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Symanzik's programme for constructing a lattice action with improved continuum limit 
behaviour is considered for the case of pure Yang-Mills theory. The structure of the action is 
proposed and discussed in detail to lowest order in perturbation theory. 

1. Introduction 

Despite  the fact that the phenomenon  of quark confinement and the existence 
of a mass gap in the theory of Q C D  have not yet been properly explained, it is 
widely accepted that Q C D  is a good candidate for the (or at least an effective) 
theory of strong interactions. As recognized for some time, there is qualitative and 
quantitative agreement  with experiment  in the asymptotic domains for a wide 
variety of processes where conventional perturbat ion theory is applicable [1]. 

Recently numerical studies, in the form of Monte  Carlo (MC) calculations, yield 
similar agreement  for non-per turbat ive  quantities such as mass spectra [2, 3]. 

However ,  just as the perturbat ion theory applications have their unsatisfactory 
aspects [4], there are many questions concerning the MC results. The MC experi- 
ments are per formed in the approximation where space- t ime is replaced by a 
discrete lattice with spacing a. The only other paramete r  (in the absence of bare 
quark masses) is the bare coupling constant g. Renormalizat ion group arguments 
conclude that in four dimensions there is a function AL 

A L  = a 1 e-1/E~og2(flog2)-ol/2o~(1 q_O(g2)) (1.1) 

(where fl0, ~1 are the universal first two coefficients of the Cal lan-Symanzik 
fl-function, flo > 0) such that physical masses for small g are of the form 

mi = kiAL[1 + O(aEA 2 In aAL)],  (1.2) 

where the constants ki and the O(aEA 2 In a A L )  part  in (1.2) depend on the specific 

* Supported by the Deutsche Forschungsgemeinschaft. 



2 P. Weisz / Improved lattice action (I) 

quantity under consideration. Stated in another way, the physical continuum theory 
is attained in the limit 

a ~ 0 ,  g ~ 0 ,  A L fixed, 

such that ratios of masses are constant up to exponentially small corrections 

m i _ ~ [1 + O(a 2A2 In aaL)]. (1 .3) 
m2 Kz 

There  are two types of problem which have to be considered, (i) finite size effects, 
and (ii) finite bare coupling effects. The two types of effects can in practice often 
not be clearly separated, although it is generally believed that finite size effects are 
under control for certain quantities not significantly probing the topological struc- 
ture of the theory. 

The finite bare coupling effects are, however, potentially disturbing, since in 
practice attempts are made to extract continuum results from domains where 
[although effects (i) are estimated small] the bare coupling constant is still of order 
unity. Indeed initially it was rather surprising that Creutz [2] observed the asymptotic 
f reedom prediction (1.2) setting in at such large g2. Having accepted this fact, it 
is, however, still rather optimistic to claim extraction of the constants kl in (1.2) to 
within an accuracy of better  than 100% without knowledge of the O(g 2) behaviour 
in (1.1). In fact Bhanot  and Dashen [5] observed large discrepancies for A/m ratios 
extracted using the same procedure for different lattice actions, and the origin for 
this is probably accounted for by finite coupling corrections [6]. Ratios of masses 
presumably fare better with respect to (ii) and it would be desirable to have available 
more detailed data on the bare coupling dependence of mass ratios. Certain ratios 
may be smooth even through the "cross-over region" and explain the surprising 
approximate validity of strong coupling calculations [7]. 

Assuming that QCD is a well-defined theory (in the sense that different lattice 
regularizations have the same continuum limit), there are two approaches to the 
question of whether the theory is really physically relevant. The first is to accumulate 
a sufficient amount of "circumstantial evidence" and to establish the absence of 
contradictions. The second is to try to investigate whether theoretically motivated 
improvements also actually lead to improvement between theory and experiment. 

In the latter spirit, a suggestion of Symanzik [8] is to attempt to systematically 
construct the lattice action so that the cutoff dependence is reduced and the 
"cont inuum limit more rapidly approached".  For example as a first step, one would 
like to reduce the O(a 2) dependence on the r.h.s, of (1.3) to an O(a 4) dependence. 
It is to be stressed that this improvement  is one primarily associated with only the 
continuum limit behaviour and is not done with a view to eliminating other lattice 
artifacts such as monopoles in intermediate coupling domains. Actually what is 
accomplished is slightly more modest since the O(a 2) in (1.3) have a variety of 
origins, e.g. (1) irrelevant terms in the effective continuum action (LEL) [9], (2) 
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non-perturbative.  Only the former effects are treated. With an improved action 
motivated in this way, computer  experiments should be repeated and the order  of 
magnitude of changes in physical predictions studied. If improved smoothness for 
mass ratios, for example, is noted, one could be satisfied; drastic irregularities, on 
the other hand, would be a cause for concern and point to a need for a revaluation. 

The improvement  programme was first discussed thoroughly in the framework 
of (~4 theory by Symanzik [8], and recently studied in the non-linear sigma model 
in two dimensions by Symanzik [10] and by Martinell i ,  Parisi and Petronzio [11]. 
This paper deals with the application of the programme to pure Yang-Mills theory. 
The programme can be extended to full QCD; however, a proper  inclusion of 
fermions on the lattice has additional problems associated with chiral symmetry, 
which should be satisfactorily tackled first [12]. 

The plan of the paper is as follows. In the subsequent section the ideas are 
outlined in more detail and the proposed structure of the improved action motivated 
(2.12). It includes, in addition to the usual one-plaquette terms, terms involving 
paths of length 6a. The resulting action is similar in structure to that considered 
by Wilson [13] in his real space renormalization studies. Sect. 3 discusses the 
determination of the relative strengths of the contributions in the action (2.12), to 
lowest order in perturbation theory. Sect. 4 records the consequence of improve- 
ment for the static potential. The paper concludes with a short discussion of the 
practical applicability. The constraints obtained from considerations of next order 
in perturbation theory is the topic of a subsequent paper. 

2. Structure of the improved action 

We consider pure SU(N) gauge theory on an infinite hypercubical lattice with 
spacing a in d euclidean dimensions*. The dynamical variables are specified as 
elements U~,(x) of SU(N) associated with directed links from x to x +/2, where/2 
is a vector in the direction ~ = 1 . . . . .  d with length a. 

The choice of the lattice action is highly arbitrary. The only a priori restriction 
is that in the limit a --* 0 the lattice action SL tends to the classical expression Sc~ 

N 2 1 ~ ~ d  1 ~ i  2 

SL ) S c l = -  ~ J o x ~ r . ~ .  (2.1) 
a ~ 0  i = 1  

The ultimate aim of Symanzik's improvement is to systematically construct an 
action so that physical quantities, i.e. gauge-invariant quantities having a finite limit 
without multiplicative renormalization, have weaker cutoff dependence.  This is 
rather difficult to establish for non-perturbative quantities and the best one can do 
at present (analytically) is to improve physical quantities which are non-trivial in 
perturbation theory (or perhaps in a 1 / N  expansion). 

* Many considerations will be specifically relevant only for the case d = 4; however, various computa- 
tions will be made keeping d arbitrary. 



4 P. Weisz / Improved lattice action (I) 

Consider, for example, the Wilson loop expectation in d = 4 Yang-Mills theory 
with an ultraviolet regularization (cutoff a - l )  respecting gauge invariance, 

1 
W R ( ~ , g , a ) = ~ a ( t r P e x p ( i g l  dx ,  A i , (x )Ri ) ) ,  (2.2) 

where c~ is some closed curve, R some irreducible representation of SU(N) of 
dimension dR and R i the corresponding representation of infinitesimal generators; 
and g the bare coupling. Then the important result [14] is that there exists, to all 
orders of perturbation theory, a renormalization constant ZR(C~, g, a, M)  depending 
on c~ only through the perimeter  P ( ~ )  of c~ and the number and angles of kinks 
and self-intersections such that the limit 

lira [ZR(C~, g, a, M)  WR(C~, g, a)] 
a - ~ 0  

g(M) f ixed 

exists and is non-trivial, where g(M) (a function of g and Ma) is a suitably defined 
renormalized coupling. In particular, for curves with no kinks or self-intersections 

ZR = e-P(~)a-lFR~g" Ma) . (2.3) 

Many physical quantities in the above sense can now be identified. These include 
derivatives of the static potential VR(L) defined by 

1 
VR(L) = -  lim In WR(C~LT), (2.4) 

T ~ o ~  

where C~LT is a rectangular L x T loop. The static potential has a small a, g expansion 

g2 ~ (L )2 j (  a )k  = In ]~k,R(g) (2.5) VR(L) a- l fR(g)- -4~L i.k=o L " 

The terms in (2.5) with j = 0 are treated by renormalization of the coupling constant. 
It is the object of the first step of the improvement programme to remove all terms 
with/" = 1. 

For the ~b~ theory [8] the steps are as follows. (1) Start with a lattice action with 
nearest neighbour couplings. (2) Calculate the small a dependence of Green 
functions in perturbation theory. This can be summarized concisely by a local 
effective lagrangian (LEL) with specified calculational rules. The existence of such 
a L E L  is non-trivial [9]. (3) Add terms to the original action so that the small a 
dependence is improved, in the sense explained, order by order in perturbation 
theory. This amounts here to a (in perturbation theory, up to finite renormalizations, 
unique) choice of dimension 6 irrelevant terms in the lattice action. 

It is probable that a programme, analogous to the one outlined above, (which 
does work for the 4~ 4 theory [8] and d = 2 non-linear o--model) can also be applied 
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to Yang-Mills theory. The starting point (1) is an action involving just a sum over 
plaquettes p, 

Sstart = 1 y~ ~ kR tr (1 -- UR(p)), (2.6) 
g Rp 

of the form originally proposed by Wilson. One could then proceed with step 2, 
restricting attention to gauge-invariant quantities, and one expects the small a 

dependence to be summarized by a gauge-invariant LEL. To incorporate the correct 
small a behaviour to order a 2, we require for d = 4, a list of all gauge-invariant 
operators of dimension 6, invariant under parity and 17r rotations. We find that 
there are only 3 such independent operators, and a particular basis is given by 

where 

and D ,  is a covariant derivative 

S l  = 1  • t r J . . 0 J . . o ,  
~,v,O 

$2 = E t r Y , , o J . , o ,  (2.7) 
be. v.O 

$3 = X tr J, ,~J~,,v, 

J . . .  = [D~, F . .  ] ,  

F.° = ! [D. ,  D d ,  
g 

(2.8) 

D ,  = 0~, + gA, , .  (2.9) 

Any other gauge-invariant operator  of dimension 6 can be written as a linear 
combination of these plus a total derivative, e.g. 

X g tr F,,,Fv,,Fo, = ½($2-S1) +total  derivative.  (2.10) 
~,v,p 

The L E L  then assumes the form 

3 
~fe~f=Z0(g2)tr • F ~ ,  + a  2 E Z , (g2 )&.  (2.11) 

tx,u i = l  

The small a dependence cannot be systematically improved merely by adjusting 
the coefficients ka in (2.6). Analogously to the &4 case, where next nearest 
neighbours are also added in step 3, one must in this case add to the action terms 
involving longer paths. To the order in a we are considering we propose that it 
suffices to take into account (in a specified way) only paths of length 6a. The 
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~ c 2 v  

Fig. 1. Curve C~.,,a.,2c, enclosing a single 
plaquette with centre ,f and lying in the /x, u 

plane. 

i 
A J r  

I 

Fig. 2. Rectangular la ×Ja loop in the /z, 
plane. 

proposed improved lattice action then takes the form 

d - - 4  3 a 
S = - - - ~ - -  ~ ~ ~. CR~(g 2) tr (1 -- UR(~)) ,  (2.12) 

g i = 0  C£~T i R 

where ~ are oriented paths belonging to sets Ti, i = 1, 2, 3 of structurally 
equivalent curves, 

To = set of curves enclosing one plaquette (fig. 1); 

T1 = set of planar curves with perimeter 6a enclosing two plaquettes (fig. 2 with 
I + J = 3 ) ;  

W2, T3 = set of non-planar curves depicted in figs. 3, 4 respectively. 
Note that the number of different classes matches the number of independent 
operators in the LEL  (2.11) as expected. The sum over all irreducible representa- 
tions R is included for possible later applications. 

Already in lowest order perturbation theory one finds contributions in (2.5) with 
/' = 1, unless the coefficients in (2.12) are suitably adjusted. For the ~b4 4 theory the 
elimination of the lowest order ] = 1 contributions is a purely kinematical problem, 
and involves [8] replacing the difference operator  by an amputated SLAC derivative 
[15]. In gauge theory the procedure is analogous although in this case, of course, 
gauge invariance enters as an additional constraint. Introducing the gauge potential 
A ,  (x) through 

Uu, R(X ) = e ia~A~R' (2.13) 

one develops Feynman perturbation theory. For this one requires a suitable gauge 

Fig. 3. Non-planar "L-shaped" curve with Fig. 4. Non-planar parallelogram with perimeter 
perimeter 6a. 6a. 
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fixing, and a covariant a-gauge will be employed in our calculations. To lowest 
order, with which we are concerned in this paper, full details of the gauge fixing 
are not necessary, since only the transverse part is required. 

At first sight one might think that improvement at lowest order means chosing 
the coefficients in (2.12) such that the inverse A-propagator ,  with A ,  defined via 
(2.13), takes the form (before gauge fixing) 

g ,~k  2 - k , k ~  + O(a4k6) . 

However  this is not quite correct (and incidentally cannot be achieved). Comparison 
of the continuum and lattice expressions for Wilson loop expectations shows that 
improvement  to lowest order means improvement  of the A-propagator  multiplied 
by a definite factor. This is dealt with in the next section. 

3. Gaussian terms in the gauge field action 

Let  ~¢ be an oriented closed curve and U(c¢) the associated phase factor 

iagA~ + 
U ( ~ ) = [[ e , A ~e = A se . 

l i n k  ~ 

Then 

where 

tr (2 - U(c~) - U(C~) +) = a2g  2 tr A(~)2 + O(A3) , 

(3.1) 

(3.2) 

where 

Ik ik; ~ 

A(C; ,q~ , , ,2~)  = a • l • 2  e f , , ( k ) ,  

f~.~(k ) = i ( l ~ . X ~ ( k  ) - l ~ , ~ ( k  )) , 

= m  1 /~, 2 sin ~k~,a. (3.7) 
a 

(3.5) 

(3.6) 

with 

A ( ~ ) =  • A~e. (3.3) 
~ q g  

Let ~L# be the directed link from x to x +e~,  • = + 1, and introduce the following 
Fourier transform: 

Ik ikxZ-ieak~/2 ~ A ~ = •  e A , ( k ) ,  (3.4) 

d ~r/a where lk denotes [[,,=1 l-~/a d k J 2 r r .  

Evidently any A(C~) can be determined from the knowledge of that for a curve 
c~;.,1,,~2~ enclosing a single plaquette in the/x,  v plane (fig. 1). One has 
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We require for our considerations the three types of curves in figs. 2-4. For the 
planar Ia × Ja loop (fig. 2) one fnds  

Ik ik~sin½Ik,a i 1 s n ~Jkva -, "k" , A(fig.  2 ) = a e  e - "-:--r;---]~v~ ) (3.8) 
sin ~k,a sm ~x~a 

and for the non-planar loops of perimeter 6a depicted in figs. 3, 4 one finds 
respectively 

A (fig. 3) = a f k  eikfx+a/2)(--E1 i.,k a/2'~ , . ,  i,2k a/2~ . -  e v I ,~ t tc )+e2e  o l ,  ottc)), (3.9) 

A (fig. 4) = aele2e3 fk eik(x+"~/2+'2~/2+'3¢/2) (3.10) 

× (el e i"k,~/2fo,(k)+e2 e-i%k~a/2T~o(k)+e3 e-%k°a/2?~.(k)). 

For the quadratic contributions to the action one uses (3.8)-(3.10) to obtain 

fk [sin ~Ik,a'l 2 
E C H  E E t r A ( f i g .  2) 2 = a 2  a E C u  E - z - t - v - -  
I . J  . > v x I . J  ~, >~ ~, sm 5k,a ] 

• 1 2 (sm ~Jk~a~ 
x \s-~n 2!~,a ] t r y ~ ( k ) / ~ ( - k ) ,  (3.11) 

and, defining/~2 = y , . / ~ 2 ,  

~2 Y~ 2 t rA(f ig .  3) 2 = 4 a 2  d y. [ [ 2 ( d  ~ 2 ^2 ^2 ^2 - 2 ) - 3 a  (k - k . - k ~ ) ]  
Jk 

× t r [ . ~ ( k ) f . ~ ( - k ) ,  (3.12) 

2 Y. ~, ~ , t rA ( f i g .  4 )3=4a  2-a Y~ [(d 1 2 "2  A2 ^2 - - 2 ) - ~ a  (k -k . -k~) ]  
/ . t 2 > v ~ 0  ~ 1 , ~ 2 , ~ 3  x g t ~ v  

× tr L ~ ( k  ) f , ~ ( - k  ) . (3.13) 

The sums in (3.11)-(3.13), (with Cu = 1), correspond to each unoriented curve taken 
once. 

The quadratic part of the improved action (2.12) then assumes the form 

S ( 2 ) = _ 1  2 ~i [ [ c ° (g2 )+8c l (g2 )+4(d -2 ) (2c2 (g2 )+ca(g2 ) )  
ak 

- (c l(g 2) - c2(g 2) - c3(gZ))a 2(/~ + / ~  ) 

- (c2(g 2) +c3(gZ) )aZ l~e] f~ (k ) f~ ( - k ) ,  (3.14) 

where 

ci(g 2) = ~ 2tRCRi(g2) , (3.15) 
R 
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with 

As overall normalization we set 

6"tR = tr R 'R s . (3.16) 

Co(g 2) + 8cl(g 2) + 4(d - 2)[2c2(g 2) + c3(g2)] = 1. (3.17) 

To  see precisely what has to be done to achieve improvement  we consider the 
expectation value of the Wilson loop for an arbitrary loop ~ on the lattice. To 
lowest order, using (3.2) and (3.3), 

(tr (1 - U (C¢)) oc g2(A ((¢)A (~))0 • (3.18) 

Let  5 ° be a surface spanned by c£. Then, as used previously, A((£) is given as a 

sum of contributions coming f rom the plaquettes on 5 °, and it follows that 

where 

(tr ( 1 -  U(C¢))) = const • g2 ~ ~ f k  e~k(;"-;"') 
p~  5¢' p '~  5o 

x E D~,~,ox(k)eo.~,~ep',oA (3.19) 
k t > p  
p > , k  

Ep.,,v = + 1,  if p is in the 0, v p lane ,  

= 0 ,  otherwise.  (3.20) 

£p is the midpoint  of the plaquette p; and D.~,p~ (k) is the free )z propagator  

(P[,~ (k))~x (k'))o = 8'J(Zrr)aS(k + k')D,~.ox(k), (3.21) 

the functional form of which is determined by the quadratic part  of the action 
(3.14), which is considered in detail in the appendix. 

For the same curve in the continuum formulation one has 

- U((C))coot=const.  g2 • E f eik~;P-;"') (tr (1 
p~,gP P ' E ~  ° dk,r 

- k.k,,kok~ 
x . , ~ , . ~  DC.°"toxep,~.ep, o~, , (3.22) 

O > A  

where 

D~°"~,(k) = k 2(6xvk,.ko -8x,~k~k. +8o,~k.k~, -8o,.k,.k;,) (3.23) 

and lk.r denotes some ultravioletly regularized integral. Comparison of the lattice 
and cont inuum expressions (3.19) and (3.22), leads to the conclusion that, to lowest 
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order ,  the small a behaviour  is improved  by ensuring that* 

k ,k~kok~  c o n t  ) + O ( a  4) (3.24) 

This is achieved by considerat ion of the inverse propaga tor ,  and choosing the 

coefficients ci in such a way that  the expression in square brackets  in (3.14) multiplied 
by the factor  

k ~ k J  = l - v ~ a  t~¢~, " ' "  

has no term order  a 2 for g = 0 (consult the appendix for details). This occurs when 

c2(0) + c3(0) = 0 ,  (3.25) 

c0(0) + 20c 1(0) + 4c2(0)(2d - 7) + 4c3(0)(d - 5) = 0 .  (3.26) 

Hence ,  combining (3.17), (3.26) and (3.27) we have 

1 
C l ( 0 )  = - - 1 2 ,  ( 3 . 2 7 )  

c0(0) - 4(d - 2)c3(0) = ~. (3.2 8) 

Note  that  a fur ther  relat ion is required  to fix all the coefficients ci(0) completely**. 

In the formula t ion  of the p r o g r a m m e  descr ibed above,  we cannot  set c3(0)=  0 at 

this stage. To  see this, note  that  the relat ion be tween  the Zi(0) occurr ing in the 

L E L  (2, 11) and the ci (0) are non-l inear .  In particular,  start ing with cz(O) = c3(0) = 0 

implies only that  Z z ( 0 ) + Z 3 ( 0 ) = 0 ,  since $2 and S3 are the same (up to total 
derivatives) to lowest order  but  differ in o rder  g (2.10). 

Finally we remark  that  no criteria for  special choices of the representa t ion  

coefficients cRi(0) making  up the ci(O), (3.15), emerge  f rom our  weak coupling 

considerat ions  so far. 

4. The Wilson loop in lowest order 

Define the coefficients W,R(C£) by (dR = dim. rep. R) 

lnd-~(tr U R ( ~ ) ) = - -  ~ (a4-~g 2)" ,=1 (2n)! W,R(~) .  (4.1) 

Then,  in lowest order  
t N2--1 

d--2 R 
Wla(C£) = a dRR i = 1  (Ai(%~)Ai(%~))°" (4.2) 

* The origin factor in (3.24) can be understood as arising from the fact that the lattice link potential, 
defined in (2.13), is to be set in correspondence with a line integral in the continuum theory. 

** The relations (3.27) and (3.28) for c3(0)= 0 were known to G. 't Hooft and M. Liischer. (Private 
communication from K. Symanzik.) 
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In particular, for a planar I a x  Ja loop we have 

Ik sin ½klla 2 sin½kdJa 2 . . . .  
WlR(I,J)=aacR {--TT---'~ (--I~T---. ~ LPldld(/'~) 

ksin~kla] \sin~kda] " ' 

11 

(4.3) 

where Dlaaa(k) is the transverse free propagator (3.21) and 

tr R~R ~ = CR = ( N 2  -- 1 ) t R  (4.4) 
i dR 

For the simplest Wilson action, ci = O, i > 0 and CR0 = 0 for R # the fundamental 
representation, one has 

W1R(L J)wilson : CRII(L J, d) , (4.5) 

where 

Ii (I, J, d) = ad lk [sin ~kl[a~2 (sin !kaJa~ 2 l~ + [~ 
\ s i n l k l a ]  \sin~kaa] ~2 (4.6) 

with exact known results [16], 

II(L J, 2) = IJ, 

Ia(1, 1, d) = 2/d,  

II(L J, 3) t.~o~ 1 ( I  In J + J  In I ) ,  

oo 

II(LJ, d) r,j'~o~ (I +J) f dfl I a 1 (fl) e-(d-1)t3, 
Jo 

(d/> 4) .  

(4.7) 

Now consider the static potential (2.4) in four dimensions (d = 4). For the modified 
actions only the terms in D la.la with n o / ~  factor in the numerator  [see in particular 
(A.8)] contribute to the leading J ~ oo limit behaviour. Let  L = aI, T = a J, then 
one sees for the special choice of coefficients determined in the last section [see 
(A.12)] 

lim 
T~oo 

a,L fixed 

1 "J5 d3k (1 - c o s  (Lkl/a) 
~WIR(L J)  = CRa-1  ,~ (2--~)3 2 Y~=I (sin 2 (kJ2) +~ sin 4 (kJ2)) 

1 f'~ d3k 1 
a~O" CRa j_,~ ( 2 7 r )  3 2 ~ 3 =  1 (sin 2 (kJ2) +3~ sin 4 (ki/2)) 

C R  "1"- O(a 4) (4.8) 
2L 
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The important point is that (by construction) the static potential has an improved 
small a behaviour in lowest order; after subtraction of the linear divergence, the 
corrections are of order a 4. 

Finally, we record the XR(/, J),  often used in MC analyses since (just like the 
static potential) they are free from the kink divergences, 

((tr U R ( I ,  J ) ) ( t r  U R ( I  -- 1,  J - 1))'~ 
XR(I, J ) =  - I n  \{Tr ~ _ ~ ) - ~  ~ r ~ _ ~  ' ~-~1 

(a4-dg2)" o~ 
= Z X , R ( I , J ) .  (4.9) 

(2n)! 

One has 

fksin k xa (I - ½) sin kd a (J - ½) a-2X1R(L J)  = C R  a d - 2  - - - - 1 ~ - - -  - - -  • sm ~kaa sin½kda L l l d ' l d ( k )  (4.10) 

The calculation of Wilson loop expectations in next order involves perturbation 
theory with Feynman rules derived from the action (2.12). The vertices are algebrai- 
cally complicated, and the result of the lengthy computation will be presented in 
a subsequent paper. 

5. Discussion 

In this paper we have discussed the improvement of the Wilson action on the 
lines suggested by Symanzik [8]. The lowest order in perturbation theory has been 
treated in detail, and the next order calculation is in progress. The hope is that for 
a systematic improvement programme for the gauge-invariant observables, it will 
be sufficient to use the proposed action (2.12) and not to complicate the description 
further*. We stress that the conjecture above has not yet been proven; the self- 
consistency, or otherwise, should show up in the next order. 

The qualitative nature of the improvement is presently not known. For example 
one can raise the question as to how delicate is the balance between the improve- 
ment, in the sense of Symanzik, and the finite size effects or more elusive non- 
perturbative effects. Note for example that, in general, the improved action violates 
Osterwalder-Schrader positivity (a property holding for the Wilson action [17]). 
However, it is sufficient that this property is restored in the continuum limit, just 
as ordinary rotation invariance should be, although this may be difficult to establish 
analytically. Strong coupling expansions with the improved action also become 
more technically involved and have not been investigated yet. However improve- 
ment of rotational invariance of the strong coupling expansion is not the immediate 
aim of the programme at this stage; (for such attempts see e.g. ref. [18]). 

* For example one could imagine changing the group structure SU(N) to a larger group and regaining 
the SU(N) theory only in the cont inuum limit. Possibilities of this type have been stressed to me 
by Symanzik. In any case an improved definition of certain quantit ies will also be necessary. For 
example the x ' s  are not suitably improved as they appear  in (4.9). 
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The philosophy, at present,  is merely to do ones best within the f ramework  of 

per turbat ion theory; to investigate the order of magnitude of corrections to quantita- 
tive predictions and to see whether  they go in the correct direction. The hope is 
that ratios of masses become smoother  functions of g in the neighbourhood of the 
continuum limit. From a practical MC point of view the addition of paths of length 
6a to the usual Wilson action, requires more  computer  t ime in order to obtain 

comparable  statistics. This can be appreciated by considering the number  of curves 
ni, belonging to the various classes Ti (defined in sect. 2), passing through a given 
link 5¢, which are needed in one step of the MC updating procedure.  They are given 
by 

no = 2 ( d -  1), 

nl = 6 ( d - l ) ,  

n2=  1 2 ( d - 1 ) ( d - 2 ) ,  
(5.1) 

n3 = 4(d - 1)(d - 2 ) .  

Thus for d = 4 one has, for example,  n2 = 72 compared  to no = 6. Montvay has 
suggested that the curves in classes T1,2,3 could also be treated statistically. Cleverly 
constructed p rogrammes  could also reduce the, at first sight, large effective factor. 
In either case, working efficiently with more complicated actions, as the ones 
discussed above, seems to be one of the applications of parallel processors. 

Indeed a p rogramme using an action with paths belonging to classes To, T1 and 
T3 has been used by Wilson [13] in his real space renormalization group studies. 
Wilson's theoretical ideas are similar spirit to those of Symanzik, but the latter 
seems to be more  systematically implementable.  Working on an 84 lattice, Wilson 
found that the convergence of effective actions was more rapid, than the simplest 
action, for a choice of coefficients 

c0 = 4 .376,  Cl = - 0 . 2 5 2 ,  c 2 = 0 ,  c3 = - 0 . 1 7 .  (5.2) 

Whether  these numbers  are optimal in some respect is not made clear in the paper  
[13]. The numbers  differ somewhat  from those given in (3.25), (3.27), (3.28), but 
it must be recalled that the fit is made at finite g. Note also, that Wilson's coefficients 
(5.2) still obey the constraint (3.26) accurately, a relation which ensures some extent 
of rotational symmetry.  

One could imagine running MC programmes  in various regions of ci space and 
determining some opt imum set of coefficients experimentally. This would however  
require an enormous  amount  of computer  t ime and in addition no estimates of 
AIJAcont could be explicitly made. Preliminary MC experiments  will first be made 
for the non-linear o '-model in two dimensions. Success for Symanzik 's  p rogramme 
in this case would encourage application to the theory of QCD.  
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Appendix 

Consider lattice actions which to lowest order in g have the form, after covariant 
gauge fixing. 

z f ,r + 
~,v OL 

with q.~ satisfying: 

(i) q~.. = 0 for all t~ ; 
(ii) q~,~ = q ~  ; 
(iii) q. . (k)  = q . v ( - k ) ;  
(iv) q.~(O) = 1, /x # v. 

(A.1) 

The free propagator  defined in 

t "  
i i | e i k ( x - y )  ( A .  (x)A.  ( y ))0 = 8 ii e ia (k - k  ) / 2 D .  ~ (k ) 

~k (A.2) 

is the solution to the equation 

o 
(A.3) 

It  can be written in the form 

D~(k  ) = (fc2)-Z[al~vk; + ~ (k~.~ - l~43~v)a.fl~] (A.4) 

with A .v  independent  of c~ and satisfying the propert ies (i)-(iv) above, For the 

Wilson action 

= Zl, Wils°n wi,so. = ( 1 - 6 . v )  - - . .  (A.5) q/zv 

For a general q.v the functional dependence of A on q is more  complicated for d > 2. 
Defining, for dimension d 

a D _ I  A. = ( - ~  det (A.6) 
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one finds for the cases d <~ 4, 

/12  - - - - q 1 2 ,  

15 

a 3 = E k  2 [I q~., (A.7) 
Iz vYa/x 

A4=E/~4 [1 q~.+  E "2"2 k .k ~q,~(q,.,q~..~ + q.~.p),  
I ~ vY~Iz l,~?>v 

0">1" 
{a,r}n{t*,v}=~ 

and the matrix element A12 (and the other elements by appropriate replacement 
of indices) given by 

1 
d =2: A12 =~22, 

d 3: A12=l[q13(l~2-1~2)÷q23(l~ 2 - . 2  ~2 = k l ) - q l 2 k 3 ] ,  
a3 

d = 4 :  A12=~4[(fc2-fc22)(q13q,4fc2 +q13q34+~ ^2  + q14q34k4 ) 

(A.8) 
2 " 2  2 2 "~2 

+ (/~ - k l )(q23q24/~2 + q23q34~3 + q24q34k4) 

+q13q24(~ 2+ 3J~ 2 

^2  ^2  _ q 12q34(/~32 +/~a2 )2 _ (q13q23 + q14q24)k 3k4 
2 *2 " 2  *2 *2 *2 *2  *2 -q12(qla~1k4 +q23k2k4 +q24k2k3)] + q 1 4 k i k 3  

The free propagator of the transverse/~s is given by 

(jr~ (k ) f~  (k '))o = 6 '~ (2~r)d6 (k + k ')D,,~,o~ (k),  (A.9) 

with 

(k)=  (~2)-2 {~ ~2[~pAho.(~hv~g _Sx,~v)_~aAo,~(aov~ " _ ao~, ) ] 

-l~,J~ofcvfc~, lAx,. - A h .  + Ao. + Ao,~ -Ao~,]} . (A.10) 

For the special case/x = p, v = h we have 

=l ,ord2 
| 1 "2 "2 
|-7-(qlak1 +q23k2), f o rd  = 3 ,  
Lzl3 
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1 A 2 ~2 
= -~44[kl (q,3q 14kl + q13q34]~32 -I'- q14q34/~ 2 ) 

^2 A2 ^2 A2 
+ k z (q23q24k 2 + qe3q34k 3 + q24q34k 4) 

A2 2 
+kl~z(q13qzg+q14q23)], f o r d  = 4 .  

Remark, in particular, a relation which we use in sect. 4, 

Note also, the identity 

and the special Wilson case 

(A.11) 

1 
D l d ,  l d  = / ~ # ( ~ q . a / ~ )  [ (A.12) 

k a =0 k d =0 

}~ qg~D.. , . .  = d -  1 (A.13) 
bL>v 

DWi,son /~2u + g~ (A.14) 

For later numerical calculations working with the improved action, we require the 
special case 

1 (A.15) q ~ . . = ( 1 - 8 . v ) ( l  +ca2[l~ +l~Z~]), c - 1 2 .  

Then 

and 

A2 = 1-ca21~ z , 

A 3 = ( l + c a Z ~ c 2 ) ( ] c 2 + c a 2 ~ 4 )  +3c2a41-II~2,,, 

) 
+ lc2a4  ((]~2)3 + 2 ~ g6 _ g 2  ~ / ~ 4 ) l  + 8c3a6 y ~/~4 I I  v~p~ 

(A.16) 

^2 ^2 ~4) A3A12=]~2+ca 2 k k 3 + ~ k .  , f o r d = 3 ,  

A4A,2 = (#2)z +ca21~2(2 ~ ~:  + ~2[#~ + #] ] )  

2 
2 2 ( ( =  "4) +/~2 "4 A2 "2 "2 2"2 ^2) +c a k .  ~ k . ( k 3  + k 4 ) + ( k  ) k3k4 . 

-- ix - 

(A.17) 
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One immediately checks that in each case 

8 .~) (1-ca  [k. + / ~ ] + O ( a ' ) ) .  A.~ = ( 1 -  2 ^2  

Thus 

2 -I- ~4 

and it follows that (3.24) is satisfied. 

17 

(A.18) 

) 
perms + O ( a 4 ) / ,  

(A.19) 
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