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We present a calculation of the electromagnetic current vacuum polarization in the framework of lattice QCD. A 16th 
order hopping-parameter expansion of (.~gmj~m) 0 is reported on an 8 4 lattice. It gives a reasonable description of the mass 
mj/t9 and the electromagnetic current-vector meson coupling constantfj/qj, in the vector meson dominance approxima- 
tion. 

1. Introduction. Lattice gauge theories provide a 
framework to study non-perturbative aspects o f  strong 
interactions [ 1 - 3 ] .  These methods have been used in 
conjunction with Monte Carlo techniques to calcu- 
late the meson, baryon, and the glueball mass spectra 
with encouraging results. 

Electromagnetic and weak currents also provide 
a lot o f  information about strong interactions via 
their couplings to hadrons. Therefore, there is a great 
theoretical interest to calculate these current ampli- 
tudes from first principles in the theory of  quantum 
chromodynamics, QCD. Recent attempts in this di- 
rection have given promising results for the baryon 
magnetic moments [4,5],  and the coupling constant 
ratio gA/gV [6] .  The earlier calculations o f  the vac- 
uum polarization amplitudes based on the Monte 
Carlo techniques [7,8] have, however, yielded results 
which are not in quantitative agreement with the data. 
These latter calculations were done using a small-size 
lattice and the currents were deemed at the same 
space-t ime point ("naive currents"), which suffer 
from incalculable renormalization effects. 

I Supported by the Bundesministerium ffir Forschung und 
Technologie, Federal Republic of Germany. 

In this note we reinvestigate the problem of  the 
electromagnetic vacuum polarization by employing 
a bigger lattice (84), and defining a point-split current 
operator which is conserved on the lattice. The use 
of  conserved vector current eliminates at least one 
o f  the uncertainties in the calculation, namely the 
effect o f  the (finite) unknown normalization con- 
stant. Whether the remaining finite lattice spacing ef- 
fects depending on a/~ (a = lattice spacing, ~ = cor- 
relation length) and the finite lattice size effects de- 
pending on ~/L (L = physical size o f  the lattice) allow 
us to reach conclusions about the continuum vacuum 
polarization amplitude remain to be investigated. Our 
conclusion is that we are able to calculate the charm 
quark vector current amplitude satisfactorily on an 
8 4 lattice. However, a larger lattice is needed to reli- 
ably determine the properties o f  the systems other 
than charm. 

2. Method. We start by deeming the electromag- 
netic vacuum polarization amplitude of  hadrons as 

A ~v(x) ~ <01T {j~m (x)jem (0)} IO), (1) 

where the electromagnetic current of  hadrons jem is 
built from the vector current Vq of  the quarks ~i th  
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flavours q = u, d, s, c .... in the usual way, 

jem =_~V u l l z d + 2 v  c _  1V s+ u - 3  u ~ , 5 u "'" (2) 

The "naive" definition of the vector current would be 
Vu(x ) --- const. ~x ~/u Cx. This, however, as remarked 
above contains an unknown, coupling constant de- 
pendent (finite) normalization factor, which is dif- 
ficult to determine in the non-perturbative regime. 
Therefore, we use the conserved ("point-split") vec- 
tor current as introduced on the lattice by Karsten 
and Smit [9] : 

Vx,ta =Ka-3{' fx+gV[x +B,x](1 +7 , ) f f  x 

- V[x,x + (1 - ( 3 )  

Here U[x + O,x] denotes the gauge field variable be- 
longing to the link [x + fa,x], "Yu is the (euclidean, 
hermitian) Dirac matrix acting on the quark fields 
~/x, fix, and the Wilson hopping parameter K is con- 
nected to the bare quark mass m via the relation 

K = (8 + 2am) -1 . 

In the case of  the Wilson-action for fermions (which 
we use in the present paper) the equations of  motion 
on the lattice imply the current conservation equa- 
tion 

4 

V V x _ ~ , u - ~ a - l [ V x ,  u - Vx_~u ] =0.  (4) 
~a=l ~ ' 

The advantage of the point-split current is that it is 
correctly normalized also at f'mite lattice spacing a, 
where the numerical calculations are done. The dis- 
advantage is, of  course, the more complicated form 
making the numerical calculations more difficult. 

In our lattice Monte Carlo calculations we consider 
the "time slices" of the space-like components of  the 
vacuum polarization amplitude 

Trs(x4) =fd3xArs(X,X4 ) (r,s = 1,2,3),  (5) 

or its Fourier-transform 

"Trs(P4) = f dx 4 exp ( - iv4  x 4) Trs(X 4). (6) 

The integration over the space coordinates projects 
out the zero three-momentum intermediate states, 
therefore the Kallen-Lehmann representation of 

Trs(X4) and "Trs(P4) is, respectively, 

Trs(X4)=6rs f dm2 p(m2)exp(-x4m)/2m, (7) 
0 

Ls(P4)=6rs ? d m  2 p(m2) (p 2 + m2) -1 . (8) 
0 

We remark that one could make a direct compari- 
son of the lattice QCD calculation of the vacuum po- 
larization density, "Trs(P4), with the experimental data 
in e % -  annihilation. Defining Trs(P4)-- ~rsrr(p2)p24 , 
one could write a dispersion relation to relate zr(p2), 
calculated at space-like momenta p42, to the hadronic 
cross-section ratio R = o(e+e - ~ hadrons)/o(e+e - 

/~+/a-) measured at time-like momenta. In the form 
of once subtracted relation one has, for example, for 
the isospin -1  current o f J  em 

~z 

7rl=l(--Sl ) -- rrI=l(--s2 ) = [(s 2 - Sl)/12rr4 ] 

X ? ds 
Rl=l(s) 

4m~d (S + Sl)(S +S2) '  (9) 

where 

(p2)i = -s  i "~ 0 (i = l ,  2). 

Experimental data at low s could be combined with 
the (small) perturbative QCD contribution at large s 
to evaluate the right-hand side. Lattice QCD provides 
the left hand side. 

The present Monte Carlo calculations are limited 
to moderate values of  energy (p~nax = n/a). Phenom- 
enology tells us that the vacuum polarization ampli- 
tude at these energies are dominated by the appro- 
priate vector-meson poles V = p, co, 4~, J/ ~ .... In the 
pole dominance approximation the spectral function 
p(m 2) is given by 

o(m 2) = ~ m 4 f v 2 8 ( m  2 - m2). (10) 
V 

Thus, measuring the time slices Trs(X4) on the lattice 
one can extract the masses (my) and the electromag- 
netic decay constant (fv) of the vector mesons. We 
shall assume vector meson dominance in the following 

The results presented here are based on our Monte 
Carlo data on an 84 lattice with SU(3) colour gauge 
group. The effect of the quark determinant was ne- 
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glected ("quenched approximation"). We have em- 
ployed the hopping parameter expansion tectmique 
of  refs. [10,11] to determine the function T r s ( X 4 ) :  

oo 

Trs(X4) = C K2lCrs(l;x4). ( l  1) 
l=lmin 

Periodic boundary conditions were used both for the 
gauge fields and the quark fields ("periodic box" case 
of  ref. [ 11] ). The 16th order hopping parameter se- 
ries was obtained for two values of/3 = 6g -2  = 5.7 
and 6.0. At/3 = 5.7 we have calculated the quark 
propagator on five independent gauge field configu- 
rations, whereas for/3 = 6.0 on three configurations. 
On each gauge field configuration we have chosen 
sixteen initial points for the quark propagation. In 
order to reduce correlations, the gauge fields were pre- 
pared independently from each other iterating on 
both "hot" and "cold" starts as well as on "mixed" 
ones (half parallel, half random link variables). At 
least 300 Metropolis sweeps per configuration were 
performed with six updatings per link. 

The results for the 16th order hopping parameter 
expansion coefficients c 11 (/;x4) (for the poInt-split 
current components r = s = 1) are collected in table 1 
for/3 = 5.7 *~ , The entries shown are averaged over 
the negative and positive time direction which should 
be equal with infinite statistics. The statistical errors 
are typically a few percent for the lower coefficients 
and grow up to ~ 10% in the 16th order. We remark 
that the statistical errors on the point-split current 
coefficients C 11 (/, x4)  are at least a factor 2 larger 
(with comparable statistics) than the corresponding 
errors on the coefficients of  the "naive" current. This 
presumably stems from the two opposite-sign terms 
[in eq. (3)] implying numerical cancellations in the 
matrix elemens. On the other hand, up to the 16th 
order there is no sign change in the coefficients of  
the point-split current contrary to the "naive" cur- 
rent. 

The amplitudes have to be calculated for different 
values of  the hoppIng parameter K = K u,Kd,Ks,K c . . . .  

belonging to different quark flavours. These values 
are not known a priori and have to be determined for 
each quark flavour by ftxing, for example, the cor- 

*~ The table for the  coeff ic ients  Cll(l;x4) at ~3 = 6.0, as well 
as the Pad6 table are included in the  DESY Report  DESY 
82-081 (Dec. 1982). [,~ 
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responding vector meson mass at a given value of  the 
lattice spacing a. The flavour structure of  the vacuum 
polarization amplitude corresponding to eq. (2) is 
in the isovector (IV) and the isoscalar (IS) channels, 
respectively: 

1 A w(X)uv = ~ Cuu(X).v, 

Ais(X).~ = ~ C~u(x).~ + ~ Css(X)~ +, ,. ~ Ccc(X).~ + ... 

(12) 
Here Cqq denotes the amplitude for the two vector 
currents (3) with the same quark flavour q ,2.  

3. Analysis and results. The most  direct way is to 
analyse the function Trs(X4) evaluated with the help 
of  the entries in table 1. In the pole dominance ap- 
proximation,  this amounts to determining the vector 
meson mass m v, through the exponential fall-off of  
the correlation function Trs(X4); the amplitude fv is 
then determined using eqs. (7) and (10), fLxing a. 
However, this program is difficult to carry out due 
to our large statistical errors (typically + 10%) on the 
coefficients with x 4 = 3 and 4 and the fact that the 
apparent radius of  convergence of  the series C(l,x 4 
= 3, 4) (estimated, e.g. by a ratio test) is rather small 
in the hopping parameter space. So, even if one uses 
the Pad6 approximants to analytically continue in 
the K space, one needs large extrapolations to reach 
the physical values of  K u, K s etc. Consequently, the 
various Pad6s do not converge to a definite value. 

The situation in the p space is much better,  how- 
ever. The apparent radius of  convergence of  the hop- 
ping parameter series for the Fourier transformed 
amplitude Trs(P4) is much larger. Thus, the Pad6 ex- 
trapolation in K is more stable. Therefore, we Fourier- 
transformed the coefficients in table 1 to the discrete 
points in the momen tum space 

P4 = 0r/4a)k4 (k4 = B4 'B4 + 1, . . . ,B 4 + 7). (13) 

These points in the momentum space correspond to 
the 84 periodic boundary conditions which we use 
(both for the gauge and quark fields). The integer 
number B 4 specifying the lowest point of  the Bril- 

!-2 Note, that we are neglecting here contributions from dis- 
connected quark diagrams, which are presumably small 
in the quenched approximation. In fact, for SU(2) colour 
they would vanish identically, because they are propor- 
tional to the imaginary part of colour traces. 

louin zone is arbitrary. To be definite, we have taken 

B4 =- -3 .  
From the hopping parameter expansion coefficients 

in the momentum space we construct the amplitude 
T11(/74) and determine its value for the various hop- 
ping parameters K by  using the Pad6 approximants.  
Having the values of  the amplitudes T l l (P4 )  one can 
determine the position of  the pole, my, and the cou- 
pling constant fv using eqs. (8) and (10). The best val- 
ues are obtained from the amplitudes at the smallest 
momenta  P4 = 0 and rr/4, which are nearest to the 
pole. However, we have checked that any other com- 
bination of  the three smallest momenta  (0, rr/4, z/2) 
give only slightly different pole parameters. In the 
range below K ~ 0.10, the Pad6 table is rather stable 
and we obtain practically the same values from all 
the Pad6s, except for a few low order ones. Above 
K ~ 0.10, the Pad6 table becomes somewhat worse, 
but a reasonable extrapolation can still be obtained 
up to about K ~ 0.13 (somewhat bet ter  for 13 = 5.7 
and worse for/3 = 6.0, where the radius of  conver- 
gence of  the hopping series is smaller and our statis- 
tics poorer).  

Another method of  extracting m v and fv is to 
Fourier transform the amplitude obtained in the p 
space from the Pad6 analysis back to the coordinate 
space, and determine the pole characteristics through 
the large-x 4 values of  the function T 11 (x4) SO obtain- 
ed. We remark that the analytic continuations in the 
momentum and coordinate space are not equivalent 
due to the non-linearity of  the Pad6 approximants.  
We have performed an analysis bo th  for the T11 (P4) 
and the 7"11 (x4) amplitudes which give consistent 
result as shown in fig. 1. The statistical errors, how- 
ever, propagate a lot more in the x space in the deter- 
ruination of  mj[~ and fj/qj. In fig. 2 we compare the 
results o f  the p space analysis for fjTl and mj/~ ob- 
tained by  the "point-split" current (16th order se- 
ries) and the "naive" current obtained from a 32- 
order hopping parameter expansion. 

Now we come to the results. It can be seen from 
the figures that our present 84 lattice, and statistics 
(80 points at t3 = 5.7 and 48 at 13 -- 6.0) and not good 
enough to warrant a definitive determination of  the 
properties of  the light quark (u, d, s) systems. We re- 
call that our Pad6 approximant method ceases to be 
conv.ergent above K = 0.13. Let us therefore concen- 
trate on the J /~  meson. At 13 = 5.7 (fig. 2), the vec- 
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Fig. 1. A comparison of the p space and x space analysis for 
the inverse lattice spacing a -1 and the vector meson coupling 
constant f j / ~  as a function of the hopping parameter K, based 
on our Monte Carlo data on an 84 lattice at/3 = 5.7. The ver- 
tical bars denote the uncertainty due to the various Pad's  in 
the x space. 

tor meson mass determined from the naive current 
( ~ x 7  u ~kx) and the point-split current is the same 
within errors, for K in the charm quark region. The 
value o f f j ~  for the two currents is also very similar 
for K ~< 0.7. However, in the K ~ K c regions the two 
currents lead to different values for f ~ .  For the point- 
split current we get arnj/vj = 3.1 at K = 0.091, from 
which we get a -1 = 1000 MeV. This is consistent with 
a -1 = 800 + 200 MeV at/3 = 5.7, obtained from the 
previous Monte Carlo measurements o f  the string ten- 
sion in SU(3) [123 3] .  The precise values o f K  c and 
fjT~ at/3 = 5.7 fo ra  -1 = 1000 MeV are: Point-split 
current: 

K c = 0.091, f ~  = 0.089, 
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Fig. 2. A comparison of  the p space analysis of  the point- 
split and naive current data for the vector meson mass amj/~ 
and the vector coupling constant fj-/l. 

"naive" current: 

K c = 0.089, fj71 = 0.069. 

The experimental value f ~ l  = 0.083 is very well re- 
produced. At this value o f ~  -1 the point-split current 
gives a better result, whereas the normalization o f  the 
"naive" current is o f f b y  ~20%. A better Monte Carlo 
measurement of  a -1 from the string tension would 
provide a better distinction between the two currents. 
Comparing fl = 6.0 and fl = 5.7 in the J /~  region we 
have found little difference in the curves for f ~ .  The 
mass curves are somewhat different. Assuming re- 
normalization group behaviour, a -1  = 1000 MeV at 
fl : 5.7 implies a -  1 = 1400 MeV at/3 = 6.0. This gives 

- - 1  • • a n f  at/3 = 6 0,  which Is a factor ~ 2  lar e r c o m  j ~  • g - 
pared to the value at/3 = 5.7. This holds for both the 
currents. In other words, there is no evidence o f  
scaling between/3 = 5.7 and 6.0 on the 8 4 lattice 
within our statistics. 
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As far as the light quark (u, d, s) mesons are con- 
cerned it is quite clear from figs. 1 and 2 that f v  1 is 
too big for v = p and ¢. We were unable to extrapo- 
late (with Pad6 approximants) our point-split data to 
the region K ~" 0 .15-0 .16 ,  relevant for the 19 and 
mesons. The "naive" current data (with smaller er- 
rors) can, however, be extrapolated giving f -1 ~ 0.45 
at K u = 0.16 (where m~r = 0) and/3 = 5.7. T~s  is a 
factor ~2 .4  larger than the experimental value f ~ l  
= 0.19. Similarly, at/3 = 6.0, fp -1  ~ 0.56 a t K  = K u 
= 0.155. This is a factor ~3 .0  too large compared to 

( f ; -  l)experiment. The numbers for f~-i are almost 
identical to the ones obtained in re(s. [7,8] on smaller 
lattices. In our opinion, the numbers for the light 
quark system have little to do with the continuum 
QCD because of  the large finite-size effects caused by 
tunneling through the periodic lattice potential [ 11 ] .  
These effects are certainly smaller for the heavy 
quark systems on an 84 lattice, though not entirely 
negligible. 

In conclusion, the magnitude of  the charm quark 
vector current vacuum polarization is reasonably well 
described on an 84 lattice, somewhat better with the 
point-split current though the "naive" current predic- 
tion is also not too far off  the mark. There is, how- 
ever, no evidence of  the renormalization group scaling 
behaviour between/3 = 5.7 and 6.0. We trust the j3 
= 5.7 data more, because the finite volume effects 
are larger at/3 = 6.0 (more for the point-split current, 
for obvious reasons). This is so because according to 
the renormalization group, the linear size of  our spa- 
tial box is about a factor 1.4 smaller at/3 = 6.0. It 
is, however, very well possible that the observed non- 
scaling behaviour is the result of  a complicated inter- 
play between the finite lattice spacing and finite lat- 

tice size effects. We hope to come back to these ques- 
tions in a future publication. 

We would like to thank our colleagues at DESY and 
the II. Institut for Theoretische Physik at Hamburg 
for a continuous feedback and lively discussions. In 
particular we would like to thank F. Gutbrod, P. 

Hasenfratz, H. Joos, Z. Kunszt, G. Mack, L. McLerran, 
G. Parisi, K. Symanzik and P. Weisz for useful discus- 
sions. We thank T. Walsh for reading the manuscript. 
The support o f  the DESY computer center is also 
thankfully acknowledged. 

References 

[1] K.G. Wilson, Phys. Rev. D10 (1974) 2445. 
[2] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42 

(1979) 1390;Phys. Rev. D20 (1979) 1915. 
[3] M. Creutz, Phys. Rev. Lett. 43 (1979) 553; Phys. Rev. 

D21 (1980) 2308. 
[4] G. Martinelli, G. Parisi, R. Petronzio and F. Rapuano, 

Phys. Lett. 116B (1982) 434. 
[5 ] C. Bernard, T. Draper, K. Olynyk and M. Rushton, 

Phys. Rev. Lett. 49 (1982) 1076. 
[6] F. Fucito, G. Parisi and S. Petrarca, Phys. Lett. 115B 

(1982) 148. 
[7] D. Weingarten, Bloomington prerpint IUHET-82 (1982). 
[8] H. Hamber and G. Parisi, Brookhaven preprint BNL 

31322 (1982). 
[9] L.H. Karsten and F. Smit, Nucl. Phys. B183 (1981) 

103. 
[10] A. Hasenfratz, Z. Kunszt, P. Hasenfratz and C.B. Lang, 

Phys. Lett. ll0B (1982) 289. 
[11] P. Hasenfratz and I. Montvay, Santa Barbara preprint 

NSF-ITP-82-135 (1982). 
[12] M. Creutz, Phys. Rev. Lett. 45 (1980) 313. 
[13] E. Pietarinen, Nucl. Phys. B190 (1981) 349. 

242 


