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We give a complete classification of states that can be constructed from spacelike Wilson 
loop operators up to length 8. This set of operators is considered in a Monte Carlo variational 
calculation. 

In part I of this' paper we report Monte Carlo results from an 43. 8 lattice, relying on Wilson 
loops up to length 6. We find a scaling window for the 0 ++ state, but no scaling for any other state. 

1. Introduction 

A b o u t  ten years  ago the existence of glueballs within Q C D  was suggested by 

Fritzsch and Ge l l -Mann  [1]. Nowadays  Mon te  Carlo (MC) calculations [2] within 

lattice gauge  theories  wi thout  quarks  seem to be close to the point,  that  reliable 

results for  the continuum limit m a y  be obtained.  A more  careful  discussion is given 
in subsect.  4.1. The  SU(2) and SU(3) glueball spec t rum has been  investigated by 

a variety of me thods  [3]* in part icular  by means  of M C  variat ional  (MCV) calcula- 

t ions [5-10]**.  

In this paper  we consider  4d SU(3) lattice gauge theory  with the Wilson action. 

A t  each link b of a hypercubic  4d lattice there  is an e lement  U ( b ) ~  SU(3) and 

averages of gauge- invar iant  opera tors  are calculated with the part i t ion funct ion 

Z = I H d U ( b ) e x p l - ½ [ 3 ~ R e T r ( 1 - U ( , ) )  } .  (1.1) 

For  each plaquet te  p, U(lb) is the o rde red  p roduc t  of the four  link matr ices  

sur rounding  the p laquet te  and d U  is the SU(3) Hurwitz  [11] measure .  W e  restrict 
ourselves to finite lattices of  size L 3. Lt  with periodic bounda ry  condit ions.  

* Since this review was completed several new investigations have been carried out. See ref. [39]. We 
also became aware of another early calculation [40]. 

** The MCV method used in [5,10] was suggested in ref. [4]. 
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With/3 = 6/g  2 the standard definition of the lattice mass scale is (a lattice spacing) 

a L= a-'(flog2)-t3'/2t32° exp (-2/31og2)(1+ O(g2)), (1.2) 

where 

_ 1 1 (  3 _ _ ~  34(  3 ~2 
8 0 -  3 k16~21 ' ~ I - - T ~ T g - C C /  " 

The A parameters of perturbation theory can be related to A L. For SU(3)A M°M = 
83.4A L [12]. At present experimental measurements indicate only the crude esti- 
mate [13]* 

AL=4.1_2.1 +2.6 MeV (1.3) 

We are interested in an MCV calculation of the SU(3) mass spectrum. States of 
this spectrum are called glueballs [1]. They are mesons described by the quantum 
numbers j e c  (jr = spin, P = parity, C = charge parity). If the (quantum) continuum 
limit/~ ~ oo of SU(3) lattice gauge theory exists, then all physical masses become 
in this limit proportional to the lattice scale: 

m (jPc) = c ( jec) .  A L " (1.4) 

The problem of spectroscopy is to calculate the constants c (jPc). The mass gap rng 
is the lowest-lying glueball state which we conjecture to be the m (0 ÷÷) state. 

Let us consider the variational definition of the mass gap 

rn, = - a  -~ In { n~ax (OITI~> 1 ( - ~  j .  (1.5) 
<o1~>=o 

Here T = e -all is the transfer matrix [14] which connects spacelike planes at distance 

At = a. In the following we use often units a = 1. The vacuum 10) is the highest 
eigenstate of the transfer matrix and we choose the normalization TI0> = 10>. With 
a complete set of gauge-invariant operators F~ (i = 1, 2 . . . .  ), satisfying (0[F/I0> = 0, 
the generic wave function is obtained as linear combination 

10> = E c'~F~10) (c~ ~ C). (1.6) 
i 

A complete set of states is obtained by taking as operators F~ products of different 
spacelike Wilson loops in all possible SU(3) representations: 

Oi.v(x, t)=Xv(l-I U ) -  (olxv(rI u)Jo>.  (1.7) 
~Ci \ \ C i  

*We have taken the lower range of values AMS = 160-+~ °° MeV, as given by the author. 
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Here  u labels the SU(3) representations and i labels the closed spacelike paths 
C~ = C~ (x, t). For  x we take the center of the path. In this paper we are only interested 
in momentum p = 0 states. In that case it is sufficient to consider operators 

Oi.~(t) =Y. Oi,,(x, t). (1.8) 
at 

In an MCV calculation one truncates the set of operators. The relevant expectation 
values, 

(0 lo , . , (0 )  TO; . , (0) I0)  = (010, . , (0)  O;.,, (1)10) , (1.9) 

are calculated by means of MC measurements.  If MC statistics allows, various 
obvious consistency checks (which may considerably improve the final value) are 
obtained by including expectation values (0]O~.~(0) Oj.~,(t)[O) at distance t = 2, 3 in 
the analysis. For  practical reasons one is limited to a rather small number of allowed 
operators,  and in particular only the Wilson loops themselves have been considered 
so far. 

The  SU(2) calculation [5] relied on all Wilson loops up to length 6 as depicted 
in fig. 1, and the SU(2) representations v = ½, 1, and ~ were taken into account. As 
suggested by lowest order  strong coupling (SC) expansion, the v ~ ~ representations 
are suppressed at finite distance. Therefore,  we have neglected higher representa- 
tions in subsequent SU(3) investigations [8, 9]. In the following we will omit the 
index v of O~,v if we consider the fundamental representation. 

In the continuum limit rotation invariance is supposed to become restored, and 
the eigenstates of the transfer matrix can be classified according to irreducible 
representations of the 3d rotation group. For finite values of/3 on the lattice we 
have an exact cubic symmetry, and from the operators O~.~ of eq. (1.8) we can 
construct irreducible representations of the cubic group. In the continuum limit 
these representations do not uniquely specify the spin, but provide us with selection 
rules which are of crucial importance. For details cf. subsect. 3.1. In subsect. 3.2 
we construct the irreducible representations of the full cubic group on all Wilson 
loops up to length 8. The result has already been used and emphasized in refs, 
[9, 3]. In particular for spin J = 0, 1, 2, 3 candidates for all possible P, C = ±1 
combinations (altogether 16 states) are obtained. 

Operator~¢ I Operator # 2 Operator # 3 Operator # 

Fig. 1. Prototypes of spacelike Wilson loops up to length 6. 



112 B. Berg, A. Billoire / Glueball spectroscopy 

In an MCV calculation one hopes that reasonably large values of /3 can be 
reached for which rotation invariance is already approximately true. In the case of 
SU(2) a different MC investigation [15] has given encouraging results in the 
accessible scaling region. For the mass gap m (0 ÷÷) it has been first noted in ref. 
[8] that the MCV method works surprisingly well in case of the SU(3) gauge group. 
The computer time needed was much smaller than one would have expected by a 
straightforward estimate from previous SU(2) experience. This was conjectured to 
be related to the large number of statistical variables of a single SU(3) matrix, and 
an explanation may therefore be connected with the recent results concerning the 
SU(N), N ~ oo limit [16]. In subsequent MCV investigations [9, 10] the mass gap 
estimate was slightly improved and results for higher spin SU(3) glueball states 
were reported. The latter results are quite different from previous SC predictions 
in a pioneering work by Kogut, Sinclair and Susskind [17]. 

In sect. 4 we present in detail our MCV calculations on a 43. 8 lattice, relying 
on correlations between all Wilson loops up to length 6 (fig. 1). Due to an enlarged 
MC statistics our previous results [8, 9] (cf. also [3]) are improved. Further we 
present some lowest order spin wave (/3 ~ oo) results and compare with old [17] 
and new [18-21]* SC results. Summary and conclusions are given in sect. 5. Finally 
some technical details are delegated to appendixes: appendix A explains how the 
minimization is actually done and appendix B contains details of the spin wave 
calculation. 

Part II of this paper will contain MCV results on a 53. 8 lattice, relying on Wilson 
loops up to length 8. 

2. Preliminaries 

In the first part of this section we summarize the MC procedure with emphasis 
on random (R) and systematic (S) upgrading. The second part collects well-known 
results concerning the symmetry group of the cube. These results are needed in 
sect. 3. 

2.1. THE MONTE CARLO METHOD 

We would like to calculate the statistical average (O) with respect to a partition 
function Z, as for instance given by (1.1). The MC technique consists of setting up 
a markovian process. At each step a state x of the system is transferred into a new 
state x '  according to a probability matrix P ( x  ~ x ' ) >  0. In the limit of an infinite 
number of steps, the arithmetic average over states in this sequence converges to 
the statistical average (O), if the following three conditions are true (for more 
details cf. the review of Binder [22]): 

(i) The normalization: F.x, P (x -~ x') = 1. 

* There also exist unpublished results of Miinster for spin-1 and spin-2 states. 
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(ii) All configurations can be reached in a finite number of steps. 
(iii) The Boltzmann state is an eigenstate with eigenvalue 1: 

E p ( x  ~ x') e -~x) = e  -~(x') . 
x 

Sufficient (but not necessary) for condition (iii) is detailed balance: 

p (x ~ x'____.~) = e_~S(X,)_~x) r (2.1) 
p(x'-~ x) 

Detailed balance does not uniquely fix the MC procedure. For instance one has 
still a choice between Metropolis or heat bath upgrading. For our SU(3) calculation 
we use the heat bath method of Pietarinen [23]. It is not difficult to check detailed 
balance for the upgrading of a single link. Hence a random choice of a link and 
subsequent upgrading of this link defines an ungrading matrix, which acts on the 
whole system and fulfills detailed balance. Successive applications of this matrix 
define an upgrading procedure,  which we call R-upgrading. Detailed balance 
remains true, because powers of a matrix preserve detailed balance [use (i)]. For  
R-upgrading we define a sweep by upgrading each link once in the mean. The 
major part of our results (including [9]) is obtained using R-upgrading. 

A more common [24] upgrading procedure,  which we call S-upgrading, is to go 
in a systematic way through the lattice, such that in one sweep each link is upgraded 
precisely once. The matrix for one sweep defines the markovian process and is an 
ordered product of the upgrading matrices for the single links. S-upgrading does 
not satisfy detailed balance, but condition (iii) is still true. For part of our results 
(including [8]) we have used S-upgrading. On our 43. 8 lattice the precise procedure 
was: Starting with the site (Xx, x2, x3, t) = (0, 0, 0, 0) we increase t in steps At = 1 

up to t = 7  keeping (xl, x2, x3)=(0,  0,0) fixed. Then we repeat  this keeping 
(xl, x2, x3) = (0, 0, 1) up to (3, 3, 3) fixed. At each site we upgrade successively the 
link in t, x3, x2, and finally the xl direction. For mean values of operators, and 
correlations related to the mass gap we do not note a problem with the convergence 
of S-upgrading. For a positive definite correlation related to the m (0--)  glueball 
we find [9], however, negative values (cf. subsect. 4.2, table 8) with a rather high 
confidence level. After  changing our algorithm to R-upgrading the phenomenon 
disappeared immediately. This indicates, in the case of S-upgrading, possible 
metastable states and a bad convergence for some observables. Independently,  
similar observations have been made in other MC investigations [25]. 

2.2. THE SYMMETRY GROUP OF THE CUBE 

Three-dimensional space groups (also called crystal groups) are well known*. 
Already around 1890 Federow and independently Schoenflies enumerated all 230 

* For an introduction see ref. [26]. 
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i 
• .~ C ~  

i C~ 

Fig. 2. Different symmetry axis of the cube. 

space groups in three dimensions. Bethe [27] constructed the irreducible representa- 
tions of crystallographic point groups and considered applications to the splitting 
of energy levels in crystal fields. Finally the construction of all irreducible representa- 
tions of the 230 space groups was outlined 1936 by Seitz [28]. We are concerned 
with the 48 element symmetry group of the cube Oh, which is the direct product 
of the 24 element cubic group O and the group of order two {+1, -1}. In contrary 
to the cubic group O the group Oh also contains reflections. Each of the non-identity 
elements of the cubic group O can be interpreted as a rotation around an uniquely 
determined symmetry axis of a cube. The order of an axis is defined to be the 
number of different rotations (including the identity), which can be performed 
around this axis. We fix our notation by means of fig. 2. There are three axes of 
order four, C~ (i = 1, 2, 3), four axes of order three C~ (i = 1 . . . . .  4), and six axes 
of order two C ~2 ( i = 1 ,  . . .  ,6).  Altogether this amounts to 3 - 3 + 4 . 2 + 6 + 1 = 2 4  
elements. We denote the smallest positive rotation around the axis C~ by the same 
symbol as the axis. There are five classes of conjugate elements: E = {1}, C4 = {C~ "~, 
(C~))3}, C42={(C4)2}, C3={C~, (C~)2}, and C2={C~}. Hence there are five 

inequivalent irreducible representations. By the theorem of Burnside the squared 
dimensions of these representations have to add up to the order of the group (i.e. 
24). The only possible dimensions are then 1, 1, 2, 3, and 3. In the notation of 
crystallographic point groups (cf. Altman [26]) the representations are denoted by 
A1, A2, E, T1, and T2. Each representation is up to equivalence fixed by its characters 
on the classes of conjugate elements as reproduced in table 1. A~ is the trivial and 
T~ the vector representation. 

Including parity is straightforward. The elements gh of the symmetry group of 
the cube are of form gh = g X 1 or gh = g X --1, g e O. Hence these are ten classes 
of conjugate elements and ten inequivalent irreducible representations. T h e  rep- 
resentations are denoted by A~:, A~:, E ±, T~:, and T~: according to parity P = +1. 
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TABLE 1 

Character table for representations of the cubic group 
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E 6 C2 8 C3 6 C4 3 C4 2 

A1 1 1 1 1 1 
A 2 1 -1 1 -1 1 
E 2 0 -1 0 2 
T1 3 -1 0 1 -1 
T 2 3 1 0 -1 -1 

The number in front of the symbol for the conjugate class gives the number of 
elements in this class. 

If we have (in the corresponding representation) for the character x(g x 1)= 

x(g  x -1) ,  the P = +1 sign stands. Otherwise we have x(g  x 1) = - x ( g  x -1 )  and 

the P = - 1  sign stands. 
In the forthcoming sections we will consider representations, which are defined 

on operators with a definite C-parity. In that case our complete notation reads: 

R Pc with R = Az, A2, E, Tz, T2 and P = ±1, C = + 1 .  (2.2) 

3. Spin on the lattice 

In subsect. 3.1 we explain the relationship between spin states in the continuum 

limit of lattice gauge theories and representations of the cubic group. In subsect. 

3.2 we construct irreducible representations of the symmetry group of the cube on 

Wilson loop operators. 

3.1. SPIN STATES AND THE CUBIC GROUP 

We assume that the continuum limit of SU(3) lattice gauge theory exists and 
rotation invariance becomes restored. Then we have in the continuum limit super- 

selection rules according to irreducible representations of the rotation group. States 
which belong to an irreducible representation Ds of spin J are denoted by 

10)s, (/~ = oo). (3.1) 

We only consider integer spin J = 0, 1 . . . . .  For simplicity we also neglect parity 

and C-parity in the subsequent discussion. The extension is trivial. 
For all values of/3 we have on the hypercubic lattice the exact cubic symmetry. 

Hence we have superselection rules according to the five irreducible representations 
of the cubic group O. We now consider states 

k0)R, (R = A1, A2, E, T1, T2), (3.2) 
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which belong to an irreducible representation R of the cubic group O. In the 
continuum limit (13 = oo) these states can be expanded into states of spin J :  

I4~)a : Y. c~,~14~),,m. (3.3) 
./,ra 

Of crucial importance is: spin J can only contribute on the r.h.s, of eq. (3.2) if 

D ° = R .  (3.4) 

Here  D O is the subduced representation of D j, which is obtained by trivially embed- 
ding the cubic group O into the rotation group. 

Up to J = 12 the subduced representations can be read off from the tables of 
Altmann and Cracknell [29]. For the convenience of the reader we list the result 
in table 2. (A recent discussion within lattice gauge theory and a generalization to 
half-integer spin can be found in ref. [30].) From table 2 we note, subduced 
representations with J />  2 are reducible, and only up to J = 3 do new irreducible 
representations of the cubic group (A2 for J = 3) show up. 

Let  us now consider the variational definition (1.5) of the mass gap and restrict 
the variation to states 

Jt#)a with (0itP)rt = 0 .  (3.5) 

We denote the corresponding eigenvalues by m (R) and make for the continuum 
limit the assumption : 

The eigenvalue m (R) corresponds to the lowest allowed spin in the sector I~)a. 
Then table 2 gives us the following results (/3 = 0o): 

m (0 ec)  = m (AleC), (3.6a) 

m (1 ec) = m (T~'C), (3.6b) 

m (2 Pc) = m (E Pc) = m (TEPC), (3.6c) 

m (3 Pc) = m (A~C). (3.6d) 

For completeness we have included P- and C-parity. Accepting m (2 Pc) < m (4Pc), 
eq. (3.6c) is a consistency condition for m (2 Pc) < m (3Pc). Another  consistency check 
is 

m (T~ "c) < m (A~ c) (3.7) 

for the assumption m ( 1 P C ) < m ( 3 P c ) .  For the important trajectories J =0 ,  2 . . . .  
and J = 1, 3 . . . .  our assumption would follow from a Regge picture. Let  us note 
that even if the assumption failed, one could still obtain reasonable results. For 
instance if m (A ec2 ) = m (T~ 'c) < m (E Pc) one would conclude that the spin 3 Pc state 
is lower than the 2 Pc state. 

We are interested in an MCV cal.culation at finite/3. Encouraged by the MC 
results of ref. [!5],  the hope is to come into a region of/3, where eqs. (3.6) hold 
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TABLE 2 

Subduced representat ions of the  rotation group up to I = 12 [29] 
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R•J 0 1 2 3 4 5 6 7 8 9 10 11 12 
\ 

A1 1 0 0 0 1 0 1 0 1 1 1 0 2 
A2 0 0 0 1 0 -0 1 1 0 1 1 1 1 
E 0 0 1 0 1 1 1 1 2 1 2 2 2 
T1 0 1 0 1 1 2 1 2 2 3 2 3 3 
T 2 0 0 1 1 1 1 2 2 2 2 3 3 3 

Given are the multiplicities with which the representation R can be found in the subduced 
representation D ° . 

in an approximate  sense. As long as we are limited to estimating (in a given sector 
[@)R) only the lowest energy eigenvalue above the vacuum, we can only consider 
spin f <~ 3. Details of our MCV investigation are presented in sect. 4. Concerning 
the assumption above we find a posteriori reasonable consistency.with our MCV 

results. 

3.2. IRREDUCIBLE REPRESENTATIONS OF THE CUBIC GROUP ON WILSON LOOPS 

We construct all irreducible representat ions of the symmetry  group of the cube 
Oh on spacelike Wilson loop operators  (1.8) up to length 8. Prototypes of Wilson 
loops (by this we mean Wilson loops of different shape) up to length 6 are depicted 

in fig. 1 (sect. 1). All spacelike Wilson loops up to length 6 are given in fig. 3, and 
prototypes of Wilson loops of length 8 in fig. 4. 

For SU(N)  with N t> 3 the characters are complex, and the Wilson loops have 

an orientation, defined by the order of the product  of U-matrices: Regard the 
formula for the first Wilson loop in fig. 3. In the continuum lagrangian we have 

under C-parity 
C 

a , ,  ~ - -AT,  (3.8) 

for a hermitian choice of the gauge field A , .  It follows the simple rule: 
Real  parts of Wilson loop operators  have C-parity C = +1, imaginary parts have 

C-parity C = - 1 .  
Let  us consider spacelike Wilson loop operators  Oi.~ of length L, as defined by 

eq. (1.8). For our  forthcoming consideration only the shape and the orientation of 
the associated path Ci is important ,  which can be represented by an L-tuple  

L 

(f l  . . . . .  [L) with ~. ]~ -- 0 .  (3.9) 
i=1 

Here  the vectors ~ are/~ e {+~j 1 /=  1, 2, 3}, where ei are the unit vectors correspond-  
ing to the spacelike coordinates of our lattice. For instance the path corresponding 
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OPERATORS UP TO LENGTH 6 

-used coordinote f r o m e -  

NOTATION : 

3 

4 = = = Tr ('/.t,t.'l.Lz.'U,z ' IL~) 

t 

/ 
2 

The 1.ploquetfes 

o; ~ o= o_- 

The double plaquetfes _ 

/ " /  01 = 0 s = 0 3 • 

/- /  [ O~ = Oz  = Oe = 
= 

The bent" plaqueffes _ 

01 = 0 2  = 0 3  = 

Fig. 3. All spacelike Wilson loops (up to opposite orientation) up to length 6. 
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°. 7 
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010 011 012 / 

The twisted ploquettes _ 

0,:  Ol: L - - -  O~ : 
Oa" 

Fig. 3. (cont.) 

to the first Wilson loop of fig. 3 may be given by (e2, ~3, -~2, -$3) ,  and if we 
reverse the orientation it becomes (~3, ~2,-~3,-~2).  Two L-tuples are called 
equivalent, if they are identical up to cyclic permutation. The equivalence class 
corresponding to ( [ 1 , . . . ,  [L) is denoted by [[1 . . . . .  [L]. 

Under  C-parity we have 

C [ [ ,  . . . .  ;.P2] = [ - / 2 ,  -.PL-1 . . . . .  - .P,]  • (3 .10)  

We now consider C = + operators 0~:.,, defined by the combinations 

[[,  . . . . .  ?t.]± = [[,  . . . .  , ILl+ [-[L . . . . .  - [ , ] .  (3.11) 

On O~.v operators of fixed shape we generate a representation ~,t of Oh by means 
of 

^ def ^ 

.,t%,[p, . . . . .  A ] ±  = [ M J t  . . . . .  MgPL] (3.12) 

for g ~ Oh, mg being the matrix corresponding to g in the vector representation on 
the basis ~ (i = 1, 2, 3). 
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# 1  # 2  # 3  ~ 4  # 6  

~ 7  -,='8 # 9  # 1 0  -#11 # 12 

• ~ 13 ~ 14 .# 15 # 16 # 17 # 18 

Fig. 4. Prototypes of spacelike Wilson loops of length 8. 

Including C-parity the dimension d of the generated representation is less than 
or equal to 96 (96 = 2 .48 ,  48 = order of O,). The d x d representation matrix egg 
consists of elements (eg~)ii which are +1 or zero. In fig. 3 we have listed (up to 
opposite orientation) all Wilson loops which are generated from prototypes of 
Wilson loops up to length 6 (fig. 1). The dimensions of the representations are 
d = 6 for the plaquettes, d = 12 for the double plaquettes, d = 24 for the bent 
plaquettes, and d = 8 for the twisted plaquettes. 

The irreducible contents of the representation eg are best explored by means of 
the character relation. For fixed C-parity (C = +1 or C = -1 )  the multiplicity rnR~ 
of the representation R P in the decomposition of eg into irreducible representations 

is given by 
# 

n K X K X K  . (3.13) 
K 

TABLE 3.1 

Irreducible contents of the representat ions of the symmetry  group of the cube on Wilson loops up to 
length 6 

OP d A~  + A ;  + E ++ T~ ÷ T~ ÷ A ~ -  A ~ -  E +- T ~ -  T ~ -  

# 1  6 1 0 1 0 0 0 0 0 1 0 
# 2  12 1 1 2 0 0 0 0 0 1 1 
# 3  24 1 0 1 0 1 0 0 0 1 1 
# 4  8 1 0 0 0 1 0 1 0 1 0 

A~ -+ A~ + E -+ T~ -+ T~ -÷ A~-- A 2 -  E - -  T~-- T~-- 
# 3  24 0 0 0 1 1 1 0 1 0 1 
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The sum goes over all classes of conjugate elements, and nr  is the number of 
elements in class K. In our calculation we have taken the trace of one matrix 
representative in each conjugacy class of the representation .4,/, and the irreducible 

RP 
characters XK were taken from a table (which is easily obtained from table 1). 
For Wilson loops up to length 6 (numeration as in fig. 1) our results are given in 
table 3.1 and for Wilson loops of length 8 (numeration as in fig. 4) our results are 
given in table 3.2. The results for SU(2) are simply obtained by omitting the C = - 1  
contributions, and by taking ~d as the dimension for the corresponding representa- 
tion ~, /on SU(2) Wilson loops. 

A notable result from tables 3 is that from Wilson loops up to length 8 candidates 
for all possible jPC states with P = +, C = + and J = 0, 1, 2, 3 (i.e. altogether 16 
states) can be constructed. Of particular importance are so called "oddballs"*. 
Oddballs are glueballs with a j e c  combination, which is not allowed as a qq flavour 
singlet state in the quark model. Therefore  (ignoring in some cases exotic states) 
the (at present with MC methods hardly attackable) mixing problem does not exist. 
Our classification involves only basic principles of lattice gauge theory. However,  
no dynamic information has been obtained so far and we do not know whether in 
the continuum limit all 16 possible states are realized in the spectrum of physical 
states. 

For  carrying out an MCV calculation, the information contained in tables 3 is 
insufficient. For each irreducible representation we have to calculate an orthonormal 
basis explicitly. In principle this could be done by using well-known projector 
methods (cf. e.g. [30]). For large dimensional representations this is, however, 
rather clumsy and in practice a different method (cf. Altmann [26]) has turned out 
to be useful. The method relies on an elaboration of Shur's lemma: Let  C be a 
matrix which commutes with eg (i.e. all matrices of the representation ~ = {~tg}) 
and let A be the matrix which diagonalizes C (ACA-1  = diagonal), then A reduces 
(not necessarily completely) the representation .4,t, and in the next step one may 
go on with the representation 

aegA-1  = { A ~ r  4-11d[~ ~ dr}. 

Matrices C, which commute with ~ ,  can be constructed by summing the matrices 
of a conjugacy class of ~ .  It has turned out that we were able to reduce completely 
all our considered representations, invoking only a few conjugacy classes in each 
case. 

For later minimization it is important to construct for different operators irreduc- 
ible representations, which behave exactly the same under the cubic group. This 
was done by proceeding with a projector method. 

For Wilson loops up to length 6 orthonormal basis systems (as used in our MCV 
calculation) are given in the tables 4.1--4.4. The notation for the operators is fixed 

* For a recent status report see ref. [31]. 
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TABLE 4.1 

Opera tor  # 1 

123 

A~ "+ 1 1 1 

E ++ 1 - 1  
- 2  1 I 

T~-- I 

Wave function of the irreducible operators which can be built f rom 
1-plaquette operators  (e.g. A~ + = O1 + 0 2  + 03 ,  first E ++ = O2 - O3). 
According to C = +1,  the real or  the imaginary part  has to be taken.  
Suitable normalisat ion factors are understood.  

TABLE 4.2 

Operator  # 2  

A~ + I 1 I 1 1 I 

A~ -+ I 1 I - I  - I  - I  

E ++ 1 - 1  1 - 1  
- 2  1 1 - 2  1 1 

E +÷ - 2  1 1 2 - 1  - 1  
- 1  1 1 - 1  

T~-- 1 1 
1 1 

1 1 

T ; -  1 -1  
1 - 1  

Wave function of the  irreducible operators  one can build from the double plaquette  operators.  

TABLE 4.3 

Opera tor  # 3 

A~ -+ and A~-- 1 1 1 1 1 1 1 1 1 1 1 1 
E ++ and E - -  - 1  1 - 1  1 - 1  1 - 1  1 

- 1  - 1  2 - 1  - 1  2 - 1  - 1  2 - 1  - 1  2 
T~ -+ and T ~ -  - 1  1 1 1 - 1  - 1  1 - 1  

- 1  1 1 1 - 1  - 1  1 - 1  
1 - 1  1 1 - 1  - 1  - 1  1 

T~ + and T~-- 1 1 - I  1 1 - 1  - 1  - 1  
1 1 - 1  1 1 - 1  - 1  - 1  

1 1 1 - 1  - 1  1 - 1  - 1  
++ 

T2 a n d T 2 -  1 - 1  - 1  1 
1 - 1  - 1  1 

1 - 1  - 1  1 

Wave function of the irreducible operators  one can build from bent  plaquettes.  (Note that through 
P :  01"*0~-o ,  + ÷ ÷ + and + O2~"~Oll , O3<"~O12 , O4<"¢'O7, O54,--~O8 O6<"~O9. ) 
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TABLE 4.4 

Operator  # 4 

+ +  + -  

A1 , A2 1 1 1 1 
+ +  + -  

T 2 , Z  1 1 - 1  1 - 1  
- 1  1 1 - 1  

1 1 - 1  - 1  

Wave functions of irreducible operators one can build from twisted 
plaquettes.  

by means of fig. 3. We have also calculated the analog results for all Wilson loops 
of length 8. The expressions are very lengthy and unsuitable for publication. 
Interested readers can obtain the complete result from the authors. 

4. The Monte Carlo results 

4.1. M O N T E  C A R L O  C A L C U L A T I O N S  A N D  T H E  C O N T I N U U M  LIMIT 

The aim of our MCV calculation is to obtain results, which can be extrapolated 
to the continuum limit B-~0o. Let  us consider a mass eigenvalue m(jpc). If in a 
MC investigation we find a scaling window BI~<B~<B2, where m(J Pc) scales 
approximately according to the asymptotic renormalization group prediction (1.4), 
we feel free to extrapolate all the way to the continuum limit. There are, of course, 
various pitfalls. For instance a singularity in the complex B-plane ma.y simulate a 
scaling window without being connected to the asymptotic behaviour. Also higher 
order corrections to AL(1.2) can hardly be seen in a small scaling window, but may 
significantly change the final value. The best way to feel free from these pitfalls 
would be to enlarge the scaling window and to establish to a certain extent 
universality. This does, however, go beyond the scope of the present investigation. 

In our opinion the existence of a scaling window is a minimal requirement for 
arguing about a connection with the continuum limit. There are no simple rules, 
which guarantee one to find a scaling window within a MC calculation. Even without 
changing A L it is easily possible [for instance by introducing a constraint Tr  ( 1 -  
U(lb)) < e to shift the scaling region to such a large correlation length ~ = 1~my that 
it cannot be reached within nowadays conventional MC methods. On the other 
hand, the often quoted necessary condition a << ~ << L has turned out to be too 
restrictive. Using the Wilson action, SU(2) [5, 3] and SU(3) [8] mass gap estimates 
exhibit a scaling window for ~: ~< a. Heuristic arguments [3] indicate that an improved 
condition is 

a << ~r << L . (4.1) 

Here ¢r is the "relevant range of interaction" and of order ~:r "~ d .  ~ in d dimensions. 
For higher masses a similar behaviour may hold, if one replaces ~: by the correspond- 
ing new inverse mass. Therefore,  for larger mass values the onset of scaling is 
argued to be shifted to a higher value B1. 
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4.2. THE MASS GAP 

We present results of MC simulations with R-upgrading on an 43. 8 lattice. We 
measure Wilson loops Oi (i = 1 . . . . .  4) up to length 6 (as given in figs. 1 and 3) in 
the fundamental representation. (In what follows, Oi stands for the unsubstracted 
trace [cf. (1.7)]. The normalization is (Oi)-~ 1 for B ~ oo.) Together with the number 
of performed sweeps their expectation values are given in table 5. The mean values 
are obtained from the whole statistics, and error bars are calculated by dividing 
the whole set of measurements into 14 subsamples. For each/3 value, we used as 
starting point the last configuration generated by our previous S-upgrade runs [8], 
and the upgrading of a single link variable [SU(3) matrix] was done with Pietarinen's 
[23] heat bath method. The used computer time was about 80 h CDC 7600. We 
have also included the first operator of length 8 (fig. 4) in our measurements on 
the 43. 8 lattice. Because of finite size effects we do not include these results in 
this part of the paper. 

In figs. 5a, b we present graphically the mean values of the operators and their 
derivatives. The derivatives and their error bars are calculated from the next nearest 
neighbours and their error bars. The lines are mean square fits to the data and 
only intended to guide the eyes. All derivatives have a rather pronounced peak in 
the region/3 = 5 . 5 -  5.7. 

To perform our mg= m (0 ++) mass gap estimate we construct for each of the 
operators O~ the ld  irreducible representation AI: O A1. The index A1 is suppressed 
in the following. Concerning the minimization procedure we follow our previous 
work [5]. We consider truncated correlation functions 

c,~(t) = (o lo , (o )o j ( t ) lo ) - (o lo ,  lo)<olojlo), (t = 1, 2 . . . .  ) .  (4.2) 

TABLE 5 

Number of sweeps (R-upgrading) performed for each B value and vacuum expectation values for Wilson 
loops up to length 6 

B # Sweeps (01) (02) (Oa) (04) 

5.0 2800 0.4000+0.0003 0.1628+0.0002 0.1824+0.0003 0.1284+0.0004 
5.1 2800 0.4154+0.0004 0.1760±0.0004 0.1980±0.0005 0.1434±0.0006 
5.2 11200 0.4320±0.0003 0.1914±0.0003 0.2158±0.0003 0.1609±0.0004 
5.3 5600 0.4497±0.0003 0.2086±0.0004 0.2356±0.0004 0.1808±0.0005 
5.4 5600 0.4715±0.0005 0.2314±0.0005 0.2612±0.0006 0.2070+0.0006 
5.5 5600 0.4994±0.0007 0.2630±0.0008 0.2958±0.0009 0.2435+0.0010 
5.6 14000 0.5290+0.0008 0.2997±0.0011 0.3341±0.0011 0.2846±0.0013 
5.7 5600 0.5573±0.0004 0.3375±0.0007 0.3718±0.0006 0.3257±0.0007 
5.8 2800 0.5720±0.0006 0.3568±0.0011 0.3910±0.0009 0.3464±0.0011 

The normalization is (Oi) ~ 1 for/~ ~ oo (i = 1 . . . . .  4). Error bars are calculated by dividing all sweeps 
into 14 bins. 
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For  single operators Oi we define gluebaU masses 

rni(t) = - 1  In cii(t) 
t c . ( 0 )  ' (t = 1, 2 . . . .  ) ,  (4.3a) 

c,( t )  
the(t) = - In  - -  (t = 1, 2 . . . .  ) .  (4.3b) 

c . ( t -  1) '  

The variational principle leads to the equation 

mg(t) = - t  1- In (max  ~'i]c'~7iCi](t) ~ (4.4) 
X (c,~ Eijc,cjCij(O)]" 

Because of the bias [5] minimization at a distance t > 1 is only possible for an 
exceptionally large statistics (cf. also ref. [5, addendum]). In practice the coefficients 
{c~} are calculated by converting eq. (4.4) into an eigenvalue problem (cf. appendix 
A). In the following we work with wave functions, which are determined from 
correlations at distances t = 1. Let  

0 = E ciOi (4.5a) 
i 

be the corresponding operator.  Its correlation function is 

c ( t )  = (o lo(o)o( t ) [o) -<olo lo>= . (4.5b) 

We again define glueball masses, denoted rag(t) and trig(t), by means of eqs. (4.3) 
with C,  replaced by C. Eq. (4.3b) gives, of course, better  (lower) values than eq. 
( 4 . 3 a ) ,  but leads to t-times bigger error bars. Our MC statistics is, however, sufficient 
for using trig(t) at distance t = 2. 

Fig. 6a shows rill(t) (t = 1, 2) as function of/3 and fig. 6b gives the results thg(t) 
(t = 1, 2) after minimization. The three solid lines in each figure follow the 
asymptotic renormalization group prediction (1.2), (1.4) and represent our final 
mass gap estimate. The broken lines on the left-hand sides are the SC expansion 
to order/3.  For  the plaquette correlations we have also calculated to lowest order 
the asymptotic behaviour/3 -) oo (cf. appendix B). This is the spin wave region. The 
resulting values for rill(t) (t = 1, 2) on an 43. 8 lattice are the broken lines on the 
r.h.s, of fig. 6a. 

Within a scaling window 5.1<~/3 ~<5.6 the results from distance t = 1 already 
follow remarkably well the asymptotic scaling curve. Within error  bars we find 
agreement  with our S-upgrading results [8]. As compared with ml(1), the whole 
curve for rag(l) is considerably lowered as a consequence of minimization. This 
means scaling alone does not guarantee stable extrapolations. A second look at 
both curves exhibits a suspicious overshooting of scaling, in particular for the curve 
after minimization. Possible explanations are at hand: 

(i) A nearby singularity in the complex/3-plane could be responsible*. 

* Such a singularity is indicated by the peak in the specific heat [32a]. For SU(2) consistency with the 
asymptotic scaling behaviour (1.2) has been shown [32b]. 
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Fig. 6. Mass gap m(0 ++) estimate. (a) MC results for ~ l ( t ) ,  (t = 1, 2) together with SC and spin wave 
results. (b) MC results after minimization: rMt), (t = 1, 2). 
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(ii) T h e r e  m a y  be  large  next  o r d e r  p e r t u r b a t i v e  co r rec t ions  to  A L as def ined  by  
(1.2)*. 

(iii) F in i te  size effects due  to  the  smal l  space l ike  ex ten t  of ou r  la t t ice  a re  

expec ted**.  

O u r  d a t a  on the  la rger  53. 8 la t t ice  s u p p o r t  (iii). 

In  tab le  6 we col lect  ou r  final resul ts  for  mi(1) (i = 1 . . . . .  4), rag( l ) ,  rag(2) and  

r~g(2). A r e m a r k a b l e  f ea tu re  of the  da t a  mi(1) (i = 1 . . . . .  4) is the  fact  tha t  all 

o p e r a t o r s  cons ide red  lead  to very  s imi lar  mass  gap  es t imates .  The  bes t  ( lowest)  

values  a re  o b t a i n e d  f rom o p e r a t o r  # 3. In con t ras t  we have  in the  SC l imi t /3  ~ 0: 

whe rea s  

m1(1) = 4 In (1//3) + O ( 1 ) ,  

m3(1) = 6 In (1//3) + O ( 1 ) .  

T h e  fact  tha t  m 1 ( 1 ) ~  m3(1) in the  scal ing region ,  is an e x a m p l e  how some  k ind  of 

c o n t i n u u m - l i k e  b e h a v i o u r  for  large  d is tances  is o b t a i n e d  jus t  af ter  the  c rossover  

r eg ion  a l r eady  at  smal l  d is tances .  

T a b l e  7 conta ins  for  each /3  va lue  the  wave  funct ion ,  as used for  ca lcula t ing  rag(t) 

and  n~g(t). A s  previous ly ,  all e r ro r  bars  a re  wi th  r e spec t  to  14 subsamples .  If  the  

m e a n  va lue  f rom all da t a  differs f rom the  m e a n  va lue  of the  m e a n  values  of  the  

subsamples ,  we have  a signal  for  a bias.  In  tha t  way  the  bias  [5] f rom the  min imiza t ion  

p r o c e d u r e s  as  well  as the  bias  in the  co r re la t ion  funct ions  is e s t ima ted  to be  much  

smal le r  than  the  given e r ro r  bars.  

L o o k i n g  at  fig. 6b we find ou r  scal ing curve f rom rag(l)  cons ide rab ly  l ow e re d  by  

the  resul ts  f rom d is tance  t = 2. Resu l t s  f rom d is tance  t = 3, which are  not  r e p r e s e n t e d  

here  because  our  s tat is t ics  is insufficient for  e s t ima t ing  re l i ab le  e r ro r  bars ,  ind ica te  

a fur ther  dec reas ing  t endency .  W e  find, however ,  tha t  n%~(2) agrees  well  with the  

TABLE 7 

Best wave functions at distance t = 1 
Cl C2 C3 C4 

5.2 0.14 ± 0.04 -0.44 + 0.12 -0.87 + 0.28 -0.16 ± 0.08 
5.3 0.09 + 0.08 -0.54 + 0.19 -0.82 + 0.23 -0.18 ± 0.13 
5.4 0.38 + 0.04 -0.56 + 0.10 -0.72 + 0.06 -0.15 + 0.09 
5.5 0.56 ± 0.02 -0.50 + 0.04 -0.65 ± 0.05 -0.12 + 0.04 
5.6 0.62 + 0.01 -0.49 + 0.02 -0.61 + 0.02 -0.04 + 0.02 
5.7 0.66+0.04 -0.48+0.04 -0.58+0.07 -0.02±0.06 
5.8 0.70 ± 0.08 -0.59 + 0.17 -0.38 + 0.09 -0.14 ± 0.10 

* Such corrections are conjectured to be responsible for scaling deviations in the 2d it-model [33]. 
** Shrinking the size leads to the well-known deconfining phase transition (and massless particles) [34]. 
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values r~(2). (i = 1 . . . . .  4) cf. fig. 6a for dr1(2)]. This fact is an indication that the 
t = 2 results are already asymptotic. In View of expected finite size effects (iii), one 
should therefore not take very low values too seriously. We are thus led to the 
estimate 

m (0 ÷÷) = (280 + 50)A L . (4.6) 

To extract a value in physical units, one relies best on MC calculations [35, 23] for 
the SU(3) string tension, because the experimental determination of A L (1.3) is 
very crude. The MC calculations give 

A L = (6:1: 1)" 10-3x/~.  (4.7) 

Together  with x /K~ 440 MeV* this leads to the order of magnitude 

m (0 ÷÷) ~ 750 MeV .  (4.8) 

In fig. 6 our scaling window ends drastically at 5.6 <B2 < 5.7. In contrast to this 
the scaling window for the string tension [35, 23] extends to a much higher value 
/32. This is argued [5] to be due to different spin wave behaviour/3 ~ o0 for finite 
size string tension [36] and finite size glueball mass (4.3) definitions. The spin wave 
result for the SU(3) plaquette operator  is calculated in appendix B. As illustrated 
in fig. 6a these results are much higher than values in the scaling window region. 
It would be interesting to calculate the next perturbative order  and to obtain similar 
results for the other considered operators. We recall that the exact mass gap on a 
finite lattice goes to zero for/3 -~ oo. 

Finally in this section we remark, that SC calculations [18-21] lead to SU(3) 
mass gap estimates, which are in good agreement with the value (4.6). In particular, 
as for the string tension [37], the simple method of taking the asymptotic scaling 
behaviour as tangent to the last order SC expansion ("tangent method")  gives a 
good result: 

m (0 ++) ~ 310A L . (4.9) 

The expansion is taken in terms of SU(3) characters. 
The SC expansion is done for momentum zero plaquet te-plaquet te  correlations 

in the A1 representation. The limit t ~oo  is considered and the available order 
[18-20] is O(/3s). For SU(2) it has been shown [5] that a short t-~ oo series agrees 
(up to the same order) with the series for a fixed small distance t. In the present 
case presumably t = 3. 

4.3. EXCITED SPIN STATES 

Excited spin states were first investigated by Kogut, Sinclair and Susskind [17], 
who did an O(fl s) SC expansion in the Hamiltonian formulation. Their  series is for 

* This value comes from the Regge slope and leads to agreement with the less accurate value (1.3). 



132 B. Berg, A. Billoire / Glueball spectroscopy 

momentum zero plaquette-plaquette correlations. Extrapolating mass ratios to 
/~ -~ oo by means of diagonal Pad6 approximants gives 

m (1 +-) ~ 1.6m (0++), (4.10a) 

m (2 ++) ~ 1.0m (0÷÷). (4.10b) 

An analysis [21] of the analog euclidean O(/~ s) SC series [18-20] agrees well with 
this order of magnitude. Thus universality seems to be confirmed. We will, however, 
find disagreement with our MCV results. 

Using the results of sect. 3, we have built the (connected) correlation functions 
of all the irreducible operators contained in length 4 and 6 Wilson loops: 

RPC 
Ci,j.r, (t) ,  (j = 1 . . . . .  4) .  

Here  m is the "magnetic" quantum number. (m takes 1 value for Ai (i = 1, 2) 
representations, 2 values for the E representation, and 3 values for Ti (i = 1, 2) 
representations.) By construction all representations with the same value of R Pc 
transform identically under the group Oh. Up to statistical fluctuations C ~  ~ is 
independent of m. To gain statistics we have considered the scalar correlations 

R P C  R P C  
Cii ( t )=Y.  Cii,,, ( t ) .  (4.11) 

m 

Finite distance glueball masses 

miR~C(t), A R Pc, , mi t t ) ,  maPC(t) ,  tnRPC (t),  (4.12) 

are defined as in the previous section, cf. eqs. (4.3). C,  is replaced by Ci~ Pc for 
single operators, and C (4.5b) is replaced by C R'~ in case of minimization. 

From Wilson loops up to length 6 we construct candidates for 9 different spin 
excitation (#0++). Our data for these excited glueball masses are much higher than 
the corresponding data for m(0++). Therefore,  the results at distance t = 2 are 
already mainly noise. For selected values of/~ the results at distance t = 1 are given 
in table 8. MC statistics and error estimate are as in the previous section. The bias 
brought by the minimization procedure is estimated to be less than 10% in all 
cases. In table 9 we compare correlations for the 0 - -  state, which were obtained 
using S-upgrading, with the corresponding R-upgrading correlations. This and 
similar results convinced us to turn to the R-upgrading procedure. 

All our data for excited glueball masses show roughly constant behaviour with 
/~, this means no sign of scaling. Of particular interest is the 2 ÷+ glueball, because 
of the SC prediction (4.10b). Our data for the mass of the 2 ++ glueball as extracted 
from the plaquette operator  (E ÷+ representation) and after minimization (over all 
operators contributing to the E ÷+ representation) are shown in fig. 7. On the l.h.s. 
the SC expansion to order/~ is indicated. In the spin wave (/~ ~ oo) limit the quantity 

E + +  m 1 (t) has the virtue of being easily evaluated (see appendix B), and the result 
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TABLE 8 

Excited glueball states for several values of/3 

OP g = 5.2 /3 = 5.4 /3 = 5.6 ~ = 5.7 

0 - -  ,3 >5.70 >6.41 4.54 ± 0.29 >6.73 

i 6 .10±1.16  4 .91±0.46  5 .40±0.38 6 .02±1.07 
1 +- 5.37 + 0.52 4.26 ± 0.20 4.65 ± 0.10 4.98 ± 0.37 

5.23 + 0.39 4.98 ± 0.54 4.72 ± 0.19 5.19 ± 0.50 
5.00 ± 0.29 5.51 ± 0.70 4.83 ± 0.19 5.32 ± 0.52 

minimized 4.87 + 0.44 4.19 ± 0.24 4.33 ± 0.16 4.56 ± 0.41 

1 -÷ ,3 6 .17±0.89 6 .51±1.87 5 .78±0.46 6.20±1.51 

{~ 3 .65±0.07 3 .27±0.07 3 .35±0.08 3 .30±0.08 
2÷÷(E) 3 .67±0.10 3 .19±0.08 3 .20±0.04 3 .04±0.07 

4 .90±0.30  4 .40±0.39 4 .66±0.20  4 .12±0.19  
4.11 ±0 .16  3.63 ± 0.12 3.55 ±0.07 3.68 ± 0.15 

minimized 3.58 ± 0.09 3.10 ± 0.07 3.11 ± 0.04 2.98 ± 0.07 

~3 A 4 .77+0.29 4 .24+0.16 3 .74±0.07 3 .72±0.14 
2 ÷+ (T2) ~ ' ,  4 .86±0.25 4 .34±0.18  3 .79±0.07 3 .78±0.12 
minimized 4.69 ± 0.24 4.14 ± 0.15 3.68 ± 0.06 3.66 ± 0.13 

2 ÷-  (T2) ( 23 5 .65±0.59 5.23 > 7.28 ± 0.64 5.95 >6±0"65.40 5 .56±0.73 >6.08 

minimized 5.55 ± 0.48 5.12 ± 0.50 5.61 ± 0.44 5.33 ± 0.57 

2 -÷ (T2) ,3 5 .01±0.29 4 .65±0.22  4 .18±0.11 4 .10±0.15 

2 - -  (E) ,3 5 .65±0.59 >6.62 6 .41±0.76 5 .50±0.45 

2 - -  (T2) ,3 5 .35±0.28 6 .68± 1.78 5.95±0.61 >6.23 

3 ÷+ ,2 5 .79±0.98 4 .37±0.41 4 .54±0.32 5 .26±1.08 

3 +- ,4 >5.59 4.81 ± 0.65 4.74 ± 0.30 >5.31 

OP = contributing operator(s). The results are from correlations at distance t = 1. 

for mE÷÷(t) on the 4 3 " 8  lattice is indicated on the r.h.s, of fig. 7. Already for 
E + +  / / =  5.0, m t (1) is very close to its spin wave limit, and there is no signal for 

scaling in the whole considered range of/3 values. Minimization lowers the values 
slightly, but does not give rise to any drastic changes. Even much higher than 

TABLE 9 

Comparison of S- and R-upgrading results for 0 - -  correlations 

13 S-upgrading R-upgrading 

5.4 -0 .0043 + 0.0060 -0 .0013 ± 0.0030 
5.5 -0 .0110  ± 0.0059 0.0022 ± 0.0062 
5.7 -0 .0080  ± 0.0070 -0 .0035 ± 0.0048 

In the case of S-upgrading each result relies on 2000 sweeps and error 
bars are calculated with respect to 10 bins of 200 sweeps. (In the case 
of R-upgrading as in table 5.) 
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Fig. 7. MC results for the E ÷+ representation: ml(1) and after minimization: re(l) .  SC and spin wave 
results are also shown. 

T ÷ mE ÷÷ (1) is m 11 -(1), and the same is true after minimization. For comparing with 
E + +  A + +  ÷ A + +  m(0 ++) we give in table 10 the fractions m l  (1)/rnl  ' (1) and m'[1-(1)/ml 1 (1). 

Despi te  the lack of scaling, the values for mE÷÷(1) are nevertheless the lowest 
obtained mass estimates among all considered non-scalar representations. 

In the continuum limit we expect a cut at 2m (0 ++) in the 0 ++ and in the 2 ÷+ 
channel. For J ~< 3 no other cuts can be made from two 0 ++ states. An excited 0 ++* 
state or the 2 ++ state would become unstable if their mass is larger than 2m (0++). 
On the lattice a cut becomes a series of poles. As long as we do not analyse our 
wave function with respect to partial waves, we are not able to distinguish these 
poles f rom a bound state with mass larger than 2m (0++). Typically a cut seen in 
this way in a MCV calculation should give rise to an effective mass > 2m (0++), 
because several poles may mix into the wave function. Searching with large MC 
statistics for an SU(2) m (0 +*) state ([5], addendum) we found a signal, which was 
interpreted as a cut. The behaviour of the m (2 ++) state as discussed in this paper  
is rather  similar. 

Our MCV results rule out the SC prediction (4.10b) for the m(2 ++) state. If SC 
were correct one could not understand why there is a perfect scaling window for 
the m (0 ++) state, but no signal for scaling of the m (2 ++) state. If one considers 
without further analysis the SC series [18, 19] for the m (0 ++) and the m (2 ++) states, 
one finds m (2 ++) clearly higher than m (0 ++) in the region (/~ ~ 5.0), where the SC 
expansion start to break down. Therefore,  our results are in contradiction with the 
continuum extrapolations [17, 21], but not with the SC series [18, 19] itself. Using 
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diagonal Pad6 approximants, these continuum extrapolations assume the existence 
of the m(2 ÷+) state in the continuum spectrum, i.e. m(2++)/m(O++)-~,const, for 
/3--> oo. The MCV calculation has the chance to be self-consistent with respect to 
this point. As we find no scaling window for the m (2 ++) state, we have no signal 
for the existence of this state in the physical continuum spectrum. 

The same holds (we obtain only even higher mass values) for the other 8 
candidates considered for excited glueball states. Remarkably the values obtained 
are even higher than the extrapolation of the lowest order SC series into the 
considered/~ region. One could interpret these results as a signal for the non- 
existence of all these states, and the naive prejudices on the spectrum, as gained 
from bag models [38] and phenomenological relativistic potential models [31] may 
very well be wrong. On the other hand we cannot exclude rather high masses, 
which should shift scaling to larger/3 values. (A MCV check of the relativistic 
energy-momentum dispersion could test the extension of the accessible mass range.) 
Also the rotational nature of excited glueball states could be an obstacle to early 
scaling. This criticism would also apply to the available SC expansions. The scaling 
region for excited states may then be totally out of present computer and SC 
possibilities, at least within the conventional methods discussed here. 

5. Summary and condusions 

In sect. 3 we have worked out the relation between irreducible representations 
of the cubic group on lattice wave functions and spin-J states in the continuum 
limit. For Wilson loops up to length 8 we have constructed all irreducible representa- 
tions of the full cubic group. Candidates for 16 different spin states in the continuum 
limit are obtained: 

.].PC, (J =0, 1, 2, 3), P = + ,  C = +  . (5.1) 

Our MC results are contained in sect. 4. In subsect. 4.2 we find a clear scaling 
window for the rn (0 ++) state. This leads to the estimate 

rn (0 ++) = (280 + 50)A t -~ 750 MeV, (5.2) 

in good agreement with SC results [18-21]. 
The situation is quite different for excited spin states considered in subsect. 4.3. 

We investigate (in part I of this paper) the 9 states (jec~ 0++), which can be 
constructed (table 3) from Wilson loops up to length 6, and find no scaling window 
for any of these states. Therefore, we have no signal for the existence of any of 
these states in the physical spectrum. 

By assuming the existence of such states in the continuum limit, SC predictions 
[17, 21] (eqs. (4.10)) for low-lying 14- and 2 ++ states are obtained. At least the 
mass prediction for 2 ÷+ (4.10b) is ruled out by the present MCV investigation. We 
can, of course, not exclude that the scaling region for excited glueball states cannot 
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be reached in our MCV investigation. But such a criticism would also apply to the 
existing SC predictions. 

In conclusion we find clear evidence for the existence of a 0 ++ state and no 
scaling window for any other  state. 

We would like to thank P. Hasenfratz for useful discussion, M. Liischer for useful 
comments, and R. Petronzio for organizing generous support with computer  time. 
Most of the computer  calculations were carried out at the CERN CDC 7600. 

Appendix A 

THE MINIMIZATION 

We want to determine the set of coefficient {c~} which maximize the expression 

~'q c'ciCq(tl) (tl > t2). (A.1) 
q c,c,Cij(t2)' 

This is best done by transforming this problem into the eignvalue problem (recall 
that the matrix Cq is symmetric) 

Y. Cq(tl)cj = h Y. Cq(t2)cj, (A.2) 
i i 

whose eigenvalues are precisely the extrema of (A.1). It is easy to show that eq. 
(A.2) has only real eigenvalues, except when the expressions ~,ciCij(tl)cj and 
~, ciCq(t2)ci have zeros. This happens when the MC statistics is not good enough. 

Appendix B 

SPIN WAVE ANALYSIS 

The generalization of the result of ref. [5] to SU(N) is 

C11(t) = 3N~ (01(O)01(t))c 

N 2 - 1 cos (h4t) COS (K4t)'n'(h, 0) 2 
- -  3 2 2 E 3 N , N t [ 3  hn,r, ~'(h, h4)'rr(h, K4) 

(/hh4)~O 
(k,K4)~0 
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TABLE 11 

Glueball  masses from finite distance correlation function in the spin 
wave approximation on a 4 3. 8 lattice 

0 ÷+ 2 ++ (E) 

m(t) ~( t )  m(t) r~(t) 

t --- 1 3.96 3.96 3.83 3.83 
t = 2 3.72 3.48 3.58 3.33 
t = 3 3.47 2.95 .3.33 2.83 

01(t)  = ~ - ~  

orientations 

4 
n'(h, h4)= E ( 1 - c o s h , ) .  

Numerical results for the quantities ml(t)  and n~l(t) for an 43. 8 lattice can be found 
in table 11. N o t e  the paradoxical nearly exponential  behaviour of correlation 
functions at small t. It  is, however,  easy to show that, on an infinite lattice, correlation 

functions have the expected power-law fall off 

N z - 1  5 
Cl1(t),2"o~ (21r) 2 2/32t s '  

The above results can be readily extended to the correlation function of the E +÷ 

operator  built f rom one-plaquet te  Wilson loops 

Cll(t)  = N~ (01(0)01( t ) )  

N 2 -  l cos (h4t) cos (K4t) ..,, 
--  :5 2 2 ~ . . . .  ~ r t y l ,  Y2, Y 3 ) ,  

12NsNt•  hh,r, Ir(~,h4)1r(h, 4) 
(h, h4):~ 0 
(k,K4)~O 

1 y~ Re 1 Tr  (U(lb~.,) _ U(I~. ,)) ,  
O~(t) ~ 42N~ ~ N 

2 2 2 
F(yx, Y2, Y3)= 3(yx + Ya+ Ya)+(Yl + Y2 + Y3) 2 , 

Yi = 1 - c o s  h~. 

The plaquette ~ is obtained f rom p through a ½or rotation. 
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