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We present some techniques for elucidating hadronic structure via lattice Monte Carlo 
calculations. Applying these techniques, we measure the fluctuations of colour magnetic and 
electric fields as well as the topological charge density inside and outside the lowest lying 0 + and 
2 + glueballs in the SU(2) non-abelian lattice gauge theory. This gives us a picture of the glueball 
structure. We also obtain, as a by-product,  an estimate of the gluon condensate 
(as/Tr){f21F~F~,{I2) and an estimate of the 0 glueball mass which agrees with our previous 
estimates. 

1. Introduction 

Recent months have seen considerable progress in calculating the mass spectrum 
of  QCD. Monte Carlo techniques [1] applied to the lattice regulated [2] non-abelian 
gauge theory have yielded glueball mass estimates for both SU(2) [3-6] and SU(3) 
[7, 8]; and, in the approximation of none or only some quark loops, attempts at 
calculating the usual meson and baryon masses have also been presented [9-11]. 

In this paper we wish to go a step further and discuss how to elucidate the internal 
structure of hadrons in the context of  a lattice Monte Carlo approach. As a first 
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example we shall calculate the fluctuations of the colour magnetic and colour electric 
fields, B 2 and E 2, as well as the square of the topological charge density, - ( E .  B )  2, 
inside the 0 + and 2 + glueballs. We work with the pure SU(2) gauge theory on an 8 4 
lattice which turns out to be large enough for this purpose. For  comparison we shall 
also calculate the above quantities in the vacuum which, as a by-product ,  will lead us 

to an accurate estimate of  the gluon condensate (as/~r){ ~21F~ F~ I ~). 
Let [G(x ) )  be the state consisting of  the glueball G centred on the space-time 

point  x. Let q~ ( y )  be an operator  with which we wish to probe the structure of G. 
Then we are interested in measuring 

<a(x)lf(y)lc(x)) (1) 
 o(x-y) <G(x)lG(x)) 

Clearly 

~ ( x  - y )  ~ <~1+1~), (2) 
I x - y l  ~oo 

where 1~2) is the vacuum, and this is also a 'quant i ty  of interest. Varying y relative to 
x allows us to probe the glueball at various points in its interior. On  a lattice of  

spacing a any operator  will have an extension at least equal to a. So for the gluebalt 

to have a structured interior at all, one would want  the glueball size, l~, to be at least 
two lattice spacings across 

l o ~ 2a .  (3) 

In our  previous work [3, 4] on glueball masses we obtained a crude estimate of l~;. 
Using that estimate we can restate (3) in terms of the inverse coupling/3 ( -  4 / g  2) as 

/~ >__ 2.3, (4) 

(interpreting (3) generously). Since the construct ion of  I G)  becomes harder as the 
lattice spacing decreases, we shall perform our explicit calculations mostly at 
f l =  2.3. 

To construct  IG(x ) )  we note that any operator  q~(x) with the same quan tum 
numbers  as G will have an expansion of the type 

 (x)lSa) = + Z 
v:#G 

(5) 

where in general a > 0, and if {~]~[~2) = 0, G will be the lowest energy state in the 
expansion (we assume that we are interested in the lowest lying glueballs only). We 

can vary q, and search for an operator  for which a = 1 in (5). To do this systemati- 
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cally, one simply searches for the 4 that will minimise the quantity 

(ep(t + a, x)ep(t, x ) )  _ (q~(t, x)e " ~ ( t ,  x ) )  

x),t,(t, x)) 
(6) 

as in the variational part of the calculations of refs. [3-8]. In practice, however, such 
an approach only works well at the lowest values of ft. At fl = 2.3 the simplest 
implementation of such an approach already breaks down (see for example the 
results presented in ref. [6]). 

An alternative approach is to use some reasonable operator and to project out the 
required state by introducing a time separation in the glueball states as follows: 

($2lq,(t + a, x)~b(t, y )q~( t -  a, x)l l2 ) = ~.,ma.a.,e E"~e L'~(nl ' / ' lm)  
(~21q~( t + a, x)ep( t -  a, x)l ~2 ) z~.~" a.e2 -2~:a., 

(G(t ,  x) l+ ( t ,  y)[G(t ,  x ) )  
(G(t,x)lG(t,x)) (7) 

where the accuracy of the last equality will depend on the efficiency with which the 

L 
(a) 

quantisation axis 

¢ 

- ~ -- 4- 

(b) 

Fig. 1. Glueba l l  opera to r  centred on the site x = (t,  x ) :  (a) a 0 + opera to r  that  is the sum of the three 
o r thogona l  2 × 2 plaquet tes ,  (b) a 2 + opera tor  that  is the difference of an o r thogona l  pa i r  of 2 × 2 

plaquet tes .  
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energy exponent ia ls  project out the lowest energy state. Our  previous experience 
[3, 4] has been that  at 13 = 2.3 the projection is indeed efficient. Increasing the t ime 
separat ion makes  (7) more  accurate. However ,  the reduced signal can very rapidly  
d isappear  into the statistical noise. In  order  to overcome this, and still making  
advantage  of the more  effective project ion onto the lowest-lying glueballs by 
introducing a t ime separation,  we shall later on also use At = a t ime separat ions 
where the p robe  sits at the same t ime as one of the glueballs. 

A simple pair  of 0 + and 2 + operators  are shown in fig. 1. They consist of  2 × 2 
plaquettes centred at the site (t, x)  and in the appropr ia te  linear combina t ion  for the 

desired spin and parity.  The corresponding 2 + has spin project ion J3 = + 2 .  F r o m  
our  previous work [4] (fig. 8) we learn that a -- 0.5 (at /3 = 2.3 where most  of our 
data  comes from). This is to say that the 2 × 2 plaquet te  has a -- 50% project ion 
onto  the lowest-lying glueballs, so that  already zero t ime separat ion will give us some 

picture of the glueball ground states. 

2. Vacuum fluctuations: a re-evaluation of (%/'~  ) ( ~  I F~, F~v I ~ )  

Before we turn to p robe  the structure of  the 0 + and 2 + glueballs with colour 
magnet ic  and colour electric fields, i.e. 

g , ( y ) = B 2 ( y )  = --~F ~" (1 ½tr ~ , ) ,  t~,, j k tY)  = 4a  1/~ _ (8) 
i ~ j ~ k = l , 2 , 3  (a~O) 

¢ ( y )  = E~2(y) = F g F g ( y )  = 4a-1/3(1 - ½tr U4~ ) ,  (9) 
( a ~ 0 )  

where 

= + , ) u J ( # .  + , ) u ? ( y . ) .  (10) 

which on the lattice are formally given by the space- and time-like plaquet tes  as 
indicated, we shall have to evaluate the above quantit ies in the vacuum. There  are 
two reasons for that. First of all, the expectat ion value of the simple plaquet te  is, for 
/~ > 2.3, overshadowed by  its per turbat ive  contr ibut ion which must  be subtracted out 
to recover the con t inuum limit. This requires to measure  the average plaquet te  over a 
wide range o f / 3  values. And  secondly, we have a natural  interest in the confining 
vacuum itself in which the hadrons  are immersed.  

This leads us to study the vacuum expectat ion value of 1 - ½ tr Uu~ which can be 

writ ten 

(fal(1 - ½tr U~)I~2) = ~ c . f l  ~ +~1 ,lr2a4G, 
n = l  

G'  y'n , = - -  ( I  F~  F~  Ifa) (11) 
a,/t,l' 
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where G, the so-called gluon condensate,  is a renormalization group invariant. The 
first two coefficients c a and c 2 in the series of (11) have been determined analytically 
[12,13] and are given by 

c I = 0 . 7 5 ,  ¢2 = 0 . 1 5 1 8  o n  8 4 . (12 )  

Preliminary results on (11) obtained on a rather small 4 4 lattice have been reported 
in the literature [13]. We find it necessary, however, to repeat the analysis on the 84 
lattice because already at /3 = 2.5 the 4 4 lattice corresponds to a temperature well 

above the deconfining phase transition. As a result we expect G to come out larger 
on a larger lattice. 

We have taken data in the range 2.3 ~< fl ~< 8.0. For /3  >/2.9 the full SU(2) group 
was used while for/3 < 2.9 we also have made use of the 120 element icosahedrical 
subgroup of  SU(2) which was found to give results in very good agreement with the 
full group. Our combined data is listed in table 1. 

In fitting (11) to our data we have allowed for terms up to order/3 - 5 in the series. 
Leaving all coefficients free first we obtain, as a check, for/3 >/2.9 

c 1 = 0 .748,  ¢2 = 0 .195,  (13) 

in good agreement with the analytic result (12). In the actual fit then we have fixed 
c I and c 2 at their analytic values and covered the full fl range (2.3 ~</3 ~< 8.0). The 

TABLE 1 
Our combined data for the vacuum expectation value of the 1 × 1 plaquette over 

the range 2.3 ~</3 ~< 8 

/3 (~21 ~2 tr U~152) 

2.3 0.60277 _+ 0.00014 
2.4 0.63067 ± 0.00016 

2.5 0.65245 ± 0.00012 
2.6 0.67026 ± 0.00017 
2.7 0.68560 + 0.00018 
2.8 0.69952 + 0.00018 
2.9 0.71223 ± 0.00015 
3.2 0.74296 ± 0.00017 
3.5 0.76780 ± 0.00011 
4.0 0.79965 ± 0.00012 
5.0 0.84244 + 0.00009 
6.5 0.88040 ± 0.00006 
8.0 0.90356 + 0.00005 

Each entry is based on 1000-2000 events for/3 < 2.9 and on --- 300 events for/3 ~> 2.9. 
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c 3 = 0.26,  (c  4 = - 0 . 8 4 ,  c 5 = 2 .63) ,  (14) 

G = (2.1 +_ 0.I)-107A 4 . (15) 

The  bracke ts  a round  ¢4 and c 5 in (14) mean  that  these coefficients are not  very well 

de t e rmined  by  the fit and  are also not  very re levant  to the de te rmina t ion  of G (see 

below).  In  fig. 2 we have shown the resul t ing pe r tu rba t ive  con t r ibu t ion  sub t rac ted  

d a t a  for 

5 

a = ( / a l ( 1  - ½tr U~.) la2)  - y '  Cn,8-"=~4~r2a4G, (16 )  
n = l  

together  with the best  fit (15), where a is app rox ima ted  by  the two- loop formula  

a = A L : e  - 3 ~ 2 a / : 1 ( 6 ~ r 2 f l / l l )  51/121 . (17) 

0 . 0 1  

0.001 

0.0001 

I I I I 

I I I I 
2 .3  2.4 2.5 2.6 

Fig. 2. The gluon condensate (16) for various values of ft. The middle line corresponds to our best fit 
while the lines above and below indicate the error. 
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The rather large coefficients c 4 and c 5 might lead one to suspect that  the fit depends 
crucially on the order of  truncation of  the perturbative series. This is not  the case. 
First of all, we like to say that at large fl, where the perturbative contr ibution 

dominates,  the terms of O(fl  - 4) are small, while at smaller fl the s u m  c 4 / 3  - 4 + c5 /3  - 5 

contributes at most  2% to the perturbative series. Secondly, we have fitted our data 

by truncating the perturbative series only after the 6th order. We obtain basically the 

same result for G. In fact, we have made the variations of  G found by our various 

fits (with comparable  X2/(degree of freedom)) the basis of our error estimate in (15). 
Furthermore,  the coefficients c 4 and c 5 come out somewhat  smaller which indicates 
that their magni tude is an artifact of  the truncation. We have also tried to fit the 

data  setting G = 0 and obtain X 2 = 63.7/(degree of freedom) while our  best fit gives 
X 2 = 1.8/(degree of  freedom). 

Our  result for the condensate (15) is 50% higher than that on the 44 lattice which 

is quite understandable.  It is also not surprising that the condensate falls below the 
fitted value at higher values of  fl (fig. 2). Using our  measured value of  the string 

tension [3], A L = 0.012. v ~ ,  and assuming v ~  = 400 MeV (corresponding to unit 
Regge slope) we obtain in absolute units 

G =  (11.1 + 0 . 6 )  10 -3  GeV 4 =  (325 + 16 MeV) 4. (18) 

3. Probing the glueballs with colour magnetic and colour electric fields 

Let us first concentrate  on probing the interior of  the glueballs with the colour 

magnetic field. To do so, the probe has been placed at various positions relative to 

the centre of  the glueballs as indicated in fig. 3. We have taken data, = 6000 events 
in all, for At = 0, A t  = a and At = 2a time separations in the glueball states (cf. (7)). 

The A t  = 2 a  data are, however, not  very conclusive yet as the errors are still too 

large. The perturbative contr ibut ion to the expectation values of  the various 

plaquettes has been subtracted out in the form of our polynomial  fit (14). The square 

root  of the resulting ratios, [ ( G [ B 2 [ G ) / ( I 2 1 B 2 1 £ 2 ) ] l / 2 ,  is shown in figs. 4 - 6  as a 
function of the distance from the centre of the glueballs. We have associated B 2 with 
the centre of  the plaquettes and allowed for a displacement of l a  in both directions 
which is indicated by the horizontal error bars. To convert  the distance into fm we 

have used (17) and our measured A L. It is to be noted that figs. 4 - 6  contain data at 
both/3  = 2.3 and/3 = 2.5 which, at least for At = 0, will have a different admixture of 
excited states. This one should bear in mind in compar ing the two sets of data. 

F rom fig. 4 we infer that  the 0 + glueball is densely packed with colour magnetic 
fields, and that the diameter of the 0 ÷ glueball is about  0.5 fm. Roughly the same 
picture arises for the 2 + glueball. It has, however, a richer structure as can be 

inferred f rom the two cross sections perpendicular and parallel to the quantisat ion 
axis shown in figs. 5 and 6, respectively. To make the structure of the 2 ÷ glueball 
more  apparent,  we have rotated the colour magnetic fields located at the centre of 
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(a) 

(b) 

VP 
(¢) 

Fig. 3. Placement of space-like plaquettes relative to the glueball centre: (a) 0 +, (b) and (c) 2 +. 

the plaquettes in figs. 3a, b around the quantisat ion axis into one plane, making use 
of the rotational invariance of the glueball state, and obtain the equi-potential 
contour  plot shown (for our At = 0 data) in fig. 7. This resembles two consti tuent 
vector gluons sitting in the two centres with their spins aligned and spin projection 
J3 = + 2. In  order that this can be realized quantum-mechanical ly,  the consti tuent 

gluons have to be in a relative L = 2, L 3 = 0 wave. The distance between the two 
consti tuent gluons is roughly 0.15 fm. This will be of  particular interest for the 
glueball phenomenology.  

Let us now turn to probing the glueballs with the colour electric field. We have 
placed the probe, a time-like plaquette in this case, as indicated in fig. 8 and taken 
data  for At = 0, At = a and At = 2a  time separations. Due  to large errors the At = 2a  
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Fig. 4. Cross section of the 0 + glueball. The closed (open) triangles correspond to /3= 2.3, A t =  0 
( /3= 2.3, At=a) and the closed (open) circles correspond to /3 = 2.5, z~ t=0  (/3= 2.5, z l t=  a). The 

location of the corresponding plaquettes within the glueball is indicated by the numbers; see fig. 3. 
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Fig. 5. Cross section of the 2 + glueball parallel to the quantisat ion axis. Nota t ion  as in fig. 4. 
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Fig. 6. Cross section of the 2 + glueball perpendicular to the quantisation axis. Notation as in fig. 4. 

data are not  very conclusive  here as well  and will be left out of the discussion.  We 
have subtracted out the perturbative contribution as before and obtain at fl = 2.3, 

based on a total of  650 events,  

(GIE21G> ]1/2 
<$21E21~> 

0 + 

2 + 

A t = 0  A t = a  

1.07 _+ 0.01 

1.09 + 0.01 1.38 + 0.06 

1.16 + 0.20 

(19)  

This gives the same picture as the colour magnet ic  probe, that is to say the glueballs 
are strongly excited objects rather than being largely empty.  

Altogether  we are led to conclude that the condensate  G is a factor >__ 2 larger 
inside the glueballs than in the vacuum (which fol lows from taking the square of  the 
quantities shown in figs. 4 - 6  and (19)), and that it varies considerably from the 0 + 
to the 2 + glueball. This has some  interesting consequences  for our understanding of  

the hadrons and the vacuum. Furthermore,  it contradicts the assumption of factori- 

sation which goes  into the derivation of  the ITEP sum rules [14]. 
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quantisation axis 

° 9 °29 

0 4c ;i I. 1.68 1.68 1.02 

107 

Fig. 7. Equi-potential contour plot of the colour magnetic field inside the 2 + glueball. The dots 
correspond to the location of the various plaquettes (figs• 3b and c), rotated into one plane. The numbers 
give the ratios [{2 + IB212+)/~21B21[2)] ]/2 for/3 = 2.5 and A t =  0. Also drawn is the 2 × 2 plaquette 

which sets the scale: 2a = 0.3 fm. 

4. Probing the glueballs with the topological charge density 

W e  sha l l  n o w  p r o b e  t h e  s t r u c t u r e  of  t he  0 + a n d  2 + g l u e b a l l s  w i t h  

+ ( y ) = Q 2 ( y ) = (  1 a a , y ) ] 2 -  
(20) 

w h e r e  Q ( y )  is t h e  so -ca l l ed  t o p o l o g i c a l  c h a r g e  d e n s i t y .  
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z 

7 
:- t 

At =0 

A t = a  

Fig. 8. P lacement  of the t ime-l ike p laque t te  relat ive to the glueballs.  

The lattice version of Q(y) we begin with is [15] 

a4Q(y) e~°° tr(U~yoo ) , (21) 
327r 2 

where U~, is the plaquette (see (10)) obtained by first going in the positive # direction 
and then in the positive u direction, and where y is the point at which the plaquettes 
U~, and Uoo connect. See fig. 9 for a typical contribution. We now extend the sum in 
(21) to include contributions where we go initially in the negative/~ direction etc., so 
that our operator may have negative parity. To ensure that it possesses appropriate 
positivity properties [16] we perform this symmetrisation for both time-like and 
space-like directions. Our final operator thus coincides with one of those defined in 
ref. [17]: 

+ 4  ~ 
a4Q(y) = ~ e"~°° tr( U~Up° ) 

~t~p = +1  2 4 .  32~r2  ' 
(22) 
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Y (yl) 

Fig. 9. An eight-link loop that contributes to Q(y) .  The links are labelled by the directions in which they 
point. 

with g1234 = --02134 = - - g - 1 2 3 4  etc. For  SU(2) this m a y  be simplified in practical  
calculat ions using the decomposi t ion  

41 eu~o.tr( U~Uo. ) = { 2 tr(U12U34) - tr U12tr U34 } 

- {2 tr(U13U24 ) - tr U13tr U24 } 

+ { 2 tr( 023014 ) -- tr U23tr U14 } .  (23) 

In our measurements  of  (22) inside the glueballs we shall place y at the glueball 
centre, i.e. y = x as indicated in fig. 1. 

As in the case of  the simple plaquette,  the expectat ion value of (22) is non-zero in 
per tu rba t ion  theory. The  at t i tude that  we shall also take here is to subtract  out the 
per turba t ive  contr ibut ionl  

{~2l(a4Q(z))2ll2)=d2fl 2 + O ( f l - 3 ) ,  (24) 

to est imate the con t inuum limit. 
We have calculated the first coefficient d 2 and obtain  

9 
d 2 (25) 

5 1 2 ~  -4 

Going  beyond  that  proves  to be a tedious, if not impossible task. One could, 
alternatively, determine the higher coefficient by  measur ing the vacuum expectat ion 
value (24) over  a wide range of fl values and fit to it a po lynomia l  plus renormaliza-  
t ion group invariant  as we did in the case of the plaquette.  But this is very t ime 
consuming for  the opera tor  (22) and the 84 lattice we are using. We shall therefore 
approx imate  the per turbat ive  contr ibut ion by  the dominan t  term in the weak-cou-  
pling expansion,  d2fl-2. It  also turns out that  we need not know the per turbat ive  



2 3 4  K. Ishikawa et al. / Structure of hadrons 

contribution more precisely for the conclusions we like to draw. This was quite 
different in the case of the simple plaquette. 

We have measured (a4Q) 2 inside the 0 + and 2 + glueballs and in the vacuum. 
Based on 1400 events we obtain, after having subtracted out the perturbative 
contribution, at/3 = 2.3 

(GIQ21G)  ]1/2 

{121Q21~2) 
t = O  t = a  

0 + 1.29 _+ 0.01 1.61 _+ 0.07 

2 + 1.23 +_ 0.01 1.07 _+ 0.04 

t = 2 a  

1.32 ___ 0.30 

-0 .93  + 0.73 

(26) 

and (~21(a4Q)21~2) =(6.03 4-0.01)10 -6. The ratios of the true non-perturbative 
values could be much higher. However, already on the basis of (26) we can say that 
the topological charge density is substantially larger inside the glueballs than in the 
vacuum. 

Naively, this suggests that at least the 0 + contains a bigger portion of some dilute 
instanton gas than the vacuum. If instantons are around we would, however, expect 
to find integral (4: 0) topological charges. We have investigated this [18] but so far 
have found no indication of instantons in the vacuum and at/3 = 2.3. This does not 
contradict the above interpretation. It can well be that scaling sets in somewhat later 
for instanton related quantities, or that there are no dilute instantons in the physical 
vacuum. A more detailed investigation is in progress, and we hope to report our 
findings in the near future. 

Before summarising our results we will make a brief digression on the mass of the 
lowest lying 0 -  glueball. The operator Q has 0 -  quantum numbers and hence when 
applied to the vacuum it will generate the lowest mass 0 - glueball state as in (5). We 
measure (using Q as in (22)) 

F2. - (~2]O(t + a , x ) Q ( t - a , x ) l l 2 )  

No ( ~ 2 1 Q ( t , x ) Q ( t , x ) l ~ 2 )  

where 

= a e  2,e(0-), (27) 

I{I21QIO-)I 2 

~ l (~21QIn) l  2 '  
n 

(28) 

and where we expect [3, 4] (27) to be a very good approximation. We parametrize 

E 2 = m 2 + ~2/a2 ,  (29) 



K. Ishikawa et al. / Structure of hadrons 235 

where 82 is the momentum smearing, and (29) should be good for 8 2 ( <  (ma) 2 which 

will be the case here. We also calculate the same quantity using our 2 + operator. 
Using the mass estimate [4] 

m (2 +) ~ 2 .46/a ,  (30) 

and the wave-function estimate c~ = ½ [4] we obtain 

82--- 1.5. (31) 

We do not know a for the 0 -  glueball, but most of the variation in (27) is provided 

by the exponential, so our calculation is insensitive to moderate variations in a. 
Using a = ½ and (31) then gives us 

m (0 - )  = 2 . 8 / a .  (32) 

We can also repeat the calculation using for our wave function in (27) not just Q at 
one site but summing over neighbouring sites, so that the momentum smearing, 62, 
is reduced. We obtain 

m(O ) = (2.3 + 0 .4 ) / a ,  (33) 

where the error corresponds to ranging et between 0.25 and 1. Our conclusion that 

m(O ) ~ m(2+) ,  (34) 

confirms our previous results [3] performed with different operators on smaller 
lattices. 

5. Summary 

We have probed the structure of the 0 + and 2 + glueballs with colour magnetic and 
colour electric fields as well as the topological charge density. The difference found 
between placing the probe inside and outside the glueballs demonstrates that even 
with such a course discretisation of space-time as employed here, the glueballs retain 
enough structure to make their detailed investigation feasible. 

The physical picture which emerges is that the 0 ÷ and 2 + glueballs are visibly 
extended objects with a diameter of = 0.5 fm. The 0 ÷ appears to be a ball with 
increasing field strength towards the origin, while the 2 + indicates two constituent 
gluons. By comparing our At = 0 and At = a data we also begin to see the structure 
of the radially excited glueball states which seem to be largely empty near the origin. 
As far as probing the dynamical properties of hadrons, like the effect of instantons, 
which are eventually responsible for confinement, is concerned, a lot remains to be 
done. But we are confident that the lattice will help to settle these questions. 
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As a by-product we have obtained a reliable estimate of the gluon condensate, a 
fundamental parameter of the QCD vacuum. 

The computer calculations were performed at the DESY computer centre. One of 
us (M.T.) thanks T. Walsh for the frequent hospitality and financial support of the 
DESY theory group and the Institute of Theoretical Science at the University of 
Oregon for its hospitality during part of this work; this work was supported in part 
by the US Department of Energy under contract number DE-AT06-76ER70004. 
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