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We find, in a high precision Monte Carlo calculation of the glueball mass spectrum in pure SU(3) lattice gauge theory, 

a low-lying oddball with quantum numbers l-+. We estimate its mass to be m(l-+) = 1.68 + 0.18 GeV. We also measure 

the mass of the O-- oddball and find m(O--) = 2.79 * 0.22 GeV. 

Recently, there have been several calculations of 

the low-lying glueball mass spectrum in both SU(2) 
[l-3] and SU(3) [4,5] lattice gauge theory. The ex- 
perimental discovery of such states would help to 
confirm in a very direct way the non-abelian (self- 
coupling) character of the gluonic degrees of freedom 
in strong interactions. It is therefore interesting to 
note that the theoretical predictions [4] for the O-+ 
and 2+’ masses coincide with the masses of the two 
glueball candidates in J/G radiative decays [6] *r ; 
although at present the identification of these reso- 
nances as glueball rather than quark states is contro- 
versial. 

The above situation accentuates the importance of 
those glueball states which have quantum numbers not 
accessible to a quark-antiquark pair (i.e. Jpc = O- -, 
(odd)-+, (even)+-), and faces theory with the chal- 
lenge of predicting their masses. In this letter we re- 
port on our calculation of the masses of two such odd- 
ball states, the O-- and l-+, which we find to be suf- 
ficiently low-lying as to be of immediate experimental 
interest. 

We work on a lattice with 4 lattice sites in each spa- 
tial direction and 16 in the (imaginary) time direction. 
Using the Wilson action [8] for SU(3) gauge fields and 
applying Monte Carlo techniques [9], we construct 
6000 typical gauge field configurations of the vacuum 

*r For a theoretical discussion, see ref. [ 71. 

of this lattice. In this calculation we have taken par- 
ticular care with the random number generation be- 

cause we have found that for the calculation of the 
masses of some states the simpler and most common 
(pseudo-) random number generators give incorrect 
results. Our procedure has been to choose the link to 
be updated at random using true random numbers [lo], 
and then using an improved (pseudo-) random number 
generator [ 1 l] in the actual upgrading of the SU(3) 
matrix on the link. For a more detailed discussion we 
refer to ref. [ 111. Here we only make the one further 
remark that we find this procedure to be particularly 
efficient in reducing the final error. 

We now measure, within these configurations, cor- 
relation functions (#(t’) 4(O)) of zero-momentum 
(translationally invariant) operators d(t). For times 
t’ and t large enough we have that 

Fr’lFt = @(t’) $(O))/@(t) G(O)) 

= exp [ -m(t’ - t)] , (1) 

where m is the mass of the lightest particle communi- 
cating with the operator #. So to obtain an estimate 
of the lowest glueball mass of a particular Jpc we 
construct an operator $J with these quantum numbers 
and measure the correlation functions as in (1). 

In order to minimise the computing time, the spa- 
tial lattice should be as coarse as is consistent with the 
requirement that the glueball size be (considerably) 
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greater than the spatial lattice spacing, a,, and (con- 
siderably) smaller than half the total spatial extent of 
the lattice. On the other hand, in order to minimise 
the error to signal ratio in the measurement of ratios 
of correlation functions as in (l), we obviously want 
to use t and t’ as small as is consistent with (1) being 
accurately satisfied. To best satisfy these requirements 
we deviate from the traditional use of the hypercubic 
lattice spacings; in particular we shall choose at <a,. 
This has the additional advantage of being closer to the 
continuum limit than a hypercubic lattice of spacing 
at = a,. 

The lattice spacings a,, a, are determined by the 
magnitudes chosen for the inverse spatial and temporal 
couplings, 0, and &, in the action [ 1 l] . In making an 
appropriate choice of &, Pt we can use as a guide the 
perturbative relationship between &, & and a,, a, as 
obtained in ref. [ 121. We have used 

&=3.3, p, = 10.68 ) (2) 

which, according to the perturbative formulae [ 121, 
would correspond to at/a, = 0.5 and a, = a (p = 5.8) 
where a (fl) is the hypercubic lattice spacing at inverse 
coupling /3. Of course, we do not expect these low- 

order perturbative results to be very accurate for our 
relatively coarse lattice, so we have also measured the 

lattice spacings directly by comparing the behaviour 
of various correlation functions with their values on 

a hypercubic lattice at /3 = 5.7 [4]. We find 

a, = 0.68a (/3 = 5.7) . (3) 

Because of the limited spatial extent of our lattice, we 
do not have very precise estimates of a,, but we do 
find ourselves consistent with a, = a (0 = 5.8). Our 
measurements thus suggest corrections of 0(30%) to 
the perturbative estimate. In any case, these measure- 
ments confirm that, according to the criteria we spec- 
ified earlier [4], our lattice at these values of &, & is 
suitable for glueball mass calculations. Moreover, on 
the basis of our previous experience [4], we expect 
that (1) will certainly be accurate for t = 2a,, t’ = 3a,, 
and that for heavier glueballs t = a,, t’ = 2a, should 
suffice. 

In the calculation reported on here we confine our 
systematic exploration of wavefunctions to those whose 
basic components are purely spatial loops of the form 
shown in fig. 1. In terms of oddball states we limit 
ourselves to the (expectedly low-lying) O-- and l-+ 

388 

2 
A 

41 4, \ 
X Y 

z ‘1 *’ \Rx(s) z 
A A 

x&y x&y 
42 43 

Fig. 1. The operator that forms the basic component of our 

oddball wavefunctions. Parity inversion takes @1 to 02, and 

a rotation by z about the x-axis takes ~1 to 03. 

glueballs. It is possible that there also exists a light 2+- 
oddball, but at the moment we cannot comment on 

that possibility. Taking the trace of such loops makes 
the operator a colour singlet, and when we talk of any 
loop it is to be understood that this operation has been 

performed. To obtain states of differing charge config 
uration we use the fact that the real part of a loop 
transforms as C = t 1 and the imaginary part as C = - 1. 
Parity inverts a spatial loops as in fig. 1; taking linear 
combinations of a loop and its parity inverse allows us 
to construct operators of P = +l and P = -1. Rotating 

through multiples of n/2 around the three axes and 
taking appropriate linear combinations allows US to 

isolate operators of definite lowest spin J. Finally, 
to isolate operators of definite lowest spin J. Finally, 
by summing such operators over all sites at a given 
time t gives us our zero-momentum operators G(t). 
Applying these rules to the operators in fig. 1, we find 
that a suitable 0 

-- 
wavefunction can be formed from 

Im (#1 - $2) and 1 -+ from Re ($J~ - $12). We con- 
struct a spin 2 wavefunction by adding the operator 
@J~ in fig. 1 and the three operators obtained by rota- 
tions of n/2,~,3~/2 around the x-axis, and subtract- 
ing from this sum a similar sum with respect of the 
y-axis. The real part of the resulting wavefunction 
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0 ++: ma, = 0.67 + 0.04 , 

O--I ma,=2.3+:$, 

l-+: mat = 1.6 _’ E:ii , 

2+‘: ma,= 1.46+0.10. (4) 

I I I I I I 1 
e-mat 

0.6 - 

l o* 
A I-+ 

. o-- 

@ . 0 l a a 

: 

* . . . 4) 
. . 

. 
. . 

. . 

. 4 

gives us a 2++ operator and the imaginary part a 2 
-_ 

operator. We also construct O++ operators from the 
operators in fig. 1 as well as from planar loops; this 
allows us to set the scale of the lattice. 

To optimise our wavefunctions (and the signal-to- 
noise ratio in the spirit of refs. [ 1,4]) we consider 
linear combinations of the basic 6 link operators 
(with 1 link on each side) and the scaled-up 12 link 
operators (with 2 links on each side). In fig. 2 we plot 
the measured ratios r&/r0 for the “optimised” wave- 
functions (see below) for the OF- and 1 -’ glueballs, 

and the ratio I’,,/I’, for the O++. These ratios are 
plotted versus the number of lattice configurations 

over which they have been averaged. The final values 
(based on 6000 iterations) provide us with best esti- 
mates of exp(-mar) [as in eq. (l)] , and the fluctua- 
tions, visible on fig. 2, provide us with an error esti- 
mate. We find 

3200 LOO0 .a00 

Iterations 

5600 

Fig. 2. Estimates of exp(-mat) for the O++, OK-, l-+ glue- 

balls as a function of the number of iterations (lattice con- 

figurations) averaged over. 

In obtaining these numbers we find that for the I-’ 
(and also the 2++ not listed here) the rh/I’= ratios 
for different wavefunctions vary by almost a factor 
of two. This implies that this ratio is, for these glue- 
balls, still somewhat sensitive to the quality of the 
wavefunction used, and that one should probably go 
to I’3a/I’2a to be confident of obtaining a good esti- 
mate of these masses (indeed all our 3 values of l’3a/ 
r2a for the O++ are identical within small errors). In 
any case since the mass estimates are always upper 
bounds on the true mass, the best mass estimate is 
obtained by using the largest rb/ra value, and this is 
the procedure we used in obtaining the numbers in (4) 
except for the O-- where the errors were so large that 
we took the statistical average of the 6 link and 12 
link operators. 

To obtain r3Jrh using zero momentum wave- 
functions would require a great deal of computer time. 
Instead we shall take for our wavefunctions the ele- 
mentary components described earlier, around a single 
lattice point, and measure the correlation functions of 
these localized operators. Since we now get a separate 

measurement of a correlation function for each lat- 
tice point, this procedure will give us numbers with 

much smaller errors. Since the operators now have 
non-zero momentum what we measure through ratios 
of correlation functions is not mat but Ea, where we 
parametrize the momentum smearing as [I] 

E2af = m2af + Fj2 . 

This is a reliable procedure as long as 

m2af S li2 , 

(5) 

which will turn out to be the case for all but the O++ 
glueball. Taking our measured values of r3Jrti for 

the 2++ glueball and comparing to the zero-momentum 
value we previously obtained [4] allows us to estimate 
62: 

s2 = 0.4 f 0.4 . (7) 

We see that (6) is well satisfied for the 2++, but not 
for the O++ which is why we use the 2++ to extract S2. 
We now use (7) together with our measured values of 
I’,,/I’, for the momentum smeared wavefunctions 
to obtain 

I-+: ma, = 1.57 f 0.17 , 

OF-: mat = 2.61 f 0.21 . (8) 
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Now in our previous calculation [4] we estimated the 

O++ mass to be ~0.72 GeV (by calculating the string 
tension at that /3 and assuming its value to be 400 MeV). 

If we use this value in (8) we obtain 

l-+: m=1.68*0.18GeV, 

O--: m=2.79?0.22GeV. (9) 

We hasten to caution the reader against taking this 
translation into physical units too definitively; our cal- 
culation was in the pure gauge theory and the precise 
value of the string tension (as inferred from Regge 
slopes) may exhibit some variation with the inclusion 
of fermions. Nonetheless the mass ratios we obtain 
should remain very similar in the full QCD theory with 
fermions; and this should be particularly true for the 
oddballs which to lowest order do not mix with qq 
pairs at all. We can therefore reexpress the results of 
our calculation as demonstrating the approximate 
equality of the l-+, O-+ and 2++ masses with the 
O-- about 70% heavier. To the extent that either the 
O-+ or the 2++ may be ascribed to their candidate 
states [6,7], the masses of the O-- and l-+ are pre- 
dicted to be as in (9). 

The prediction of such relatively light oddballs ** 
should provide encouragement for experimental 
searches. For example, the O-- might be seen in 
x-+Y+XorinJ/$+n+X,andthe l-+mightbe 
seen in J/G + y t X. 

*’ Upper bounds for the O--, l-+ masses are given in ref. [ 51; 
our mass estimates are much smaller and hence are consis- 

tent with their numbers. 
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