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The implementation of Gauss's law in perturbative calculations in temporal gauge is achieved through an explicit con- 
struction of the vacuum state. In this scheme the free gluon propagator is calculated. Terms in addition to the principal value 
part are found. 

It is well known that  perturbative calculations in 
non-abelian gauge theories profit  from the use of  the 
temporal gauge since there are no ghosts and the 
hamiltonian has a simple polynomial form. One of  the 
problems discussed in the recent literature is the regu- 
larization of  the propagator o f  the gauge field [ 1 - 3 ] .  
General methods as the path integral or canonical 
quantization as well as the principle of  unitarity have 
led to a principal value prescription. A recent calcula- 
tion by MOiler and Ri~hl [4] of  small coupling expan- 
sions on a lattice has shed doubts  on this regulatiza- 
tion. These authors propose an improved propagator.  
Caracciolo et al. [5] come to a similar conclusion by 
studying the Wilson loop in temporal gauge. 

In this note we propose a construction of  a physical 
vacuum explicitly satisfying Gauss' law. This leads to a 
limiting procedure that has to be aptJlied to every or- 
der of  perturbation theory.  For  the free propagator we 
arrive at the usual principal value prescription plus 
terms constant respectively bilinear in time. In fourth 
order it is exactly these latter terms leading to additional 
contributions which can be simulated by a change in the 
free propagator of  the kind proposed by refs. [4,5 ]. 

In temporal gauge the time components  of  the 
gauge fields A u (a refers to the colour of  the field) are 
set equal to zero,Aao(t,x) = 0. The hamiltonian of  a 
pure non-abelian gauge theory without  fermions takes 
the simple form 

H = l  f ( E a E  a + BaBa) d3x (1) 

in the chromoelectric and chromomagnetic fields 

ET---aoX  BT= ' a , - 7 eil x X k . ( 2 )  

The space components of  the field strength tensor are 
as usual 

a Ok a bc b c Fjak=O/Ak_ A/ +gfa A /Ak"  (3) 

Here g is the coupling constant,f  abc are the structure 
constants of  the non-abelian group. The canonical 
quantization scheme starts from the canonical commu- 
tators at equal times for the gauge fields and their time 
derivatives 

[Aa(t,x), A~. (t ,x')] = 0 = [Ea(t ,x) ,Et( t ,x ' )]  , (4a) 

and 

[Ea(t,x), Ab(t ,x ' )]  = i6 ab5i! 5(x--x'). (4b) 

Using the covariant derivative 

Dfb = 6 ab aj - gfabC A~, (Sa) 

Gauss' law has the form 

DfbE t = 0  (5b) 

for the classical chromoelectric fields. Since it does not 
contain time derivatives it does not  occur among the 
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Hamilton equations in temporal gauge and has to be 
required as a condition on the physical states of  the 
theory 

DfbEplphys) = 0. (6) 

In the interaction picture the Maxwell equations in 
temporal gauge read 

(I~Si] + ~iaj)a 7 = O. (7) 

The gauge field A a can be decomposed into a trans- 
verse field A aT free of  sources and a longitudinal field 
A aL free of  curls 

a _ aT +AaL(t,x). A i ( t , x  ) - A  i (t, x) (8) 

The Maxwell equations for the two fields read 

[-qA aT = O, ( E ] ~ i :  + 8ia/)ATL = 0. (9) 

The canonical commutation relations that do not 
vanish among the components read 

[AaT(t, x),  O0AbT(t, X')] 

= i8 ab [ 6 i 1 6 ( x - - x ' )  -- di/(x-x')],  (10a) 

[AaL(t,x), aoA~L(t,x')] = iSabdii(x--x' ), (lOb) 

di/(x-x '  ) = a ia j A -18(x--x'). (lOc) 

According to Frenkel [3] the longitudinal field as de- 
termined by the Maxwell equation (9) is at most linear 
in time so that we may write 

AaL(t,x) = Oi[(--A)- 3/4xa(x)+ t(_A)-l/4xa_(x)]. 
(11) 

This takes the explicit representation of the operator 
( -  A) a into account: 

(--A)c~f(x) = f d 3 x  ' Kc~ (x-x ' ) f (x ' ) ,  (12a) 

with 

Ko~(x ) = F  d3k (k2) a e x p ( i k . x )  
a(2rr)3 

= 22c~+3/2 P ( a +  3/2) 1 
(12b) 

(2703/2 r ( - a )  ixl2a+3" 

The particular powers of  A are chosen such that the 
hermitian scalar fields ×+, X -  are of  the same dimen- 
sion. As a consequence of  (10b) they fulfil the com- 
mutation relation 

[xa(x),  x_b(x')] = ifabs(x--x'), (13) 

with all other combinations vanishing. In order to sat- 
isfy Gauss' law for physical states perturbatively we 
impose on the unperturbed vacuum the constraint, 
see also refs. [3,6] 

aiEa(t, x ) [ ~ )  = 0, (14a) 

which implies 

X_a(x) [~2)= 0. (14b) 

In order to present an explicit construction of  [~2) we 
decompose the X'S into 

x_b(x) = 2-1/2 [ab (x) + ab+(x)] , 

xb+(x) = 2-1/2i[ab(x ) - -ab+(x)] ,  

with 

b e ( x ) ,  aC+(x')] = aeC (x_x'), 

(15a) 

[ab(x),  aC(x')] = 0 = [ab+(x), aC+(x')]. (15b) 

We introduce the Fock-vacuum 10) by 

ab(x)lO) = 0. (16) 

The construction of t ~2) is analogous to a limiting 
process given in ref. [7] 

1~2) = lim I~x),  (17a) 
h ~ l  

with 

,~2x)=Nx e x p ( - ~  faC+(x)aC+(x)d3x),O), (17b) 

where N x is a normalization ensuring (~x  I~x) = 1. It 
tends to zero as the number of  degrees of  freedom as- 
sumes infinity. Matrix elements have to be calculated 
with 1~2x), the limit X ~ 1 has to be carried out from 
below at the very end. 

The state 1~2 x) guarantees Gauss' law (14b) in the 
limit X -+ 1 

X_e(x) l~2x) : 2 -1/2 (1 -x )  ae+(x)l~2x). (18) 

In contrast to the canonical quantization of  ref. [3] 
the vacuum state [~2)secures the implementation of  
the commutation relations (13). 

The calculation of the free longitudinal propagator 
yields 
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aL bL = _½i6ab (~2xITA i ( t . l ,Xl)A]  ( t 2 ,x2 ) [~x )  

X {It 1 - t 2 1 -  [ (1 -X) / ( I+X)]  t l t  2 A1/2 

ioabL _ l i ~ab 
q, eft - -- 

X /It 1 - t21+ io( t l+t2)]  dil(x 1 - x 2 ) ,  (21) 

+ [ ( I+X) / (1 -X)]  zail/2}dij(Xl-X2). (19) 

The first term is independent of X and is the usual 
longitudinal propagator with principal value regular- 
ization. The second term vanishes with X ~ 1. The 
third term is time-independent, diverges as X ~ 1 but 

does not contribute to gauge invariant quantities. Ob- 
viously, the product of the second and the third term 
may lead to )t-independent, however time-dependent 
contributions in higher orders. As an example we look 
at the four point function of the longitudinal gauge 
fields. We find 

(~2 x [TAaL(tl  ~¢ 1)A/.b L(t 2 ,x2)A~L(t3 ,x3)AdL(t4  ,X4)[ f~h) 

_- --X ~ab~edtJ,o kit 1 t2l It 3 -- t41 

where o is one of the values +1, - 1 .  
The arguments presented here show how the im- 

proved propagator of refs. [4] and [5] can be under- 
stood on the basis of a canonical quantization as an ef- 
fective propagator that reproduces the fourth order re- 
suit. The i in front of o in eq. (21) guarantees the cor- 
rect hermiticity properties of the T-product of the 
hermitian longitudinal fields * 2. 

Of course, the h-limiting procedure can be applied 
to any order of perturbation theory. Only higher or- 
der calculations can decide whether the effective 
propagator reproduces the results of the X-limit also 

there. 

4-2 It is consistent with the findings of Miiller and R~ht [4] 
since they are working in euclidean space-time. 

t l t 2 A ~ l / 2 A ~ l / 2  -1/2 +1t2 - --t3t4A1 A 3 ) References 

X dif (x l - x 2 )  dkl(X 3 - -x4)  (20) 

+ other contractions + O(1 -X)  + O ( ( 1 - X ) - I ) .  

As expected, there are finite terms bilinear in time in 
addition to the product of the usual propagators. If  
one looks for instance into a one-loop propagator in- 
sertion one finds that the finite terms of all contrac- 
tions are reproduced by the real part of the product of 
effective propagators of the form * 1 

:F1 The imaginary part of the product of two effective propa- 
gators does not contribute to a gauge invariant quantity as 
calculated in ref. [5]. 
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