of the par- 
tons diminishes along the ladder. The lifetime is 

1 
given by t ~ = - - ,  where AE~ is the energy difference 

AE i 
after and before the emission of the parton. It can 
be shown (for the details see [7]) that the lifetime of 

2P, IP1 
the  ith patton is given by ti~ ~ Here IPI corre- 

k,i• ' 
sponds to the longitudinal momentum of the initial 
parton in the ladder. 

From the high virtuality region of the fluctuation 
we have a remaining gluon left with high virtuality. 
After the first fluctuation has finished, a second fluc- 
tuation has .to start until it develops virtual• 
comparable of the "hanging" gluon from the first 
fluctuation. Only then an interaction between the 
two fluctuations can take place. We see that this 
process demands a rather long time whereas the 
connecting parton has a small lifetime because of its 
large virtuality. 

On the other side a maximal non-planar con- 
figuration, represented in Fig. 23b, will corresponds 
to two simultaneous excitations, two ladders, that 
can overlap in the configuration space. It is clear 
that the partons which mediate the interaction do 
not need much time, because everything occurs, 
more as less, at the same time. 

According to these ideas we can also understand 
the fact that the interaction between two gluons will 
be more probable if they have the same k• 

V. Conclusions 

In this paper we have studied, in the small-x limit of 
the Bjorken region, Feynman diagrams which con- 
tain more than two gluons in the t-channel. The 
main motivation for this comes from the well known 
fact that a single ladder, in the limit x~0,  leads to a 
wrong description. Investigations of the Regge limit, 
on the other hand, strongly indicate that gluon con- 
figurations with a large number of gluons in the t- 
channel are required. This suggests that the usual 
one-ladder description of the Bjorken region of deep 
inelastic scattering, when approaching the small-x 
limit, has to be corrected by taking into account 
diagrams with more than two gluon lines in the t- 
channel. 

We have analysed in the hard regime diagrams 
with an arbitrary number of gluon lines which can 
interact in pairs in all possible ways. For every such 

interaction between two gluon lines we used the 
non-forward kernel found in a previous paper [-4]. 
From this analysis we have concluded that among 
all possible Feynman diagrams with these character- 
istics, only independent non-forward ladders give the 
maximum transverse enhancement for the ampli- 
tude. A configuration with an odd number of lines 
cannot survive in the hard regime. The system of 
independent ladders must not necessarily be a pla- 
nar configuration. 

By studying this gluon system in a different way, 
namely coming from the Regge limit we found, as 
expected, an agreement with the above conclusions: 
in the region of high transverse momentum, the 
Pomeron kernel (without trajectories) coincides with 
the small-x kernel in the hard regime. If we include 
the trajectories, there are some regions of phase 
space where these trajectories yield transverse loga- 
rithms for the interaction between two ladders, if the 
interacting gluons have vastly different virtual• 
These logarithms, however, are sensitive to the in- 
frared region and one feels the existence of an in- 
frared cutoff. In any case, in the hard regime, we do 
not have Regge trajectories, and these new loga- 
rithms signal the on set of Regge-dynamics. 

The gluon system, which organizes itself into in- 
dependent ladders, gives a contribution to the sing- 
let deep inelasticstructure function. It is possible 
that two or more independent ladders come together 
producing a smaller number of outgoing ladders 
when going from the valence quarks to the external 
photon. The most elementary vertex where two lad- 
ders go into one single ladder is the most relevant 

case. This vertex behaves like ~s(lk• ikal z and, therefore, 

does not belong to the leading logarithmic approxi- 
mation. This fact, however, enables us to go to smal- 
ler-x values by compensating the small transverse 

factor ~([k• - -  with a large longitudinal logarithm 
1 Ik• 

ln~, .  For other couplings, for example where three 

ladders go into one or two ladders, we do not have 
such a compensating factor and, therefore, they can 
be neglected. 

We have analysed in detail the maximal non- 
planar coupling of two ladders and also the max- 
imal non-planar multiladder diagram with two lad- 
ders. From our analysis we conclude that the case 
where an initial ladder branches into two non-for- 
ward ladders, and then these ladders recombine 
again into a single ladder when going from the 
valence quarks to the photon is not relevant. The 
existence of the lower ladder destroys the enhance- 
ment of the multiladder diagram. The non-forward 
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ladders must couple directly to the valence quarks. 
Therefore, in general, for an initial number of gluon 
lines, organized into independent ladders, the num- 
ber of gluons never increases when going to the 
photon at the upper end of the diagram. An impor- 
tant point is the fact that the non-forward momen- 
tum which flow through the ladders must be kept 
small by hand; otherwise we destroy the enhance- 
ment of the diagram. 

In the relevant phase space region the maximal 
non-planar vertex coincides with the planar one. For 
this maximal non-planar vertex we verify the va- 
lidity of the AGK rules because the vertex does not 
depend on the cut we use. A space-time argument 
tells us, in fact, that the case where two ladders 
couple in a maximal non-planar way is more likely 
than the planar configuration. 

These results basically confirm the analysis of 
GLR [7]. We disagree, however, in that our analysis 
favour non-planar diagrams over planar ones, 
whereas GLR only considered planar diagrams. De- 
spite this disagreement, we nevertheless confirm 
their main conclusion, in particular, their result of 
summing all the diagrams: the small-x behaviour is 
less divergent than that of a single gluon ladder, and 
the perturbative description breakes down if x is 
smaller than a certain function of Q2. 

Finally, our analysis gives a first idea of what 
happens when we go to even smaller-x: certain con- 
tributions which are infrared sensitive enter into the 
analysis and this confirms the believe that the limit 
x---,0 eventually requires non perturbative contri- 
butions. 
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