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Abstract. As a first step towards a duality transfor- 
mation for the SU(2) lattice gauge theory in 3 dim- 
ensions, the integration over all gauge variant vari- 
ables is performed explicitly after introducing gauge 
invariant auxiliary variables. The resulting new 
Hamiltonian is complex and involves a sum over 
closed loops. Each of these loops is confined to an 
elementary cube of a dual lattice. Like in a previous 
investigation for the 0(4) symmetric Heisenberg fer- 
romagnet Riihl's boson representation is used to 
derive the result. 

1. Introduction 

It is commonly believed that nonabelian gauge theo- 
ries are the most promising candidate for a correct 
description of hadronic matter. However, the exis- 
tence of the essential property of confinement has up 
to now only been conjectured. 

Some time ago, ' tHooft  and Mandelstam [1, 2] 
suggested a dual Meissner effect as a possible quark 
confining mechanism. It thus seems desirable to de- 
velop a concept of duality transformations for non- 
abelian gauge theories. 

Up to now, duality transformations have only 
been worked out for abelian systems [3]. There it 
turned out to be important to formulate the theory 
in terms of gauge or rotation invariant variables. In 
a previous paper [4], the analogue of this step has 
been carried out for the simple case of the 2-dimen- 
sional Heisenberg ferromagnet with global 0(4) sym- 
metry. Our main concern, however, are nonabelian 
gauge theories. In the present paper, we apply our 
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method to the SU(2) lattice gauge theory in 3 dim- 
ensions. 

To avoid the appearance of vector coupling coef- 
ficients, use is made of a formalism introduced by 
Rtihl in his investigation of SU(N) lattice gauge 
theories [-5, 6]. Its main ingredient is the Bargmann 
space realization of group representations of SU(N) 
[7]. 

After a character expansion of the partition func- 
tion and introduction of auxiliary gauge variant C 2 
variables the integration over the original SU(2) 
variables can be carried out. Riihl's formalism al- 
lows to sum explicitly over the irreducible unitary 
representations of SU(2). The quartic interaction of 
the auxiliary C 2 variables can be rewritten in qua- 
dratic form with the help of new gauge invariant 
complex variables. The gaussian integrals over the 
~2 variables factorize and result in a product of 
determinants each of which is expanded into a sys- 
tem of closed loops. 

In contrast to the situation for the 0(4) sym- 
metric Heisenberg ferromagnet [4], these loops are 
localized, i.e. they are each confined to elementary 
cubes of the dual lattice. 

As intended, the new system of closed loops is 
formulated entirely in gauge invariant variables. 

Unfortunately, our result has the undesirable, bu t  
possibly inevitable feature that the new Hamiltonian 
is complex and thus does not allow an interpre- 
tation as a system of statistical mechanics. 

2. The Model 

We consider Wilson's action for an SU(2) gauge 
theory on a 3-dimensional cubic lattice A c E  3 

L(u) =fl- ~ tr up (2,1) 
2 p  
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Fig. 1. Orientation of links on the lattice 

Fig. 2. Orientation of plaquettes on the lattice 

where up is the product of four SU(2) variables u b 
attached to the links of the plaquette p. 

The partition function of the system is 

z = ~ H dub eL(") (2.2) 
beA 

where du b is the normalized Haar measure on SU(2). 
We assume periodic boundary conditions. If we 

further assume that the lattice contains an even 
number of links in every direction it is possible to 
orient the links in alternating order (see Fig. 1) so 
that the lattice consists of a set A~ of starting points 
of links and a set A I of end points. Then each link is 
denoted by b = ( x y ) ,  xEAi, yeAj,. 

On this lattice, each plaquette variable up takes 
the form 

up = Ub~ Ub- 1 Ub~ Ub~ 1. (2.3) 

We have an additional freedom of choice for the 
orientation of each plaquette. We will use the no- 
tation bsap  resp. b - t e a p  if a given link b belonging 
to the boundary of the plaquette p has an orien- 
tation parallel resp. antiparallel to the orientation of 
the plaquette p. If b-~eap  then up will contain the 
inverse u ;  x rather than u b. In the present case, it is 
convenient to choose alternating orientation for the 
plaquettes, as shown in Fig. 2. 

We will further use the notation (p, p')/x b for an 
unordered pair of plaquettes touching at the link b. 

3. Integration of the Group Variables 

The partition function is expanded into characters of 
irreducible unitary representations of SU(2) 

z = I1 dub I1 Z % Xj (up) (3.1) 
b P Jv 

with the expansion coefficients 

cj = ~  (2j + 1) Izj  + l(fl) (3.2) 

where the I ,  are modified Bessel functions�9 
Each plaquette carries a representation j = 0 ,  

1/2, 1, ... of SU(2). The characters are decomposed 
into 

z j % t  = Y J D  m2(Ub21) Dm,m'l(Ubl) 
ram" 

D 2<(ub3 ) j -1 �9 D,,i,,l(Ub4 ). (3.3) 

In complete analogy to [-41, the integration over the 
field variables is performed in the Bargmann space 
formalism [5-71 where a Hilbert space of entire 
analytic functions o v e r  G 2 is introduced with gau- 
ssian measure 

d#(z) = 1  [ I  dxidyi  e-x~-'§ 
7~ i=1,2 

- - d z d z  + e-~ § 

Z :  ~11~ 2" Z i = X i + i y i .  
Z2 

The analytic homogeneous polynomials of degree 2j 
form a subspace carrying the irreducible represen- 
tation D j. A basis of this subspace is given by the 
polynomials 

,zjwm,.zj m 
v j ( z  ) = "1 ~2 - j < m < j  

[ - ( j+m)!  ( j - m ) ! ]  1 /2 '  = = 

so that the representation matrices D j take the form 

d (p) ' J ' p, z ) Vm,(Z ) (3.4) 

with the kernel 

K(u; p, z) =e  ~ +'"%. 

Using 

OJm, rn(~ l -  1)~___(- 1)2j--m m" D J m ,  _m,(iA ) 

we get 

D~,m(U- ~ ) = ( -  1) 2j . . . .  " ~ d#(p') d#(z) 

�9 K(u; p'+, z +) VJ_m(p'). (3.5) 

For each link b = ( x y )  of each plaquette p we have 
introduced two ~;z vectors ,~(') and z(') where the p rp ,  x -p,  y 
resp. z variables are associated with the m resp. m' 
variables and therefore with A i resp. Ar 
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The partition function now reads 

z= ~ H du~ l-I {E c~. l- [ E ( - 1 )  j~-'~,x 
b p j~ x~Op m~,~ 

x~Ai 

�9 [I  E ( - iY  '-~''" [I  [Id~(P,.~)e~(z;.,.) 
yc-Op rap, l, b e O p  
y~A~ b = <xy> 

?~gp, x l v,  0 rc p ,  X I~p, 3~t p,  y l J  

1] [I d~(;'.,~) d~G.) ~%.,,G,,) 
b - l e O p  
b=<xy> 

. ~+ ~+ �9 K(u~, p~,~, . , , , )  ~L%,&;,)]}. 

Doing the summation over m 

2 ( -  1)~-" ~(p)  ~v:m( p ' ) =  (P+eP') ~ 
,, (2j)! 

(3.7a) 

and over m' 

E ( -- 1) j-m" V)'(z') VJm'(Z) __(Zig 
Z+) 2j 

m" (2j)! 
(3.7b) 

we get 

z= ~ 1-~ du~ D #(p, z) D #(p', z') 
b 

{~jpc. V[ 'Up,  x~ x ) o l ~ k P ,  YC"~p,y' �9 l~p [n ~ o n+ ~2jp (Z t ~ Z+ "~2jp 

x ~ A i  y ~ A y  
"x 

t . tq- q- 

) b~Op b - l a ~ p  

where 

D # ( p , Z ) ~  H H d~([gp, x) H d#(zp,y), 
p xaOp yesp 

x e A i  y e A  I 

Setting 

~p~,~ if be~p 
7;,~(b)=~p,+ if b - l e @  

{zi  %,~(b) = if b~Op 
z if b - ~ O p  

(p,p')Ab denotes an unordered pair of plaquettes 
with common link b. The e products in the exponen- 
tial relate variables belonging to the same site but to 
different plaquettes. 

With each corner of each plaquette we associate 
a complex variable vp,~ by means of the complex 
contour integral 

(z%z+} 2~ 1 dz e~,~+ (3.12) 
(~2j)! - 27c i { z 2J+1 

The sum over j yields a factor 
(3.6) 

B('g p)--~-(Ep 1 ..g p) e~('cv +rp 

zp =- ~ re,:, (3.13) 
xeOp 

for each plaquette (see [4]). 
Thus we arrive at the partition function 

z= j D v D tt(p, z) D l~(p', z') 

( dz v ~ , 

x ~ A i  

dzp, y } 
yeSp 
yEAs 

1-[ exp[v b ~ ('~p, xgYp,,x)(~+y~ l~/~,y)] (3.14) 
b - -  ( x y )  ( p , p ' )  A b  

(3.8) with the abbreviation 

D - i -1-- 

(3.9) 

the integrals over the field variables u v can be done 
by means of the formula 

- •  I: (~ ~i) (a~ § e- ~f ) 
f du e*~?("~v') -27ri ~dve  ~ "J, (3.10) 

The summation is over unordered pairs (i j). 
The partition function is now 

i 

fj~p t " J + 2jp 

xeop (2jp) t /~p (2jp)! J 
x~Ai y~Ay 

I-I exp/-G ~ (~p, xe~p ' ,x ) (~;yE- lo2; ,y)]  (3.11) 
b= (xy) (p,p') ^b 

4. Elimination of All Gauge Variant Variables - 
Loop Expansion 

The quartic terms in the exponential are eliminated 
by introducing one gauge invariant complex variable 

77pp, = -@ p (4.1) 

for each pair of plaquettes (p,p') with a common 
link. 

7~ G 
(4.2) 

The partition function becomes 

~= y o ~D.(~)D~(p, 0D#(# ,  z') 

2~zi t/ xeAi 

"Y~P ~ d'Cp, i e~v'Yz'P"ez~'Y} " B('~p) 

y~Af 

I]  exp [ C  ~ ~ %,~ ~ ~..~ ~ , .  + ~+.~.. ~-~ %.,,+ ~,~.)3 
b =  ( x y >  ( p , p ' )  ,x b 

(4.3) 
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Fig. 3a-c, Possible relative orientations for a given link and two 
neighboring plaquettes 

where 

D/~(r/)= 1-I l dqpp'd~p~ "e ,~.o,~.. 
(p, p') 

The integration over ,o', z' amounts to the substi- 
tution [4] 

~,i ~euz  ~; (4.4) p, x p, x rp ,  x 

within the exponent of the last line of (4.3). 
Due to our choices for the orientation of links 

and plaquettes we have to distinguish three cases 
which are illustrated in Fig. 3. 

The substitution (4�9 yields 

I P~,xSPp',x 

[ z~',~Pp,x'Pp+,x 

[zp,~ zv+~ , s- "~p,,y 
+ 1 + Z - i  O~p,y~, O~p,,y'--~ p ,ys  Zp, y 

+ "Z 72p, yZp, y p, y 

if bcOp, (?p' 
if b leOp,~?p' 

if beOp, b - ~ 3 p  ' 

z +, if b~c~p, c~p' P,Y 

if b-~Op,@ ' 
if b~Op, b-~Op ". 

Evidently, only variables belonging to the same site 
interact. Consequently, the p and z integrals factor- 
ize. 

For  each site x~A~ we introduce two antisym- 
metric matrices 2 and ~c 

~/2 r/w, if xe@, @' 
2pp,(x )=  and be@, @' for any b 

otherwise 

zp.~zv..~rlp p, if xeOp, Op' 
%p,(~) = 

and a matrix p 

ppp,(X) 
--(01 

and b-~cOp, @" for any b 

otherwise 

if xeOp, @' 
and b~@, b-te(~p ' for any b 

otherwise. 

Analogously for each yeAr 

X~,(y) = 

if y ~ p ,  c~p' 
and b-~Op, Op ' for any b 

otherwise 

~,pp,(y)_{i~/2"cp, y'r,p,,y~pp, if yEOp, Op' 

ppp,(y) - 

and bsOp, Op' for any b 

otherwise 

if y6Op, @' 
and b-le@, be~?p' for any b 

otherwise�9 

Thus the partition function takes the form 

z= ~ Dv DII(tl)Dz Dt~(p, z) 

�9 l-I exp 2(�89 +{~. .p ;  ~-'p; +p,.pp. p;.) 
xeAi pp" 

" H exp~(�89 zpeZp,+�89 Z-~ e- ' z~ +p'pp, zp. zv, ) 
y~A~ pp" (4.5) 

where we have introduced the abbreviation 

D - O  f d'cp~) 

The gaussian integrals over z and p are evaluated in 
�9 the appendix. The result is the loop expansion 

z =  ~ Dv DII(rl)Dz 
( - 1 )  s~ 

�9 i -I  e x p  Y~ - -  ~ ( c )  ~ ( c ) ~ ( c )  
xeA i C TIC 

" If[ exp ~ (~- 1)~ v(C) z(C) YI(C) (4.6) 
YeAr C ~C 

where 

~(c)- ]-] 4 I~, 
b ^(p,p ' )  
(p, p')EC 

�9 (c)~ ]~ %z, 
p~C 

~(c)= r[ %~, 
(p,p')eC 

s c is the number of ordered pairs (p,p')cC with 
be@, b-tc~?p ', and n c is the length of the path C in 
units of the lattice constant. For a given site zeA, 
the sum in the exponent extends over all closed 
paths C consisting of ordered pairs 01,P2), 
(P2, Pa)..- (P,, Pl) with (Pi, Pi+ 1) A b for any b~z and 
obeying the restriction that pi, p~+ 1, and Pi+ 2 do not 
share a common link. Paths which are cyclic per- 
mutations of one another are not identified. 

The sums over paths C in the partition function 
(4.6) can be replaced by a sum over equivalence 
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Fig. 4. Simplest allowed path on a cube of the dual lattice. 
• Original site; �9 dual sites 

classes C of paths. We define two closed paths to be 
equivalent if they differ only in initial point or direc- 
tion. Every path C can be represented uniquely in 
the form C = C~ ~ where C O is a simple closed path, 
i.e. cannot be expressed as a power of a path of 
lower order�9 This defines an integer Pc for every 
closed path C. The corresponding equivalence class 
contains 2G/G paths�9 Then the partition function 
can be rewritten as 

z= ~ Dv Dtt(tl)Dz 

�9 V[ exp 2 ~ ( -  1)~-~ v(c) z(c) rl(C ) 
xeA~ ~ Pc 

�9 1--[ exp 2 ~  (--1)~--~ v(C)z(C) 0(C). (4.7) 
yeAf C PC 

Finally, we may replace the sum over all equivalence 
classes C by a sum over all equivalence classes Co 
of simple paths only. The partition function even- 
tually becomes 

z= ~ DvD#(tl)Dz 

�9 l-[ {}-[ [1 - ( -  1) ~ dCo)  v(Co) ,7(Co)]- ~} 
xEAi C-o 

�9 I ]  {I-[ [1 - ( -1 ) ' c z (Co)v (Co)~ (Co) ] -2} .  (4.8) 
y~Ay Co 

In contrast to the 0(4) symmetric Heisenberg model 
[4], the paths are localized, i.e. cannot extend over 
the whole lattice�9 In fact, the allowed paths may be 
visualized on a "dual"  lattice whose sites lie in the 
centers of the old plaquettes. If we draw a cube 
around each original site the new sites lie in the 
middle of the edges as shown in Fig. 4. An allowed 
path is confined to the surface of a single such 
"dual"  cube. It connects "dual" sites in such a way 
that three subsequent sites never lie in a plane�9 If the 
paths are drawn along the dashed lines in Fig. 4 we 
have the equivalent condition that no backtracking 
paths are allowed�9 

The path displayed by a solid line in Fig. 4 is of 
lowest possible, i.e. third, order�9 
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Appendix 

Consider one gaussian integral of the partition func- 
tion (4.5) belonging to a given site x~Ai�9 

l -  ~ [I d#(pp)exp ~_.(�89 
p pp" 

x~Op 
1 + -1  + +iKpp. pp ~ pp.§ pp'p~,)�9 

It is transformed into an integral over real variables 
by introducing vectors rpslR 4 via 

(rl +ir2] 
P P :  \ r  3 §  

Furthermore, we introduce an antisymmetric block 
matrix C consisting of 4 x 4 blocks 

where 

1 i 1) 
and a block matrix D consisting of antisymmetric 
4 x 4 blocks 

o)+.. ;) 
where 

The result of the gaussian integration is 

4 --Z(rp,rp)+pZp, (rp,[C+Dlpp,rp,) 
I :  ~ I l d  r,e p 

P 
= [det(1 - C - D ) ] -  1/2 

1 ~o 1 
=exp g ,-~1 n tr (C + D r  (a.1) 

with 4 
2r;4 i-i 

The powers of D are given by o) 0) 
(Dn)pp, =(pn)pp,  +(P ' )P ' e  E* " (A.2) 

We have to distinguish even and odd powers of C 

(0 ;,) 
+ [(~2)n ~]'P" F* ' (A.3) 
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For the trace in (A.1) not to vanish C has to appear 
an even number of times. 

From the relations (A.3) and 

we see that )c and ~ have to appear alternatingly 
where 2 may be followed by powers of pr and ~c by 
powers of p. Thus, the nonvanishing terms in the 
exponential of (A.1) take the form 

tr...  ~cp "~ 2(pT) "~ #r p"~ 2 . . .  

These contributions may be represented by closed 
paths connecting the centers of neighboring pla- 
quettes which have the point x in common. 

With each oriented closed path C consisting of 
n c ordered pairs of plaquettes (Pl, P2), (P2, P3)""  
(P,c, Pl) we associate the algebraic expressions 

v(c)= I] v /2 
bA(p,p') 
(p, p')eC 

C) = 1-[ 
p~C 

tl(C)= 1-I r/pv'. (A.5) 
(p, p')EC 

Moreover, we define an integer s c which is the num- 
ber of pairs (p, p') e C with b e @, b- * e @'. 

Then (A.1) can be written as 

I = exp ~ ( -  1)~-~ v(C) r(C) rl(C) (A.6) 
c nc 

where the sum is over all closed paths C 

{C} = {(Pl, Pz)... (P,, pl)Ifor all i, (p~, p~+ 2) b, b, 
b = ( x y )  with xeA~ fixed, and 

Pi, Pi+ 1, Pi+ 2 do not share a common link}. 

The integrals belonging to sites y e A  I are being 
treated in a similar way. 
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