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Abstract. A lattice Lagrangian of the Wess-Zumino 
model is constructed using perturbation theory up to 
two loops. It is shown that the renormalized vertex- 
functions have the correct continuum limit ifnonsuper- 
symmetric counterterms up to dimension four are 
added to the Lagrangian. The structure of these terms 
is analysed with the Wilson prescription for the 
fermions. 

1. Introduction 

Supersymmetric field theories [1] have become po- 
pular in connection with attempts to go beyond the 
standard SU(3) x SU(2) • U(l)-model of strong, 
weak, and electromagnetic interactions. In particular it 
is hoped that supersymmetry might be able to explain 
why the mass scale of weak interactions (i.e. the mass of 
Higg's scalars) is so small in comparison with the 
Planck scale [2]. It is, however, clear that at low 
energies supersymmetry cannot be exact, and some 
mechanism would have to be responsible for the 
breaking of supersymmetry. As a consequence of 
certain nonrenormalization theorems [3], breaking of 
supersymmetry either has to be put in by an approp- 
riate choice of Higgs parameters or has to come from 
nonperturbative effects. The latter alternative seems to 
be realized in certain two-dimensional models [4]. 
Witten's theorem [5], on the other hand says that this 
cannot be realized in a large class of theories. 

All this makes it highly desirable to know more 
about nonperturbative aspects of supersymmetric field 
theories. During the last years it has turned out to be 
extremely useful to formulate field theories on the 
lattice and then to use either analytical methods (e.g. 
strong coupling expansion, mean field theory) or 
numerical methods (Monte Carlo computer calcu- 
lations). In the context of gauge field theories [6] these 
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tools have given both qualitative insight into the phase 
structure and numerical results for low-lying states of 
the spectrum. It is therefore tempting to try similar 
calculations for supersymmetric field theories. Several 
attempts have been made in order to find a lattice 
formulation of supersymmetric field theories. They all 
start from the requirement that such a lattice version 
should still be manifestly invariant under the super- 
symmetry algebra (or at least a part of it). Since, 
however, the (continuum) algebra of supersymmetry 
contains the generators of translations and Lorentz 
rotations which on the lattice do not exist such a 
requirement could be expected to be too strong. 
Nicolai and Dondi [7] kept the superfield formalism, 
but they concluded that either one has to give up the 
supersymmetry algebra on the lattice or one is forced 
into a form of the derivative operator which contains 
long range correlations (SLAC derivative [8]). Banks 
and Windey [9] and, later on, Rittenberg and 
Yankielowicz [10] defined a modified version of the 
supersymmetry algebra ("lattice supersymmetry") 
which could be kept on the lattice. These attempts, 
however, lead to lattice models which in the continuum 
limit are not fully Lorentz invariant. Recently Elitzur, 
Rabinovici and Schwimmer [11], continuing along 
these lines, succeeded in finding a lattice version of 
N = 2 extended supersymmetry (their method also 
works for the Wess-Zumino model in 2 dimensions, 
but in 4 dimensions not for N = 1 supersymmetry): 
whether this model in the limit of vanishing lattice 
spacing agrees with the continuum theory, however, 
has not yet firmly been established. 

In view of all these difficulties which seem to arise 
because some manifest symmetry properties on the 
lattice are imposed, it seems useful to approach the 
problem from a somewhat different angle. From 
Symanzik's [12] formulation of the "local effective 
Lagrangian" it is known that a lattice action must exist, 
such that its Green's functions and vertexfunctions, in 
the limit of zero lattice spacing, coincide with those of 
the continuum theory (in the sense of perturbation 
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theory). The question then is: how much super- 
symmetry will this lattice action have? The results 
mentioned above make it probable that part of the 
symmetry requirements have to be given up, but a 
priori it is not clear, to what extent this has to be done 
and what form the lattice action will have. 

It is the aim of this paper to find an answer to these 
questions. More precisely, we shall construct a lattice 
action of the Wess-Zumino model [13] in such a way 
that its (renormalized) vertexfunctions have the correct 
continuum limit. This then guarantees that they will 
satisfy the Ward identities which are a manifestation of 
the supersymmetry invariance. We work in pertur- 
bation theory, use Wilson's method for the fermions 
and our conclusions will be based on the two-loop 
approximation. 

Our result for the lattice action confirms our expec- 
tation that on the lattice supersymmetry cannot be 
maintained, for several reasons. First, there is the effect 
which has been noticed already in [7] and which is not 
subject of this paper: since the nearest-neighbor de- 
rivative operator does not obey the product rule of 
differentation, already the tree approximation is not 
invariant under supersymmetry. The new effect we find 
is that quantum corrections leed tofinite (in the limit of 
vanishing lattice spacing) deviations f rom the continuum 
theory. This must be compensated by a readjustment of 
the bare parameters in the action, and this correction 
does not respect the equality ofbosonic and fermionic 
mass terms (and also of couplings between bosons and 
fermions). Furthermore we find that the correct con- 
tinuum limit holds only if we add new operators of 
dimensions < 4 to the Lagrangian which are not 
present in the continuum theory. Their coefficients, 
which we can calculate only in our framework of 
perturbation theory, are strongly dependent upon the 
Wilson parameter r. It therefore seems as if the 
presence of these new operators is closely related to the 
way in which we deal with the problem of additional 
fermionic degrees of freedom on the lattice. 

As we have already said, our considerations are 
entirely restricted to perturbation theory: we calculate 
vertexfunctions in the two-loop approximation, and it 
is also only in this approximation that we can explicitly 
construct the coefficients of the operators in the lattice 
action. This will be of little use for practical purposes. 
Since the Wess-Zumino model is known [ 15] to be not 
asymptotically free, it is clear that the limit of zero 
lattice spacing is not going to drive us into the weak 
coupling regime where our results are quantitatively 
valid. This implies that our final result for the lattice 
action is only a qualitative one: couplings and masses 
have to be chosen in such a way that the vertexfunc- 
tions satisfy the requirements of supersymmetry 
(Ward identities). The way in which these functions 
depend upon the input parameters is, outside of 
perturbation theory, not known, but one might try to 
use other approximation methods. The question how 
our results can be used for practical calculations will be 
left to future work. 

Our paper will be organized as follows. In Sect. II we 
briefly review the main features of the Wess-Zumino 
model in the continuum, and we then define our lattice 
action. In Sect. III we present one-loop calculations on 
the lattice and study the limit of vanishing lattice 
spacing. This already brings our main result: agree- 
ment of the renormalized vertexfunctions with the 
continuum theory is achieved only if bare masses and 
coupling constants are properly adjusted. This way we 
get counter terms in the Lagrangian which break 
supersymmetry explicitly. In sect. IV we describe two- 
loop calculations. They confirm the results of sect. III, 
but also lead to the new operators in the lattice 
Lagrangian. In sect. V we summarize our results and 
draw a few conclusions. 

II. The Model 

Before we define our model we first want to review a 
few features of the Wess Zumino model [13] in the 
continuum�9 In particular we wish to emphasize those 
properties which will be affected by the lattice re- 
gularization. The Wess-Zumino model is defined 
through the following Lagrangian: 

= - �89 2 - �89 a + �89 + �89  2 +1G2 

+ m(AF + B G -  �89 
+ g (FA  2 - F B  2 + 2 G A B  - ~ (A  + i75B)~ ) (2.1) 

Here A , B  are scalar and pseudoscalar fields, resp., and 
F,G are auxiliary fields which could be eliminated via 
the equations of motion. We prefer to keep the 
auxiliary fields. We work in Euklidean space with 
g v = - 3u~, {?u,Yv} = - 23uv, ?s z = 1, and ~ is a Majo- 

~t . �9 , 

rana spmor analytmally continued from Minkowsky to 
Euklidean space. The Lagrangian (2.1) is invariant (up 
to four-divergences) under supersymmetry transfor- 
mations. This invariance can be used [3] to derive a set 
of Ward identities between unrenormalized (but sui- 
tably regularized) Greens functions or vertexfunctions. 
For example, if we denote the (amputated) two-point 

�9 ( 1 )  / - ( 2 )  vertexfunctions by FAA , F A r  , FFF , FO0 = ~ pFoo + -oo  
the following equations hold: 

F AA(P 2) = FBB(P  2) = . 2 r ' ( i ) - -  v --OO-- -- p 2 F F F ( p 2 )  

= _ p2 FG G (p2) (2.2) 

F AF(p 2) = rB~(p 2) = v ~23r r~2] (2.3) --O0~v J 

From the first set of equations it follows that 
FAA(0) = FBB(0) = 0. Relations similar to (2.2) and (2.3) 
can be derived for 3-point and 4-point functions. For  
the vertices A a and A 4 they are of the form: 

F AA A '~ 7" p rOSA,  F AAAA ~ •" p F O~ AA (2.4) 

which again implies that FAA A and I'AAAA vanish at 
zero external momenta. 

As Iliopoulos and Zumino [3] have shown, this 
model has very simple renormalization properties: 
first, quadratic divergences always cancel and only 
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logarithmic divergences remain, secondly, provided a 
supersymmetric regularization scheme is used, there is 
only one common wave function renormalization 
constant: 

Z -  1 = F AA(O), = FBB(O), = ,C00(0 ) ( 1 )  = __ FFF(0) 

= - FGG(O) (2.5) 

As a result of this, the Ward identities (2.2) (2.4) also 
hold for the renormalized vertexfunctions (FRA = 

Z F A A  , A R = Z - 1 / 2 .  A etc.) 

/-R A =FBRB = p2p(1)R__00 = __ p Z F R F =  __ pZI-RGG (2.6) 

R _ R =V(Z)R (2.7) 
FAF -- FBO --#0 

R R R (2 .8)  F RAA ~ 7" P F OO A , F AAAA ~ 7" P *C r AA 

Furthermore, renormalization of masses and coupling 
constants only comes from the wave function 
renormalization: 

*c~r(O) = r ~  (0) = F ~  R (0) = m R (2.9) 

m R = Z ' m  (2.10) 

rf  (o,o,o) = - rf. (O,O,O) = r A (0,0,0) 
R 0 = -- Fr ( , 0 , 0 )  = -- iFcoBo(O,O,O) = gR (2.11) 

gR = Z3/2 g (2.12) 

The way in which (2.9) (2.12) are realized in per- 
turbation theory is very simple. In the tree approxi- 
mation, (2.9) and (2.11) are trivially correct. Loop 
corrections to any of the 2-point or 3-point functions of 
(2.9) and (2.11) are ultraviolet finite and vanish, when 
the external momenta are taken to zero. The same also 
happens with those other vertexfunctions which, by 
dimensional arguments, could be logarithmic diver- 
gent: F A3 , F AB2 , F A4 , FB4 , and F A2B2. This is the content 
of (2.4) and (2.8). That renormalization preserves 
sypersymmetry can also be seen by writing down the 
necessary counter term: 

50R ='500R "~- ~ " R  ~- 50gR At- A ~OR (2.13) 

A SOR = (Z - 1)500R (2.14) 

Here L, eOR , 50,,R and 50gR are the same as in (2.I), with 
the bare parameters g, m and the fields A, B, F, G, r 
being replaced by their renormalized partners gR, mR, 
A R, B R, F R, G~, ~R, respectively. 

For the following it will be useful to compare the 
renormalization properties of(2.1) with a model which 
has the same terms as (2.1) but not necessarily equal 
masses and coupling constants. Such a theory has 
quadratic divergencies but is still renormalizable, and 
each field now has its own wave function renormali- 
zation constant ZA, Ze, and Z o. Furthermore, re- 
normalization would require counterterms for masses, 
coupling constant renormalization constants, as welt 
as new operators A 2, A a, A 4 which are not present in 
the original Lagrangian. Most important, in such a 
theory it would, in general, not be possible to satisfy the 
Ward identities (2.2) (2.4) or (2.6)-(2.8). 

As a result of the analysis given below we will show 
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that a lattice-regularized version of (2.1) has a general 
form, which is quite similar, but where it is possible to 
adjust the parameters of all the interaction terms in 
such a way that the renormalized vertexfunctions in the 
limit a - ,  0 agree with those of the continuum theory. 
All this will be done in perturbation theory: the 
coefficients must then be adjusted order by order of 
renormalized perturbation theory. As a starting point, 
we choose the following lattice analogue of (2.1): 

S = a4 y,(500 + Y "  + s (2.15) 
x 

1 1 
5 0 o -  2 4 a 2 ~ ( A ( x + a e ) - A ( x - a e , ) )  2 

P 
1 1 
24a2 ~ (B(x  + ae , )  - B ( x  - aeu)) 2 

1 
2 i a ~'  ( 0  (x)yu O (x + a eu) - ~ (x + a eu) y ,  ~ (x)) 

# 
q- � 89  2 q- 21-G 2 (2.16) 

50,. = m(F  A + G B  - �89162 

+ + + a ( x ) - 2   (x)O (x)) 

- ~ ( F ( x ) A ( x  + aeu) + F ( x  + a e u l A ( x  ) - 2 F ( x l A ( x ) )  
,u 

- ~, ( G ( x ) B ( x  + ae , )  + G(x  + aeu)B(x  ) 
# 

- 2 G ( x ) B ( x ) )  1 (2.17) 

50o = g [ F ( A 2  - B2) + 2 G A B  - C~(A + i75 B ) ~  ] 
(2.18) 

We have chosen to use the Wilson [14] method of 
dealing with the additional superficial fermionic de- 
grees of freedom caused by the lattice. In order to 
preserve as much as possible of supersymmetric in- 
variance, we then are forced to treat the other fields in 
the same way. For the same reason we use the 
symmetric form of the derivative operator for the 
scalar fields. In the following we shall see that this is 
necessary for cancelling divergencies between fer- 
mionic diagrams and diagrams with scalar fields. 
Finally we mention that, although (2.1 5)-(2.18) looks 
rather supersymmetric, the action (2.15) is not in- 
variant under supersymmetry transformations: in the 
continuum versmn (2.1) supersymmetry transfor- 
mations generate total derivatives which do not contri- 
bute to the action integral. On the lattice terms remain, 
since the derivative operators of(2.16) do not obey the 
usual product rules of differentiation. 

We then conclude this section by listing the pro- 
pagators of lattice perturbation theory: 

GAA = GBB -=- [ M  2 (ak) + F2(ak)]  - 1 (2.19) 

Gv v = G~ G = _ F 2 ( a k ) [ M Z ( a k )  + F Z ( a k ) ] -  i (2.20) 
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GAF = Gnu = - -  M(ak)[MZ(ak) + F2(ak)]- 1 ((2.21) 

G #  = [ M (ak) + 7: F (ak) ] -  ~ = (M (ak) - y. F (ak) ) 
�9 [M2(ak) + F2(ak)] - ~ (2.22) 

where: 

le 
M (ak) -- m + ~ ( 1  - cosaku) (2.23) 

1 ,4  # 

2 -- sin2 ak 
F ( a k ) = L  7 u (2.24) 

u 

~. F(ak) = ~ 7u sin ak~, (2.25) 
a u 

We see that the usual doubling problem of the 
spectrum which would be present for r = 0 is cured in a 
symmetric way for bosuns and fermions by additional 
Wilson terms in all propagators. It is clear that r > 0 is 
required. 

In the following we shall calculate from (2.15)-(2.18) 
vertexfunctions, study their limit a--+0 and then im- 
prove [16] the action by adding counterterms in such a 
way that the renormalized vertexfunctions have the 
correct continuum limit. 

llI.One-Loop Calculations 

In this section we calculate all those vertexfunctions in 
the one loop approximation, which, because of pos- 
sible divergencies in the limit a ~ 0, have a chance to 
disagree with the continuum theory. 

We begin with the two-point vertexfunctions. The 
most dangerous one is the AA-vertex (Fig. 1). In the 
continuum theory (2.1) some of the graphs of Fig. 1 
diverge quadratically, but this divergence cancels in the 
sum of all diagrams. The same cancellation occurs in 
our lattice formulation because of our particular choice 
of lattice derivatives for scalar fields. We find for the 
sum of these graphs: 

= 4 g 2 ~ / 2 s i n ( a , ,  ar ) ,r/a d4k 
rAA(one-loop) 

cos 2 (a (2 k. - pu)/2) (3.1) 
D(ak)D(a p - ak) 

where 

D(ak) = M2(ak) + F2(ak) (3.2) 

F,G F,G A.B 

. . . .  C . >  . . . .  C > - -  
A.B A,B F.G 

[a) (b) [c) 

Fig. l a -e .  Diagrams contributing to the two-point function FAa, 

The dotted line denotes scalar particle A or B, the wavy line denotes 
the auxiliary fields F or G, and the straight line denotes the fermion 
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For calculating the limit a ~ 0 (p fixed) [ 17] we rescale 
the integration momentum: k u ~ k" = aku, and appro- 
ximate the factor in front of the integral: 

,~ d4k cos2((2ku apu)/2) 
(3.1) ~ 492~,, p~ ~ (2rc)4a2D(k)a2D(a p -  k) (3.3) 

a~ 0  # 

In the limit a ~ 0 this integral digerges logarithmically 
near k u = 0. After combining the denominators and 
shifting the integration variable k ~ l  = k  - 

divide the region of l-lntegratmn into (1 -- x)apu , we . . . .  u u. j, 
two pieces: II I < 6 and {11 > 6  (6 small but fixed). In 
the small-/region, we only keep leading terms near 
l u = 0; in the large-/part, the limit a ~ 0 can be taken 
immediately. All this leads to: 

1 ~" d4k c~  aPu)/2) ~dx d41 
-J~ ( ~ j a ~ D ( a  p - ~  - ~ ,,1~< a (2=) a 

1 d41 + r 

[ I  2 + a 2 ( m  2 + x(1 - x)  p2)  --} - O(13)]  2 illJ>a (27~) 4 

c~ lu - -  + O(a) (3.4) 

[rE(1 - ~ cos/u) + a2F2(l)] 2 
u 

Direct evaluation of the first integral on the right-hand 
side yields: 

FAA(one-loop) 
2 (  l n a 2  1 

= -- 492 p ~1-~2 + 16n ~ 

where 

ln62 1 d41 ~" c~ 

a A - 167r 2 F 41q ~ (27r)4 (Do (I))2 (3.6) 

Do(l ) = rZ(~(1 - coslu))2 + aZFZ(l) (3.7) 
// 

Equation (3.5) is correct up to terms ~ fi: since 6 can be 
taken arbitrarily small and the result is finite at fi = 0, 
we now can put fi--.0. With the renormalization 
condition (2.5) we find: 

2f  lna2 } 
Z ~ 1 - 1 = - 4 9  l l ~ 2 + 1 6 @ ( l n m Z + l ) - - t r A  (3.8) 

and 

1 1 
FARA = pZ (1 -- 492,~2y_2 I dxln(1 + x(1 -- x)pZ/m:)) 

IO~ 0 
(3.9) 

This agrees with the continuum theory. For  later 
purpose we mention that (3.4)-(3.9) are valid only in 
the limit a-~ 0, a p--* 0. Had we chosen to take a--+ 0 
with a p fixed, (3.5) would have to be replaced by: 
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A,B 

/ \ 

Fig. 2. Diagram which contributes to the two-point function F~r 

A,B 
," x 

Fig. 3. The two-point function Fee 
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(3.1) ~ 4g 2 2sin .( 
a ~ 0  

ap ~: O, fixed 

. cos 2 ((2k u - ap,)/2) (3.10) 
D o (k) D o (a p - k) 

Next we study the 0-field. The relevant graphs are 
shown in Fig. 2 and their formula is: 

/'0~00ne-laop) = 492 ~ 7, 2sin( a pu/2) 
g / a  d4k 

a ~ 
�9 cos((2k u - p~,) /2) (3.11) 

D(ak)D(a p - ak) 

The limit a ~ 0 is obtained in the same way as for the 
A-field: 

z ( lna 2 1 
(3.11)~0 - 4g y p~ l~u2 + 16u ~ 

1 

4 (3 2, 
where 

ln5 2 1 d4 k ~cos l .  
- +  o(0) (3.13) 

The renormalization condition (2.5) leads to: 

2 f l n a 2  } 
z ; a - 1 = - - 4 g  { 1 - ~ 7 c 2 + 1 6 @ ( l n r n Z + l ) - a 0  

(3.14) 

r (1)R t - 4g 2 dxln(1 + x(1 - x)p2/rn z) (3.15) 
-00 = 16n o 

Equation (3.15) again agrees with the continuum 
theory, but it is important to note that Zr (3.14) does 
not agree with Z A (3.8). They differ by the constants a A 
and a 0 which depend upon the large-momentum 
behavior of lattice propagators. The implications of 
this will be discussed later. Since (3.12) is proportional 
to y. p, there is no contribution to F ~  in this one-loop 
correction. We therefore have: 

-(2) = rn (3.16) 

and 

F(2)R = Zorn (3.17) OO 

For the F-field we proceed in the same way (Fig. 3). We 
find : 

A B 

F A 

Fig. 4, The two-point function Fa~ 

~/a d4 k i 
FFF(one-loop) 4g 2 f (3. 18) 

J~/~ (2~z) 4 D (a k)D (a p - ak) 

2 ( lna z 1 
a~049 116~5n 2 -~ 16)22 

1 

ln~ 2 1 d41 1 
OF = ~ + ~ rll~> ~ (2 u)4D o (l) (3.20) 

2 l (  In a 2 oF 1 (3.2 Z~ 1 -  1=  - 4 g  (l~zc2+ 16~2(lnrn2 + 1 ) -  1) 
J 

1 1 
Fvgv = - (1 - 4 9 2 1 ~ 2  ! dxln(1 + x(1 - x)pZ/rn2)) 

u 

(3.22) 

Equation (3.22) is in agreement with the continuum 
theory, but the wave function renormalization con- 
stant again differs from both Z a and Zr Finally, all 
graphs which contribute to the transition vertex AF 
(Fig. 4), add up to zero. This leaves us with: 

FAr = rn (3.23) 

and 

F~ r = (Z A Z~)1/2 rn (3.24) 

In the continuum theory the Ward identities require 
that the renormalized mass of the C-field and of the 
AF-transition vertex are identical (2.7) and (2.9). In our 
lattice version, the results (3.17) and (3.24) teach us that 
the renormalized masses can be made equal only by an 
appropriate change of the bare mass parameters: in the 
action (2.15) the (common) mass parameter rn has to be 
replaced by: 

mo= rnRZ ~ 1 (3.25) 

mA v= m R ( Z A Z F )  ~/2 (3.26) 

This is the main finding of this section: in order that the 
renormalized vertexfunctions have the correct a ~ 0 limit 
(and, hence, satisfy the Ward identities), we have to 
break the symmetry of the bare parameters. In the 
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A B 

t ", f 
'k , I  t . t  

"t + r ,' i I 

(a) [hi 

Fig. 5a and b. Tadpole graphs in the one-loop approximation 

remainder of this section we shall show that, in the one- 
loop approximation, all symmetry breaking resides in 
the different wave function renormalization constants. 

We conclude the discussion of the two-point fun- 
ctions by mentioning that the results for the pseudos- 
calar fields B and G are the same as those for the scalar 
fields A and F and that the tadpole graphs (Fig. 5) add 
up to zero. Our discussion so far then leads to the 
following counter terms in the Lagrangian (2.16)- 
(2.18): 

1 1 
A 5r = -- ~ 4a 2 (Z  a -- 1) ~(A R(x + a e )  

Iz 

- AR(X - aeu)) 2 

1 1 
2 4ag(ZB -- 1 ) ~ ( B R ( X  + ae , )  -- BR(X -- aeu))2 

# 

1 
2 i a ( Z o  - 1) ~ (~R(X)7~,OR(X + ae u) -- (PR(X + ae  u) 

.u 

�9 ?~r + �89 e - 1)F 2 + � 8 9  G - 1)G~ (3.27) 

The renormalization constants ZA,  Z v and Z~ are (for 
finite a): 

'~/" d* k �88 ~ c~ aku 

Z j  t = Z ~  t = 1 +492  _!/a(2rt) 4 (O(ak))2 " (3.28) 

,~/a d4 k 1 
Z F  ~ = Z S  t = 1 + 492  _!/a(27t)4(D(ak))2 (3.29) 

~/a d'*k � 8 8 1 7 6  
" (3.30) Z ;  1 = 1 + 4 9 2  ~ (2~) 4 (D(ak))2 

- rc/a 

In the limit a ~  0, they reduce to (3.8), (3.21), and (3.14), 
respectively. Since these renormalization constants 
(which in the continuum theory would coincide) are 
different from each other, the counter term (3.27) 
clearly breaks supersymmetry. The origin of the differ- 
ence between (3.28), (3.29), and (3.30) is the behavior of 
the lattice propagators for large values (of order i /a)  of 
the momentum k: if we were allowed to take the limit 
a ~ 0 inside the integral (which corresponds to the 
continuum theory), all Z's would become equal. 

Next we come to the 3-point and four-point vertices. 
In the continuum theory only the vertices A 3 , A B  z, A 4, 
A 2 B  2, and B 4 contain logarithmic divergencies. In each 
case, however, the sum of all diagrams is finite, and the 
one-loop corrections vanish if the external momenta 
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1 1 I ! 

. /  . . . .  x 
t ~ t r - - "~ s �9 

I \ I ~" �9 \ 

(a) (b) (c) 

Fig. 6a-c. The three-point function F A A  A in the one-loop 
approximation 

are taken to zero. On the lattice we start with the 
vertexfunction F N A  a (Fig. 6). The sum of all graphs 
leads to: 

F A A A  (one-loop) 

M ( a k ) c ~  2 k  + P2 - P3)ua/2) (3.31) 

D ( a k ) D ( a k  + a p2)D(ak  - a P3) 

+ 2 other terms, cycl. permutation of (Pl, P2, P3) 

We again rescale the integration variable k. ~ k '  = ak u 
and approximate the factor in front of the integral: 

l~176 2 ~  ~ d4k 
F a a A ( o n e  plua ~ (2~) 4 

a M ( k ) c o s  2 (k + (a P2 - a p3)/2). + two other terms'~ 
a2 D(k)aZ D ( k  + a p2)aZ D(k  - a p3 ) 

(3.32) 

Because of a M ( k )  = a m  + r~(1  - cosku) this integral 

splits into two terms. The first one is proportional to 
a 2, but the integral diverges like 1/a 2 near k = 0. After 
combining the denominators and shifting from k. to 
I . = k ~, + x a P 2 - y a P a, we divide the integration into a 
smal l - l~ , ([ l l<6)  and a large-/u region (l l l>~).  The 
latter one does not contribute since it is multiplied by 
a 2, whereas the first one goes like 

1 1 - d4k  2 
a2IdxfdYltlJa'77#-'4[lo o < t z'~) -}-a2"(m2 -k xy )p  2 

+ x ( 1 - x - y ) p ~ + y ( 1 - x - y ) p 2 ]  3 (3.33) 

d*k  1 1 1 

j" (2x)4 k 2 a~O - oo + m2 (k + p2) 2 + m 2 (k - p3) 2 --F- m 2 

=13 

The second part of the integral (3.32) (which is pro- 
portional to r) diverges logarithmically near k = 0. But 
since it has a factor a in front of it, this term does not 
contribute to the leading a--+ 0 behavior. 

Before we go on it is useful to make a comment on 
(3.31) and its limit a --, 0, contained in (3.33). We notice 
that the same result would have been obtained, if in 
(3.31) we had taken the limit a--+O inside the integral. 
Comparing this with our experience from the two- 
point functions where the limit a ~ 0 under the integral 
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would have given the wrong answer, we conclude that 
the limit a ~ 0  commutes with the k-integral only in 
those cases where the continuum analogue of the 
lattice integral is UV finite (in case of the two-point 
functions, the continuum integrals diverge logarithmi- 
cally). We have tested this "rule" [18] on all our one- 
and two-loop integrals and found no exception. In 
connection with the two-loop three-point vertices, 
where we shall make use of this rule, we shall give a 
more detailed discussion. 

Returning to the leading term of (3.33) we have, as 
the limit a ~ 0  of (3.31): 

FAAA(one.ioop) ~ 1693(p2 + p2 + p2)i 3 (3.34) 
a ~ 0  

This is in full agreement with the continuum theory. 
Similar calculations for the vertices AB 2, A 4, AZ B 2, 
and B 4 (the four-point vertices give somewhat com- 
plicated expressions which we do not want to write 
down) all lead to the same conclusion, namely that the 
limit a ~ 0 agrees with the continuum theory. The same 
is true also for all the other 3-point and 4-point 
vertexfunctions which in the continuum theory are 
finite integrals. 

So far we have been discussing unrenormalized 3- 
point and 4-point vertexfunctions. Our result that the 
limit a ~ 0 directly leads us to the correct continuum 
limit means that they satisfy the Ward identities. But 
since the wave function renormalization constants for 
the A, 0, and F-field are different from each other, the 
Ward identities for the renormalized vertexfunctions 
cannot be fulfilled simultaneously. This then forces us 
to adjust the bare couplings in the same way as we did 
with the mass parameters. This can be illustrated best 
if, instead of the renormalized quantities in the Lagran- 
gian ~ R  ~" ~ O R  "4- ~ m R  -}- ~ 9 R  ~- A ~OR we return to 
bare quantities. The part &'go and ~,~ then become: 

f f  m = mAFAF + mB6BG - l m o ~  (3.35) 

~fg = g F A A F A  2 -- grBBFB 2 

+ 2g~AsGAB - g~Av~PAt~ -- g~BV(/i?sB~ (3.36) 

where the bare masses and couplings are given by 
(3.25), (3.26) and: 

gFAA = gFBB = OGAB = Z A  1 Z F  1/2 g R 

g(~AO = g~BO =- Z #  1 Z ~  4 1/2 gR 

Equation (3.27) or, alternatively, (3.35) and (3.36) 
contain the result of our one-loop analysis. 

IV. Two-Loop calculations 

In this section we wish to extend our analysis to the 
two-loop approximation. The main result will be that, 
in addition to the counterterms of the previous section, 
further operators in the Lagrangian will be needed, in 
order to have the correct a ~ 0  limit of the re- 
normalized vertexfunctions. First we shall study 
the two-point functions, then the three- and four-point 
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z - - - C > -  z 
[a) (b) (r 

Fig. 7a-c. Classes of diagrams which contribute to the two-point 
function in the two-loop approximation. The ~ indicates that one 
has to sum over all possible internal lines 

vertices. In both cases, we begin with the unre- 
normalized two-loop contributions and study their 
limit a + 0 .  From this we then deduce the necessary 
steps of renormalization. A short summary will be 
given at the end of this section. 

A) Two-Point Functions 

Our main emphasis will be on the two-point functions 
which in the continuum theory are the only ones that 
contain divergencies. In order to have agreement with 
the continuum theory, we will need the operator A 2 in 
the lattice Lagrangian, and its coefficient turns out to 
be proportional to the Wilson parameter r. We have 
three classes of diagrams that contribute to any of the 
two-point functions. They are shown in Fig. 7. After 
summing over all possible internal lines we find, in the 
limit a ~ 0 ,  the following types of contributions: 

1) terms of the form a -  2. constant, where "constant" 
means: independent of p2. They are reflections of 
quadratic divergencies in the continuum theory, and 
they appear in the tadpole graphs (Fig. 7c) as well as in 
the FAA graphs of Fig. 7a. As it will be explained below, 
in case of FAr and F ~  these terms can be absorbed in a 
redefinition of the bare mass parameter, whereas in the 
case of FAA the two contributions from Figs. 7a and c 
cancel; 

2) terms which are proportional to the Wilson 
parameter r (or r 2) and independent of p2. They go with 
inverse powers of a, and they require a counterterm A 2 
in the Lagrangian; 

3) functions of p2. In case of FaA , these pieces are of 
the form pZ.f(p2), where f(p2)  is either a sum of 
powers of lna 2 a finite function of p2 and constants or 
simply a finite function of p2. In the first case these 
terms are quite analogous to the one-loop of(3.5): after 
multiplication with ZA, the terms ~ lna 2 and the 
constants drop out, and the correct continuum theory 
result emerges: 

Fff4a ,,, p2( f  (p2) _ f(0))  (4.1) 

In case of FOo, the corresponding pieces are of the form 
7" pf(p2) + p2. g(p2), where g(p2) is a finite function of 
p2 and f(p2)  has the same properties as in the case of 
FAA. Finally, for FAr and FFr these terms have the form 
f(p2), with f(p2) having the features described before. 
In all cases, these terms lead to the behavior of the 
continuum theory. 

After this general description of results let us now see 
in more detail how these terms arise and how they are 
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affected through renormalization. We begin with the 
ver t ex  FAA. Diagrams of the type Fig. 7a sum up to: 

~/.~ d4 k 1 r 8 g 2 
_J/. (27)4 (D (ak)) 2 D(a p - ak) L ZRAA(ak) 

�9 ( - F2(ak - ap) + M2(ak) + 2M(ak)M(ak  - ap)) 
+ 2~F(ak)(F2(ak)F2(ak) - M2(ak)F2(ak - ap) 

- 2F2(ak)M(ak)M(ak - ap)) + 4 ~  F.(ak)X2.(ak) 
# 

(F(ak)F(ak - a p) - M (ak)M (ak - a p) ) 

- 2 ~  Fu(ak - ap)X~u(ak)(F2(ak) + M2(ak)) I (4.2) 

Here 27~a stands for the renormalized one-loop contri- 
bution to FARA, evaluated for finite a: equation (3.1), 
with the integral being subtracted at pZ _- 0. A similar 
definition holds for 22~F (3.22) and 2;g, (3.11). The limit 
a ~ 0 of (4.2) is studied by multiplying both numerator 
and denominator by (a2) 4 and then rescaling the 
integration variable: ku --, k'u = ak~. The integrand then 
contains only combinations, such as a2D(k'), 

2 R t 2 2 a ~aA(k ), a M , a2FZ(k'), which are finite in the limit 
a ~ 0 .  Moreover, a factor a -z  stands in front of the 
integral. We now expand the integrand in powers of a 
and find the various terms 1)-3) described before. 

We begin with the leading term which is obtained by 
simply putting a = 0 inside the integral. The numerator 
can then be written as: 

numerator of (4.2) 

~ 2  r:,, 2 , r - R  = ( a 2 F  2 - -  3aZM z) - a 2 ~ ]  A + a r r 

+ 2 a a ~  Fu2~, )  

= (a2D z -  4a2M 2) 

. ( -  aE X]A + a2 F2 XRe + 2a2~u FuX~, ) (4.3) 

The k-integration converges, since there are enough 
powers of k 2 in (4.3) to compensate the zeroes of the 
denominator. Due to the definition of M (2.23), the 
numerator (4.3) decomposes into a term proportional 
to a2D z and the leading piece of a2M 2 which is 
proportional to r 2 . The first one belongs to class 1), but 
it is cancelled by the tadpole graphs of Fig. 7c. Their 
result is: 

892 ~a d4k M(ak) 

"(-- ZRA(ak) + F2(ak)y"RF(ak) + 2 2 (ak)Z~. (ak) ) 
\ # / 

(4.4) 

After performing the same rescaling procedure as 
above, and by singling out the r-independent term in 
the numerator of (4.4), we arrive at the same result as 

from the first part of (4.3). The remainders of (4.3) 
and (4.4) are proportional to r2/a z and r/a a, re- 
spectively, and belong to class 2). This takes care of the 
leading part of (4.2) as well as the full contribution of 
the tadpole graphs. 

Next-to-leading terms of (4.2) are obtained by 
expanding the integrand in powers of a (after having 
done the rescaling k ~ k' = ak ) Interesting contri- 

/ t  /L / ~ "  . 

butions only come from the expansion of the nume- 
rator. First we have terms proportional to amr from 
the combinations aM or aZM2: they lead to converg- 
ing and pZ-independent integrals of the type 2) (tog- 
ether with the factor a-  2 in front of the integral they go 
as fla. m). Next we note that there are no contributions 
proportional to ap �9 such terms always come together 

. . , u "  . 

with an odd functions of k' u and thus make the integral 
vanish. Finally we come to terms of the form a 2 pZ and 
aZm 2. The former ones arise from expanding 
F2(k ' - ap). Near k~ = 0 they can be written as 

a 2 p2 (_  a 2 ZRA (k') - a 2 rn 2 Z~F (k')) (4.5) 

Hence the k'-integration becomes divergent near 
k' = 0, and we have to treat the integral in the same way 
as we did in the previous section (combining de- 
nominators, shifting from k' to 1 and dividing the 

. . . .  u 

regaon of l-integration into a small-/and a large-/part). 
As before, the large-/region leads to a p2-independent 
integral, whereas the small-/region gives a function of 
p2 plus powers of lna 2. Thus we have found the term of 
type 3), and we have to convince ourselves that--after  
subtraction at p2 = 0- - i t  agrees with the continuum 
limit. This is easily done by noticing that the con- 
tinuum version of (4.2) can be obtained by replacing 
under the integral all lattice elements by their con- 
tinuum expressions and by further using the Ward 
identities between ZARA, 2Rr, ~ .  Comparing this with 
(4.5) and making use of the fact that the limit 
a ~ 0 (at small k',) of Z]A and 27~v in (4.5) agrees with the 
continuum theory, we arrive at the desired result. 

We are still left with a few constant terms of class 2). 
They arise from further terms in the expansion of the 
numerator (proportional to a2m 2) or from expanding 
the denominators. In all cases, the resulting integrals 

f are convergent near k u = 0, and the pZ-dependence 
drops out. This then completes the discussion of (4.2). 

Before we go on it is useful to compare the pattern of 
cancellation of divergencies with the continuum 
theory. There quadratic divergencies cancel within the 
diagrams of Fig. 7a, and tadpole graphs add up to zero. 
On the lattice the quadratic divergencies, which cor- 
respond to terms of class 1), remain after summing up 
all diagrams of Fig. 7a, but they cancel against the 
nonzero tadpole contributions. What remains are 
divergent constants proportional to r o r  r 2 that will 
lead to a mass counterterm A z, and logarithmically 
divergent terms of the type 3). 

Next we have to study the graphs of Fig. 7b. In the 
continuum theory these diagrams are finite. With our 
previous experience, we therefore expect no terms of 
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class 1), and no powers o f lna  ~ in terms of type 3). This 
will, in fact, be true. The sum of all diagrams of Fig. 7b 
is: 

~/o d 4 k d 4 k  , 
- - 2 6 9 4  I (2n)8 

--x/t /  

1 

(D(ak )D(ak  - a p ) D ( a k ' ) D ( a k  - a k ' ) D ( a p  - ak  + ak ' )  

�9 [ M ( a k  - a k ' ) M ( a k '  - ap ) (F(ak )  - F ( a k  - a p  + ak')  

- F(ak ' ) )  2 + M ( a k  - a p  - a k ' ) M ( a k  - ap) (F(ak)  

- F ( a k  - ak')  - F(ak ' ) )  2] (4.6) 

In deriving (4.6), we have made use of our results for the 
three-point vertices of the previous section (left hand 
subgraph of Fig. 7b). In particular, we have not yet 
included any subtractions for triangle subgraphs: for 
the leading terms in the limit a ~ 0 we had found that 
they agree with the continuum limit, which implies that 
no subtractions were necessary. 

The analysis of (4.6) proceeds in very much the 
same way as before: rescaling of the integration 
momenta k u and k '  u leads to an overall factor a-2 in 
front of the integral, and the integrand consists of 
pieces which are finite near a = 0 (aZD(k), aM(k ) ,  a2F 2 
etc.). The leading term is obtained by keeping only the 
r-piece of the M's in the numerator and by putting 
a = 0 everywhere in the integrand. The resulting inte- 
gral converges near k, k -  k ' ~  0, and there is no p2_ 
dependence. Next-to-leading terms of the form a.r.m 
come from expanding the aM-terms and are constant 
integrals, independent of p2. Picking the am-parts of 
a M ,  we still are left with convergent integrals without 
any pZ-dependence. Next we expand the bracket-terms, 
which contain F-factors, in powers of a. From the 
second line of (4.6) we have (for k, ~ k~ ~ 0): 

r 2 
a 2 p Z l a 2 m 2 - } - a m r l ( ( k - k ' ) 2 + k ' 2 ) +  ~ ( k - k ' ) k ' 2 1  

(4.7) 

The first piece leads to an integral of the form: aZp 2 
times an integral which diverges ~ a-2.  After a careful 
treatment of the small (k ;k')-region one finds that this 
equals the continuum result. The second piece of(4.7) is 
of the form: a. p2 times logarithmic divergent integral, 
and therefore can be neglected, whereas the last part of 
(4.7) leads to pZ.constant. Alltogether, (4.7) provides 
contributions of the type 3) but no terms proportional 
to lna 2. 

This then completes our analysis of diagrams of the 
vertex FAA. We summarize our results by defining the 
necessary renormalization conditions. Equation (2.6) 
requires that FARA vanishes at p 2 =  0. Because of the 
nonvanishing terms of type 2), which are coming from 
all three classes of diagrams of Fig. 7, it is necessary to 
introduce a nonzero mass for the A-field: 

l c  2 - - 2  (4.8) -- ~OmAAA A 

In each order of perturbation theory, starting with the 
two-loop approximation, this mass parameter has to 
be adjusted such that F]A vanishes at p2 = 0. In our 
approximation, it equals the sum of all constant pieces 
of type 2), including terms of the order a -  2 or a -  1. As 
we have seen, all these pieces are proportional to the 
Wilson parameter r; the change in the Lagrangian 
therefore reads: 

, le  2 - - 2  (4.9) A ~q~r = --~OmAAA R 

The two-loop contribution to the wave function re- 
normalization constants follows from (2.6). 

After having discussed in somewhat more detail how 
the limit a ~ 0 of FAA is obtained, we will be rather brief 
about the remaining two-point functions and describe 
the results only qualitatively. The tadpole graphs of 
Fig. 7c contribute, apart from FAA , to the two-point 
functions r ~2) and FAF. In the limit a ~ 0 they provide 
terms of both type 1) and type 2), and in contrast to FAA 
where part of the tadpole contributions were cancelled 
by similar terms in graphs of Fig. 7a, they all survive. 
This then leads to a redefinition of the bare mass 
parameter m, but since the contribution of the tadpole 
graphs to F(,2, ) and FAF is the same, this shift does not qJ~ 

break supersymmetry. 
Diagrams of Fig. 7a contribute to F(olg and FFr , but 

not to FAr. In the limit a ~ 0, there are no terms that go 
with inverse powers ofa. In case of F~o) , we have terms 
of the form 7 . p . f ( p  2) where f ( p 2 )  also contains 
powers of lna 2 multiplied by constant factors and p2_ 
independent finite constants. This is quite analogous to 
the one-loop result (3.12): after renormalization all 
constant terms independent of p2 drop out, and the 
result agrees with the continuum theory. In the case of 
FeF we find a function of p2 which has the properties 
which we have described under 2) at the beginning of 
this section. After multiplication with Zp, powers of 
lna 2 as well as p2-independent constants drop out, and 
the result agrees with the continuum theory. It is 
important to note that again the wave function re- 
normalization constants ZA,  ZF, and Z o are different 
from each other: this confirms what we had found 
already in the one-loop approximation. 

Finally, we come to the diagrams of Fig. 7b and their 
(1) (2) contributions to the vertexfunctions F A~ , F , o  , Foo and 

Fee. In the continuum theory, these diagrams are finite, 
once the one-loop results for the 3-point subgraphs 
have been inserted. Correspondingly, the lattice graphs 
in the limit a ~ 0  do not contain terms with inverse 
powers of a or lna 2 (also no terms of type 2)). After the 
necessary subtractions coming from the wave function 
renormalization constants are made, the result agrees 
with the continuum theory. Again, the contributions to 
ZA,  ZF, and Z o come out different from each other. 

B) Higher  Vertices 

Next we make a few remarks about 3-point, and 4-point 
vertices. There are again three groups of diagrams 
which we have illustrated in Figs. 8a c. In the con- 
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tinuum theory, these functions are UV-finite. For  the 
vertices A 3, A B  2, A 4, A2 B 2, and B 4 individual diag- 
rams have logarithmic divergencies, but after sum- 
mation they drop out. Our  previous experience with 
the limit a ~ 0 of lattice diagrams indicates that we 
should expect the following terms: 

1) terms which do not have a power r in front. They 
are finite functions of p2 and agree with the continuum 
theory. In particular, powers of lna 2 should not be 
present which would require a subtraction and, hence, 
new counterterms in the Lagrangian. 

2) constant (as a function of p2) terms proportional 
to r (or r2). They require new terms in the Lagrangian 
(e.g. A 3 and A 4) and may come with inverse powers ofa. 

We have not performed an explicit calculation of all 
these vertexfunctions, but the correctness of our de- 
scription follows from the "rule" which we have 
mentioned after (3.33) and which states that we are 
allowed to take the limit a ~ 0 inside the integral, if only 
the continuum integrals are convergent. But rather 
than simply applying this rule to the diagrams of Fig. 8, 
we now wish to give an argument why we believe that 
the rule holds in general We take, as an example, the 
diagrams of Fig. 8a and see how they contribute to the 
vertex FAA A. For the propagator insertions of internal 
lines we use the expressions 27]A etc. (explained after 
(4.2)). In particular we make use of the fact, that in the 
limit of small a and small momentum they agree with 
the continum theory. The sum of all diagrams of Fig. 8a 
will be of the form: 

~/a d4k numerator 
sum of diagrams of Fig. 8a = ~ D4 

- - / t / a  

(4.10) 

Here the numerator is some combination of M, F z, 
ZARA..., and it has the dimension 5, whereas the de- 
nominator has dimension 8. For  dimensional reasons, 
each piece of the numerator must be proportional to a 
factor M. For  this argument, we first shall ignore terms 
proportional to r, i.e. for each M we simply substitute 
m. The integral (4.10) must then be proportional to m, 
which we put in front. So the remainder has dimension 
4. Now we perform the usual rescaling procedure, as a 
result of which the numerator has only the com- 
binations a2m 2, aZF 2, etc., and there is no factor a in 
front of the integral. In the limit a ~  0, only the region 
near k u = 0 is of interest. From our knowledge of the 
continuum theory we can conclude that at k ~ 0 the . /z 

numerator either approaches a constant (which must 

< 
(a l  (hi (c) 

Fig. 8a-c.  Two-loop diagrams which contribute to three-point 
functions. The ~ indicates that one has to sum over all possible 
internal lines 
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be bilinear in a 2 p2 and a2m 2) or vanishes as const..k 2, 
but not faster than that. This is because for small k u and 
small a all elements in the numerator of (4.11) can be 
replaced by their continuum analogues. Since in the 
continuum theory the integral is UV finite, there can, at 
most, be one power of k 2 in the numerator. This then 
implies that our integral (4.10), in the limit a ~ 0 ,  
necessarily diverges. If we apply our usual procedure of 
dividing the integral into small and large values of the 
integration variable we find, for the small momentum 
part, two types of divergent integrals. If the numerator 
approaches a constant near k = 0  (which then is 
bilinear in a 2 p2, a2m 2) our integral is of the form: 

d4 k f(P2, m2) a4m ~ ( ~ 4  (4.11) 
IkI<o 

where the integral diverges as a -  4, and the numerator 
agrees with the continuum theory. A calculation 
simular to (3.35) then shows that (4.11) leads to the 
correct behavior of the continuum theory. Similarly, if 
the numerator goes as constant, k 2 (where the constant 
is a 2 p2 o r  a 2 mZ), we find 

,4, f(p2,mZ)k2 
aZm ~ a tc  ~ (4.12) 

Ikl<~ 

The integral now diverges as a-2,  and the calculation 
of (3.35) leads to agreement with the continuum theory. 
The large-k region always leads to finite integrals, but 
because of the factor a 2 in front, they do not contribute. 
In summary, this justifies the description of 1). 

As to the terms proportional to r (point 2) above) 
they are either constant (as a function of p2) o r  

nonleading. This can be seen by repeating the argu- 
ment above and replacing a m i r S ( 1 - c o s k , ) .  One 
then always looses a power of a but gains a factor which 
near k , = 0  is of order k z and thus improves the 
convergence near k, = 0. 

These arguments not only apply to the contribution 
of Fig. 8a to FAAA, but, with appropriate changes, also 
to the diagrams of Figs. 8b and c and to all other 
vertexfunctions. We therefore conclude that the only 
new counterterms that we need are proportional to the 
Wilson parameter r, for example: 

r 
--(ZAA A -- 1)A~, r(ZAAAA -- 1)A~ (4.13) 
a 

C) Summary of Results 

Let us finally summarize the results of this section. The 
analysis of the two-point functions has confirmed the 
main result of the previous section: the renormali- 
zation constants ZA, Ze, and Z o which in the con- 
tinuum theory coincide are no longer equal. This forces 
us, in order to keep renormalized masses equal, to 
adjust bare masses in a way which destroys super- 
symmetry. In addition to this, there is a (common) shift 
of all bare masses, resulting from the tadpole graphs. 
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Finally, the operator A 2 has to be added to the 
Lagrangian, which was not present in the continuum 
theory. Its coefficient is proportional to the Wilson 
parameter r, and its perturbation expansion starts at 
the two-loop level. 

Higher order (three-point, four-point) vertexfunc- 
tions also confirm our previous result: the bare 
coupling constants have to be adjusted in a nonsuper- 
symmetric way, in order that the renormalized coupl- 
ing constants are supersymmetric. Furthermore, new 
operators such as (1/a)A 3, A 4, etc., are needed, and 
their coefficients are proportional to r. 

One should expect that the picture which has 
emerged from our one and two-loop calculations 
remains true also in higher order perturbation theory: 

a) the wave function renormalization constants ZA, 
Z v and Z 0 are different from each other. This can be 
traced back to the fact that lattice diagrams, which in 
the continuum theory would be logarithmically diver- 
gent, are sensitive also to the large momentum be- 
havior and thus are sensitive to the different nature of 
bosons and fermions. One feels that this is rather 
independent of the way in which form fermions are put 
into the lattice. 

b) There are new operators of dimension < 4 which 
are not present in the continuum theory. Their coef- 
ficients are proportional to the Wilson parameter r 
and, hence, seem to be more strongly dependent upon 
the Wilson method of dealing with the fermion 
problem. 

We conclude that a lattice version of the Wess- 
Zumino model which in the limit a ~ 0 has the correct 
continuum limit is given by the following renormalized 
Lagrangian: 

~,~r= ~OR nt- ~mR-Jr- ~gR-I-  A~f~OR-[- A, .~ r (4.14) 

Here the first three terms represent the "'naive" 
Lagrangian of (2.15) (2.18) with the bare quantitites 
being replaced by the renormalized ones. A ~oR stands 
for the counterterms of (3.27). The final piece A 5~ r 
which comes in only at the two-loop level consists of 
the new operators which had not been there in the 
continuum theory: 

r 
l e 2 --2 _~___(ZAA A 1)A3R A ~(Pr = -- 20mAAAR a 

~ - r ( Z A A A A  -- 1)A~ + . . . .  (4.15) 

where the dots stand for similar operators of dimension 
_<_ 4 containing the pseudoscalar field B. If we rewrite 
(4.14) in terms of bare quantities (as we did in (3.35)- 
(3.37)), we easily see the breakdown of supersymmetry. 

V Conclusions 

in this paper we have constructed, on the basis of 
renormalized perturbation theory, a lattice version of 
the Wess-Zumino model. In the two-loop approxi- 
mation we have shown that the renormalized vertex- 
functions have the correct continuum limit. Our result 

has been presented in terms of the renormalized 
Lagrangian (4.14), where the Z's are functions of 
renormalized mass, coupling constant g, lattice spacing 
a and the Wilson parameter r. Outside of perturbation 
theory our calculations suggest the following lattice 
version of the Wess-Zumino model: 

5r = s + ~ , ,  + ~ g  + 5~ (5.1) 

where the first term agrees with the "naive" lattice 
Lagrangian (2.16). The remaining three terms deviate 
from what one would have expected in the tree 
approximation: 

2# m = mAp(AF + GB) - l m o ~  ~ (5.2) 

~(~o = gAAF F(A2  -- B2) + gAGB2 G A B  

- gA(oq,(k(A + i75 B)0 (5.3) 

Here the masses are no longer the same for all fields, 
and also the coupling constants cannot be equal. 
Finally, the term &a~ in (5.1) is a consequence of 
Wilson's method of eliminating the additional fer- 
mionic degrees of freedom on the lattice: 

t 1 2 2 
~ r  = -- ~mAA(A + B2) + •AAA A3 + ~Ae zAB2  

+ g l A  4 + g2AZB 2 + g3B* (5.4) 

All parameters mAA , 2'S, and g's (the 2's have dimension 
of mass) strongly depend upon r (in perturbation 
theory, they are proportional to r or r2). None of the 
operators in (5.4) was present in the continuum theory. 

The Lagrangian contained in (5.1)-(5.4)has the most 
general form of a field theory which describes the 
interaction of a (Majorana) spinor with a scalar, a 
pseudoscalar, and two auxiliary fields. All operators of 
dimension __< 4 are present. One has, however, to keep 
in mind that the masses and coupling constants are not 
independent from each other. In perturbation theory, 
they can be computed as functions of one common 
mass mR, a coupling gR, the lattice spacing a and the 
parameter r. Beyond perturbation theory they still 
have to be thought of as being functions of these 
parameters, but this functional dependence has to be 
found by methods other than perturbation theory. 

It is also important to mention that our lattice 
Lagrangian is not unique. One expects that it is pos- 
sible to add "irrelevant" operators (i.e. terms with 
positive powers of a) which would change the para-  
meters in (5.1)-(5.4) but not the general structure. So it 
is conceivable that one might find a lattice version 
which looks more "elegant" than ours. An example in 
this direction is our form of the r-term in (2.19): we have 
introduced such a term not only for the fermion fields 
but also for the other fields (at the same time we 
introduced the next-to-nearest neighbour derivative 
for the scalar fields). As we remarked at the end of Sect. 
II, this leads to the same denominator for all lattice 
propagators and thus preserves the cancellation of 
quadratic divergencies on the lattice. It is, however, 
likely that we also could have proceeded in a less 
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symmetric fashion, ending up with the sarne form for 
:T. 

We finally list a few problems which in our opinion 
deserve further investigation. There is first the question 
whether and how our Lagrangian could be used for a 
study of the strong coupling regime of the Wess- 
Zumino model. As we have said before, the parameters 
in (5.1) (5.4) are not all free but have to be considered 
as functions of fewer parameters. How this can be done 
in practice is not quite clear yet. Secondly, it is 
necessary to extend our analysis to other super- 
symmetric models which are more likely to be realistic. 
In this context it also would be interesting to find 
whether the lattice version of the N = 2 model [11] 
escapes the effect that we have found: finite quantum 
corrections could spoil the continuum limit. Finally, 
the fact that all the terms in (5.4) so strongly depend 
upon the Wilson parameter r suggests to repeat our 
analysis with another method of handling the fermion 
problem on the lattice, namely the geometric fermions 
in the Dirac-Kahler formalism [19]. 
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