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Abstract. We investigate the Dirac-Kiihler operator 
on a triangular lattice in two dimensions and show 
that the number of degrees of freedom which survive 
in the continuum limit is the same as in the case of a 
square lattice. 

As is well known, the naive discretization of the Dirac 
action leads to a theory which describes more than 
one species of fermions in the continuum limit [1]. To 
eliminate this unwanted degeneracy several methods 
have been proposed [2 4]. Yet none of them seems 
to be completely satisfactory. Instead of trying to get 
rid of the species doubling one might attempt a 
physical interpretation of the additional degrees of 
freedom in terms of some kind of flavour. Such a 
procedure was suggested by Susskind in his approach 
to the problem [3]. Of course, this only makes sense, 
if the degree of degeneracy does not depend on the 
structure of the lattice. This requirement is not fulfilled 
for the naive discretization, as was shown by Chodos 
and Healy [5]. 

On the other hand, in the geometric treatment 
of fermions, which starts from the Dirac-Kiihler 
equation and is equivalent to Susskind's method for 
a free field on a cubic lattice, the degeneracy is not 
produced by the discretization but is already present 
in the continuum [6, 711 In addition, the geometric 
character of this approach makes the discretization 
essentially unique even for an arbitrary lattice. So one 
might have a chance to associate a physical meaning 
with the different fermion species. 

In this note, we first collect some formulae for the 
analogues of various continuum concepts on an 
arbitrary simplicial lattice. We then study the Dirac-  
Kiihler operator in the Euclidean formulation on 
a two-dimensional triangular lattice. In the Dirac-  
Kfihler approach, one degree of freedom is associated 
with each cell (point, link, plaquette . . . .  ) of the lattice. 
But although the number of cells per lattice point is 

four in the case of the square lattice and six for the 
triangular lattice (in two dimensions), we show that 
the number of degrees of freedom which survive the 
continuum limit is four also in the case of a triangular 
lattice. Therefore, in the Dirac-K/ihler formalism the 
degeneracy on the lattice seems to coincide with the 
continuum degeneracy, independent of the lattice 
shape, as was to be expected from the geometric 
content of the method. 

We start with giving the lattice analogues of some 
continuum concepts, which we need in our analysis 
[8, 9]. For a more detailed discussion of the mathe- 
matical background the reader should consult [6, 7]. 
Let Cp be an oriented p-cell of an n-dimensional 
simplicial lattice. A 0-cell is a lattice point, a 1-cell a 
link, etc. We describe the geometry of the lattice by the 
incidence function I(Cp,Cp+l), which is + 1, if Cp is 
contained in Cp+ 1 with the right orientation, - 1, if Cp 
is contained in Cp+ 1 with the opposite orientation, and 
0 otherwise. Let �9 Cp denote the (n - p)-cell of the dual 
lattice which is dual to Cp (see [8]). We define the 
incidence function of the dual lattice by 

I( ,  Cp +1, * Cp) = I(Cp, Cp +1)- (1) 

A p-cochain fp is a real- or complex-valued function 
of p-cells, which is linearly extended to arbitrary linear 
combinations of p-cells (p-chains). Moreover, we set 
fp(Cq) = 0 for p 4= q. To each p-cochain fp on the lattice 
there corresponds a dual ( n -  p)-cochain ,fp on the 
dual lattice defined by 

V(, Cp) 
(*L)(*c")=L(cp) v(cp)' (2) 

where V(Cp) is the (p-dimensional) volume of C v. 
Analogues d L and 6 L of the continuum operators d 
(exterior derivative) and 6 (coderivative) are given by 
the formulae 

(dLL)(Cp+ 1) = • I(Cp, C,+ O f~(Cp), (3) 
Cp 
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(6 L fp (cp_ 1) = (* - l  dL * L ) ( C .  - i )  

v(, c,) v(c,_ ,) (4) =2I(C'l'cpf/c )  -ltc, 
In the cont inuum, we have a symmetr ic  bilinear form 
( ,)  for real valued p-forms: 

(co, co') = j ' coA ,co'. (5) 

With respect to this bilinear form, 6 is the adjoint  
of d: 

(do), co') = (co, 6 co'). (6) 

On  the lattice we define: 

V( .C , )  
(fP'gP) = ~c, V(Cp) fp(Cp)av(CP)" (7) 

Then we have: 

(dLfv, gp+ , ) = (fp, 6Lgp + 1). (8) 

Fur thermore ,  we set (fp, gq) = 0 if p 4: q. For  complex-  
valued cochains we take the complex conjugate in the 
first argument .  

If our  lattice admits  a symmet ry  opera t ion S, we let 
it act on cochains according to the equat ion 

(S* ffl(Cp) = fp(S(Cfl).  (9) 

S* commutes  with dL, ~L and consequently with the 
lattice Laplacian 

AL = (dL -- 6L) 2 = -- dL aL -- g)L dL . (10) 

NOW we consider a two-dimensional  t r iangular  lattice 
with lattice constant  a (see Fig. 1). The 0-cells are the 
lattice points  denoted by (x, qS), where 

3 
x = a  ~ naej, nfiV/. (11) 

j = l  

The unit vectors e~ are given by 

ea=(�89189 e 2 = ( 0 , - 1 ) ,  e 3 = ( - � 8 9 1 8 9  (12) 

They satisfy 
3 

Z ej=0.  (13) 
j = l  

The 1-cells are the links (x,j) connecting the lattice 
points  x and x + aej (j = l, 2, 3). Finally we have two 
types of  2-cells: the triangles (x, 12) to the right of  x 
and the triangles (x, 32) to the left of x (see Fig. 2). 
Hence, to each lattice point  there correspond six cells: 
one 0-cell, three l-cells and two 2-cells, two cells more  
than in a square lattice. 

The incidence function is non-zero only for the 
following arguments :  

I [(x, r (x,j)] = - l, l [ ( x  + aej, r (x,j)] = 1, 

j =  1,2,3, 

I [ (x ,  1),(x, 12)] = - I, l [ ( x - a e 3 , 3 ) , ( x  , 12)] = - 1, 

I [ ( x  + ae  D 2), (x, 12)] = -- 1, (14) 
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Fig. 1. The triangular lattice (solid lines) and the corresponding 
dual lattice (dashed lines). In addition, the coordinate axes and the 
unit vectors e 1, e 2, e3 are shown 

1x,12) (x,32) 
Fig. 2. The two types of 2-cells in the triangular lattice 

l [ (x  + a%,  2), (x, 32)] = 1, 

I [(x, 3), (x, 32)] = 1, 

I [ - ( x -  ael ,  1), (x, 32)] = 1. 

The dual lattice consists of regular hexagons with edge 

length a/,,/3 (see Fig, 1). F o r  the volumes of the cells 
we get: 

V(x, ~b)= 1, V(.(x ,  dp))=�89 

V(x,j) = a, V( . (x , j ) )  = a/x /3  , (15) 

V(x, 12) = V(x, 32) = �88 x/3 ,  

V(.(x,  12)) = V(.(x,  32)) = 1. 
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If we define elementary cochains d ~'H according to 

x H  ~ t d '  ( x ,H)=f , , , x ,  fn,wV(x,H),  
(16) 

H , H ' =  ~b, 1, 2, 3, 12,32, 

we can write a general cochain as 

~ =  ~ tp(x,H)d x'n (17) 
x,H 

and find 

d L 4 ~ = - ~  ~ [q~(x +aej,~))-q)(x,~))]d ~d 
a ~  =1 

§ Q) X--ak~=aek'j dX'32 (18) 

43 (x 
s (p § ) ' 

1 t2 3 6 L ~ = a 2  ~ [ p ( x - a % j ) - q ) ( x , j ) ] d  ~'~ 
x I. j= l  

+ x ~  =~1 q~ x + a ek, 32 (19) 
j= k=l 

ay'12/l "t 
We now look for elgenvectors of the Dirac-K/~hler 
operator d L - 6 L in order to see, which of them belong 
to eigenvalues that remain finite in the continuum 
limit. It turns out to be advantageous to consider 
mainly the square of the Dirac-K/ihler operator, the 
Laplacian. For  the eigenvectors we make the ansatz 

~0 (x, H) = u(p, H)e ipx (20) 

with the momentum p in the first Brillouin zone of 
our lattice. For two such plane waves 

~bj = ~ uj(pj, U)e '";x d x'n, j =  1,2, (21) 
x,H 

we have the scalar product 

((~1' (~2) = [IA1 (Pt, qS)* U2(P2 , t~) 
3 

lb/ +2 ~ ut (pa,j)*uz(pz,J) + 2 ~(Pl, 12)*u2(P2, 12) 
j=l 

+ �89 t (pp 32)* U 2 (il2, 32)] (2;rc)2a(pl  - -  P2)- (22) 

With respect to this scalar product, the Dirac-K/ihler 
operator is anti-hermitian, and consequently A L is 
hermitian. So we use as normalization condition for 
our eigenvectors: 

3 
lu(p, qS)l 2 + ~  ~ lu(p,j)l 2 +�89 12)[ 2 

J=* (23) 
+�89 32)[2 = 1. 

It will be interesting to study the transformation of 
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the eigenvectors under the lattice point group, which 
is generated by R (rotation about re/3 around a lattice 
point) and S (reflection with respect to an axis in x 1- 
direction through a lattice point). We shall compare 
their properties with the behaviour of the eigen- 
functions of the continuum Laplacian A under the 
same transformations. In the space of differential forms 
A has the eigenfunctions 

COo(p) = e  ip 'x,  COu(p)=e ivx dx u, # = 1,2, 
(24) 

CO(p) = e ip'' dx 1 A dx 2 . 

They all belong to the eigenvalue - p2 and transform 
under R and S as follows: 

R'COo(p) = coo(R- t p), S'COo(p) = coo(S- t p), 

R* COt (P) = �89 COl (R-I  p) _ �89 0) 2 (R -1 p), 

S,co t  (p) = 0)1( S -  1 p), (25) 

R,  co2(p) =.�89 * (R- t  p) + �89 (R -1 p), 

S* 0) 2 (p) = -- (1)2 ( a -  1 p), 

R'CO(p) = co(R-i p), S'CO(p) = - -  CO(S-  i p). 

Turning now to the lattice Laplacian we have to 
distinguish the cases p = 0 and p 4: O. For p = 0 we get 
the eigenvectors 

S o = ~ d X'~ with eigenvalue 0, 
x 

I~ 1 = � 8 9  E ( dX'l - dX'3)  0, 
x 

S 2 = � 8 9  (d  x'* - 2 d  x'2 + d x'a) 0, 
x 

$3 = ~22 ~ (d' , l  § dX,2 § d x,3) _ 2 4 a  -2, 

S+  = E (dX'12 + dX'32) 0, 
x 

S _  = E (dX'12 - dx'a2) - 2 4 a - 2 .  
x 

(26) 

Their 
S are" 

transformation properties with respect to R and 

R *  S 0 = S 0 ,  S *  S o = S o, 

R* S  t = � 8 9  t - � 8 9  S*S t = S t ,  

• s*S 2 -$2,  R* $2 = 1 N ~ S 1  "}- 2 2, =" 

R* S  3 = - $ 3 ,  S * S  3 = - $3, 
R ' S +  = S+, s ' S +  = - S+, 

R ' S _  = - S _ ,  S ' S _  = - S _ .  

(27) 

So we see that, although there are six eigenvectors of 
A L with p = 0, only four of them belong to eigenvalues 
which remain finite for a ~ 0 ,  and these are exactly 
those which transform analogously to the continuum 
eigenfunctions. The case p r 0 is more complicated. It 
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is convenient  to introduce the following abbreviations: 

3 
p(p) = ~ ( c o s ( a p - e j ) -  1), 

j = l  

zj(p) = (2p(p) + 9)- 1/4 

�9 [e i~p'~J + e i~ ' l~j-  ~') + e -  i,p.~,] 1/2 (28) 

aj(p) = (2p(p) + 9)- 1/4 
�9 [e/aWe: q- e iap'(eFe0 -{- e -  iap'ek] 1/2 

with (j, k, 1) = (1,2, 3) cyclic. The eigenvectors of A L with 
p : p 0  are '  

~o(P) = ~ elP'~d~'4~ 
x 

3 

q~l(P) = (- ~P(P))- I/2 2 eip'x ~ (I -- eiap'ea)d x,j, 
x j = I  

~ 2 ( P )  : (4 - ~ 2x /~-p)  + 9) - i/2 ~ eip'x 
x 

3 

' ~  (z j (p)-a~(p))d  ~,j, (29) 
j = I  

~3(P) = (4 + ~- 2 ~ )  + 9) - i/2 ~ ei,.x 
x 

3 

�9 ~ (zj(p) + a~(p))d ~,j, 
j = l  

(/)-+ (P) = 2 eip'x ('El (P) dx '12 ---~ 271 (P)*dX'32)  . 
x 

For  the corresponding eigenvalues we find: 

2 4 a - 2  
21(0) = o(P) =~P(P)  , 

2z(p) =2+(p)  = ( - -  12 + 4 . , f 2p (p )+  9)a -2, (30) 

23(p) = 2_ (p) = ( -  12 - 4x~-p  (p) + 9)a -z. 

One sees immediately that  for a-+ 0 with p fixed 

2 1 ( p ) - + - p  2, 2 2 ( p ) - + - p  2, 23(p)-+-c t> .  (31) 

So only four out of the six eigenvalues remain finite 
in the cont inuum limit, exactly as in the case p = 0. 
But whereas 

Jim q)o(P) = 20, Jim ~3(P) = 23, 
p ~ 0  p ~ 0  

lira ~+(p) = 2+,  (32) 
p ~ 0  

the limit of cb~(sp) as s -+0  depends on p for c~ = 1, 2. 
For  p q: 0 all the eigenvectors are continuous. 

Under  the transformations R and S they behave as 
follows: 

R* ~bo(p)= <bo(R- ~ p), S* 4~o(p) = ~ o ( S -  lp) ,  

R*~l (p)  = qq (R-1 p), 

R* ~2(P) = ~2( R - 1 p), 

R* q~3 (P) = - ~b3 (R-  ~ p), 
R*~_+ (p) = _+ ~+ (R-  1 p), 
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S* q01 (p) = ~b 1 (S- i p), 
S ,  q~2(p) = _ tj~2(S- 1 p), 

(33) 
S*qb3(p)  = _ q53( S -  t p), 

S* 4)_+ (p) = - ~b + (S- 1 p). 

Hence tb o transforms like the cont inuum eigenfunction 
~o o, and 2 o tends to - p 2  as a--+0. ~+ transforms like 
09, and the eigenvalue 2+ remains finite for a ~ 0. On 
the other hand, no eigenfunction of the cont inuum 
Laplacian A in the space of  2-forms, which is conti- 
nuous as a function of p, behaves like ~b , and 
2 --+ - oo for a-+ 0. So far everything is the same as 
in the case p = 0. But in the space of l-cochains the 
situation is different. The transformation behaviour  of  
all of the eigenvectors ~1, ~2, q53 has no counterpar t  
among the continuous eigenfunctions of A in the space 
of 1-forms�9 Yet 21 and 22 r ema in  finite, whereas 
23 - -+-  oo for a-+0.  Moreover ,  qq and ~2 are not 
continuous at p = 0. Nevertheless, one can easily find 
two or thonormal  linear combinations of ~b I and ~b 2 
which are cont inuous for all p and transform like the 
co.  Of course, they are eigenvectors of the Laplacian 
only as a --+ 0. 

Finally we list the eigenvectors and eigenvalues of 
the Di rac -K~h le r  operator.  For  p = 0, the eigenspace 
belonging t o  the fourfold e_igenvalue 0 is spanned by 
t~0, t~l, t~2, (~+, and 2-1/2(q03 _+ i 2 _ )  are eigenvectors 
with eigenvalues _ 2 i x ~ / a .  In the case p :~ 0 we get 

2-1/2(~o(p) _ i~  l(p)) with eigenvalue _+ ixfT-21 (p), 
(34) 

2 -  1/2(~2(p) -+- i~+ (p)) _ ix//--- 22(p) , 

2 -  z/2(~3(p) ___ i~_ (p)) _+ i x / - -  23(p). 

These eigenvectors can be discussed in the same way 
as those of the Laplacian treated above�9 
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