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We calculate helicity amplitudes and decay rates for Zweig-forbidden radiative decays of a 
3S1(Q0 ) bound state into 1S0(qq) and 3pj(qq) states in lowest-order QCD. We employ a new 
technique of scalarizing loop integrals by using covariant helicity projectors. Thereby we are able 
to integrate analytically all occurring loop integrals. 

When applied to J/4 '  decays our results are in reasonable agreement with present experimental 
results. 4" decays will provide a further test of the model. Transitions from bottonium to charmonium 
are most interesting since there all dynamical assumptions are well satisfied. Unfortunately the 
transition rates are very small, 

1. Introduction 

Radiative decays of J/tp into lighter mesons have aroused considerable interest 
from the very beginning. Soon it became clear that in most of these decays the 
photon couples directly to the heavy quark as suggested by QCD. To estimate the 
total rate and the inclusive photon spectrum, the decay into a photon and a pair of 
gluons was calculated [1]. To predict exclusive channels, this approach was pushed 
even further and duality was assumed between single mesons and the gluon pair 
projected onto the corresponding spin-parity configurations [2]. 

Here  we want to advocate a completely different approach. We take the diagrams 
of perturbative QCD (fig. 1) seriously and assume that light and heavy mesons can 
be considered as dominantly quark-antiquark systems. In addition we use the 
non-relativistic quark model in the weak-binding approximation for heavy and light 
bound states. Within this framework we shall calculate helicity amplitudes and decay 
rates for 351---~'~--[-180 and 351-~3/q-3P J ( J = 0 ,  1,2) in closed form in terms of 
logarithms and Spence functions. Thus our model allows us to determine exclusive 
quarkonium decays completely within perturbative QCD; in particular we do not 
have to resort to intrinsic non-perturbative quantities like fragmentation functions. 
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( Q Q ) Q T / / / / / / / ~  ( q, q ) 

Q ~ q  
g 

÷ p e r m u t a t i o n s  

Fig. 1. L o w e s t - o r d e r  Q C D  d i ag ram for the decay of a 1 - bound  s ta te  into a pho ton  and a l ighter  meson.  

Let  us stress at this point, that  our  only input, the wave functions and their derivatives 
at the origin for S- and P-waves respectively, can be deduced f rom J/$-->e+e - ,  
~7'~3,3' and f-->3'3' decays, such that no free parameter  enters our  calculation. 

Decays of the type (bb)--> 3' + (c~) are of course most  attractive f rom the theoret ical  
viewpoint  since in this case our  assumptions are well founded.  Unfor tunate ly ,  the 

cor responding  rates are very small. On  the o ther  hand our  approximat ions  may be 

disputed for light mesons. Nevertheless,  if we compare  our  calculations with the 

experimental  results, we find consistency and surprising agreement  in most  if not  
all cases. In addition we predict  the rates of the Zweig-forb idden radiative ~0' and 

Y decays which will be measured  in the future. 
A p a r t  f rom this practical success our  model  is an interesting theoret ical  labora tory  

and the predictions can be contras ted with those of models  based on g luon -meson  

duality [2]. Indeed  some of the most  striking consequences  of the latter are absent 
in our  model  which is in accord with the data. Since contr ibut ions f rom highly virtual 
gluons play an impor tant  role in our  approach,  there  is no drastic suppression of 

spin-0 versus spin-2 mesons as predicted by duality [2]. This implies in addition, 
that  7 '  product ion f rom Y is not  as much suppressed as most  o ther  models  [3, 2, 

15] would predict. Fu r the rmore  the decay into 3' + 1 ++ mesons is somewhat  smaller 
than 3' + 2 ++, but not  as drastically suppressed as expected,  if only quasi-real gluons 

would contribute.  
Some of the results which will be discussed in the following have been obta ined 

previously. The relative magni tude  of the absorpt ive contr ibut ion to the three 
helicity ampli tudes in the case of 1 ~ 3' + 2 ++ has been obtained by K r a m m e r  [3]. 
The analytic result for  1----> 3 ' + 0  + (absorptive and dispersive contr ibution) has 
been given by Guber ina  and Kiihn [4]. Here  we shall give a more  compact  form 
and applications to a large variety of 1-  --> 3 ,+0 -+ decays*. A brief discussion of 
the results for 1-  --> 3 '+1  ++ has been given by K6rner  and K r a m m e r  [7] and for 
1 - - ~  3' + 2 ++ by K/Srner, Kiihn and Schneider [8]**. Here  we want  to present  the 
method  of our  calculation, the new result for 1-  -~ 3 ' + 0  +÷ and applications to a 
large number  of decays. 

* An earlier numerical evaluation of the same process by Munehisa [5] differs drastically from our 
result in normalization and mass dependence. A later numerical evaluation by Devoto and Repko [6] 
differs by a factor (1 + rn2/M2)M/2m. 
** Numerical work on P-wave decays has been reportedin an unpublished preprint by Nishimura [9]. 
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The outline of our paper  is as follows. 
In sect. 2 we show how to obtain a set of independent scalar helicity amplitudes 

and how to decompose the resulting five-point loop functions into a sum of three- 
point functions, which can be integrated in a straightforward manner.  In sect. 3 we 
first give angular distributions for the decay chain e+e + J / & -  ' ) /"~31Dj ' ' )  ' Y + M I M 2  

where we allow for arbitrary complex helicity amplitudes. Then we predict the 
relative magnitude of the various helicity amplitudes and discuss their physical 
relevance. In sect. 4 we calculate the rates of radiative J / G  q/ and Y decays in 
terms of F ( J /q ,~e+e- ) ,  F ( r / ' ~ y y )  and F ( f ~ y y )  and compare  with presently 
measured branching ratios. Sect. 5 contains our conclusions. In appendix A we 
present covariant helicity projectors for the different spin cases. In appendix B we 
discuss the connection between helicity and multipole amplitudes. In appendix C 
we describe our method to decompose the five-point loop functions into three-point  
functions and list the basic integrals. 

2. Evaluation of Zweig-forbidden radiative transitions 

To evaluate quarkonium production and decays, it is useful to apply the bound- 
state formalism as described e.g. in ref. [10]. It allows us a straightforward evaluation 
of the covariant amplitudes which describe the effective couplings between the 3S1, 
a real photon and two virtual gluons on the one side and between the 3Ps or 1S0 
and two virtual gluons on the other side. Once these are calculated one just has to 
multiply the two amplitudes, insert the gluon propagators and perform the loop 
integrations. It is thus possible to use the non-relativistic model even in a situation 
where two such systems are highly relativistic with respect to each other. 

The amplitude for the coupling of a 3S~ vector state with polarization E, momen-  
tum K and mass M to a photon (e, k) and two virtual gluons (ej.2, k l , 2 )  reads [3] 
(fig. 2a) 

a v  r :%*"°*u ' ' *~2  8i Rv(0)  M 2 
= - -  a v  

. . . . .  ~2~ ~ ~t ~2 ~ / 4 - ~  3 ( k l + k 2 ) "  k ( k + k , ) ,  k 2 ( k + k 2 ) "  k ,  

a v = { e  * • e * [ - k ~  . k e * "  k 2 E  • k , - k 2 "  k e * "  k l E  • k 2 - k ~  " kk2"  k E  • e*] 

+ E .  e*[k ,  . k e*  • k2e*  • k + k 2 "  ke*  • kl  e* • k - k l  " k2e*  • k e *  • k]} 

+{el,  k,*-~,e, k}+{e2, k2*+e, k } ,  (2.1) 

and reduces to the well-known Ore-Powell  amplitude for k 2 = k 2 = k 2 = 0. Also the 
couplings of two gluons to the pseudoscalar JSo and to three 3Ps states (fig. 2b) 
have been obtained previously [4, 10] 

Rps(0) 1 
~PS v, ~ 2 = - 4 - -  - -  c ( e l ,  e2, kl, k2). (2.2) 

. . . .  E l  E2  4 4 ~ ' m  k 1 • k 2 
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k 
E ~ 

kl== 

~ 0 0 0 0 0 ~ . . ~  P,. 

(QQ).E ~ L ~  , k 2  " k2 , "v / / / / / / .  

"q)-0000000o(~0"0 ~ q ~ )' e * 

* permutations 
(a) (b) 

Fig. 2. Lowest-order QCD diagrams for the coupling of a 1-- bound state to a photon and two gluons 
(a) and for the coupling of two gluons to a bound state of positive charge conjugation (b). 

s ~ ~ =8~/2 R{,(O) as A~, ~2e 11E22 

ao=x/~{[e l  " 82k1"  k e - e l "  k2e2" k , ] [ m 2 +  k l "  k2] 

+ E  1 k2e2 k2k21+el k l e 2  k a k 2 _ e l  2 2 . . . . .  e 2 k l k 2 - e l  " kle2" k2kl " k2}, 

al = lm{(kl  2 e (e*, el, e2, k2)+ e, • k, e (e*, E2, k,, k2)) 

+ ( 1 ~ 2 ) } ,  

a2 = ~/722 mZ{ kl • k2e lae2b  + k2ak lbe l  " e 2 -  k lae2b~l  " k 2 -  k2aelbe2 " k l}e  *"b. 

(2.3) 
Here  ea (e,b) denote the polarization vector (tensor) for the spin-1 (2) bound state 
of mass m and momentum P. Rv(0) and Rps(0) denote the radial wave functions 
of the S-waves, R~,(0) the derivative of the radial P-wave function at the origin. 

In order to illustrate our method of loop integration, we shall discfiss the necessary 
steps in detail for the case 1 - - - , y+0  -+. We have to evaluate 

TPS,--~ ,~ 1 (  d4kl a v  r-= :~t-'~PSVlV 2 i i 
~ z  e =-~_  ~ - ~  . . . . .  2Lz e ,~ k 2 + i  e k 2 + i  e .  (2.4) 

The factor ½ takes into account that both amplitudes have already been symmetrized 
with respect to the two gluons, Coupling constants and color factors have been 
suppressed. The coupling of a vector to a photon and a pseudoscalar is described 
by one independent helicity amplitude H Ps. Instead of evaluating T~ s (a tensor of 
rank two) it is therefore sufficient to calculate the scalar H Ps, which is obtained 
from T~ s with the help of a helicity projector (appendix A). For the pseudoscalar 
case it is particularly simple 

HPS= T~sp  Ps~ , (2.5) 

where 
- i 

2P"  k E'~'PaPPkX ' 

~PS p*PSav ~ 1 (2.6) 
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and of course T Ps can be reconstructed from H PS 

T~ s =-~t4PSP p s _ _ _  _ . . .  (2.7) 

After some algebra one finds 

R v ( 0 )  4Rps(0) 1 rr__22 
Has =18i i Ps 

447rM/-7---7~''3 x/4~m (2rr) 4 i ' 

/_)PS = M2 i f ~6 (P'T_- ~.7-T ,L:T ,: ~ ,_-LT;-.._-T~ 2 k ) q 2 - ( q "  k ) ( q . P )  
2P"  k rr 2 d 4 q ( k l + k ) - , ~ 2 ( ~ 2 - r ~ , - ~ , ~ l , - , e ) t k 2 + i e ) ,  

q = k l - k 2 ,  P =  kl+k2.  (2.8) 

Note, that the k~-k2 denominator has cancelled. In principle this leads to a 
three-Feynman-parameter integral. With the help of the algebraic ~t, cntity 

(P .  k ) q E - ( q  . k ) ( q .  P ) =  2P .  k [ m 2 ( ( k l + k )  . k e + ( k 2 + k ) ,  k l ) + M 2 ( k 2 + k ~ ) ]  
M 2 + m 2 

- -q"  k ( k  2 -  k22), (2.9) 

the integrand can be decomposed into a sum of three-point functions which are 
listed in appendix C. 

/4pS=4x ~2(1-2x)-~2(1)-l_--_--~xln (2x) 

2~xX (2~2(1 - x ) -  2~f2(1) +½ ln2 ( 1 -  x)] 

1 - x  
+ i l r 4 ~ I n  ( l - x ) ,  

x = 1 - m 2 / M  2 . (2.10) 

The real and imaginary parts of/_)PS are shown in fig. 3. The behaviour of/~PS in 
the limit of small and large x is given by 

/~rPS(x) ~ 4[ln 2 -  1] -  2i~r, 

,QeS(x) ,4[ln 2 -  4a-rr2- 21(1 - x )  In 2 (1 - x)] +4irr(1 - x )  In (1 - x ) .  
x ~ l  

(2.11) 

For x + l  (m2/M2..+O) the amplitude is dominated by the dispersive part, i.e. the 
contribution of off-shell gluons. In refs. [2, 3] it was pointed out that the production 
of (on-shell) gluons in the partial wave 0 -+ is suppressed by a factor m 2 / M  2 relative 
to the 2 ++ contribution due to the special form of the Ore-Powell matrix element 
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10.o 
L ' ' , '  ' ' I . . . .  I . . . .  I ' ' ' ' 

\ "0 J- ~\Re H 
r-lm i:l 0 \ I 

7.5 -Ira tiPS ~ / ' / t  t 

F . . . . . . . . .  > ~  ~ ~--._ " - ~ .  / ,' 
b ~ ~ '  ~ ~-~ 

5.o~- " - . .  / ~ - ~ .  \ ,, 

L 
0 . 0 ~ , "  ~ , , I , , , , I , , , , I i t 

0.0 0.25 0.50 0.75 1.00 

X 

Fig. 3. R e a l  a n d  i m a g i n a r y  p a r t s  of  t he  d imens ion le s s  hel ic i ty  a m p l i t u d e s  H fo r  t he  t w o  s p i n - z e r o  cases  
0 - +  a n d  0 +÷ as func t ion  of x = 1 - m 2 / M  2. 

which explains the smallness of the absorptive part. For off-shell gluons this sup- 
pression is no longer operative [4]. At this point we want to stress that the mass 
dependence of the rate differs from that of Novikov et al. [15] by an additional 
factor (M/m) 4. Thus we expect that our contribution will dominate for heavy 
quarkonia. 

In the limit rn2/M2~O the light quark mass can be neglected and the methods 
used to study hadronic form factors at large Qa [24] are applicable. For arbitrary 
light meson wave functions the contributions from light-like distances dominate and 
the general distribution amplitude on the lightcone is related to our non-relativistic 
wave function by 

~ONR(U) =~/3" 4 ~ S  m 8(U) , 

where ½( l+u)  denotes the momentum fraction of quark and antiquark. In this 
paper  we shall calculate the rate for the arbitrary mass ratio re~M, since in general 
the mass of the light meson cannot be neglected compared with M. (This holds in 
particular for the P-states f and f'). In order to keep the problem tractable we make 
use of the non-relativistic approximation. Results in the limit mZ/M2~O and q~(u) 
arbitrary, which may be relevant for light pseudoscalars, will be published elsewhere 
[25]. The scaling law for the rate as a function of M in the limit rnZ/M2~ 0 coincides 
with the predictions of ref. [24] based on constituent counting rules and helicity 
considerations. However,  note that the leading contribution from a 0+--two-gluon 
final state has a different scaling law. To obtain the decay rate, we multiply the 
amplitude with the appropriate  coupling constants, the quark charge Q and a color 
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factor 2: 

_1,2,2 4 ,,-~2 1 {4Rv(O)'~2f4Rps(O)'~2xlt2IPS(x)j2 

xlHPSJ z is shown in fig. 6 .  (2.12) 

Let  us. mention that the phase of ~ps  can be determined in principle, if the 
S-dependent interference between resonant rl 'y production and the continuum 
contribution could be measured [4]. In our model the latter is estimated 

( o-(e+e-~y*--,~Soy) =-8 _m 1 -  F ( lS0~yy)  , (2.13) 
c r ( e + e - - * y * ~ + #  ) ~ s 

which amounts to ~ 0 . 5 . 1 0  .3 for ~7'y production just below the J / 6  resonance. 
With present luminosities the prospects for this measurement are not promising. 
Similar considerations apply to P-wave production discussed later on. Due to the 
smallness of the corresponding interference effects we shall not pursue this subject 
further. 

The calculation of F(3SI~3Pj + "y), which is the main subject of this paper, has 
indeed many similarities with the previous one. We use the analogue of eq. (2.4) 
to obtain the tensors of rank 2, 3 and 4, which describe the production of 0 ÷÷, 1 +÷ 
and 2 ÷÷ mesons. With the help of the helicity projectors described in appendix A 
we find the independent helicity amplitudes. In the spin-0 case for example there 
is again only one projector  po (A.3) and one independent amplitude H ~°). After 
some algebra we find 

(o)__1 f d4kl . v i i 
H = 2  ~ - ~ a  * A ° * P ° k ~ + i  ~ k 2 + i  ~ 

i 4Rv(0 )  4 3 S~/2R~,(0) 1 ~2 /~  o (2.14) 
-- ~ 4 ~  4"n'm 3 (277") 4 i ' 

where 

i2i(o) - i ff f(q, k,P) 
- - ~  ,~6d4q(k,+k) " k2(k2q_k), k,(k2+ie)(k~+ie) , (2.15) 

q= k l -  k2 , P= kl + k2 , 

and f denotes a scalar even polynomial in q. In contrast to the pseudoscalar case 
now the numerator  f depends on q up to terms of fourth order, the denominator 
(klk2) is no longer cancelled and one is led to integrals with up to four Feynm'an 
parameters. It is, however, possible to decompose the integrand into a sum of 
three-point functions (appendix C) which can be solved in a straightforward manner 
in terms of logarithms and Spence functions. The resulting integrals are listed in 
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appendix C. For/~(o) we finally obtain 

I2I(°)(x)=~[~3[2-3X+{lOL x 2 \ 1 - x + 4 1 - 2 X l n 2 )  3 x 2 

1- -X 
1--x " 2  ( 1 - - x ) + ( ~  22+2 x ( 1 - 2 x ) ) I n  (2x) - 3 x(-~-~_ x) m 

8 - - 6 x  + x 2 - - 6 X  3 4 - - 5 x + 2 x  2 
q- X 3 ( 2 _ X  ) ~ 2 ( 1 )  X3 ~2(1 --2X) 

2 - - 2 x - - x  2 1 --x ] 
--4 xZ(2_x  ) 5~2(1--x)+irr6x(--~_x)ln(1--x ) . (2.16) 

The behaviour of ~(0) in the limits of small and large x is given by 

/ T O ~ ( x ) _ _ ~  ~ 29 10 x-~o ~319 -t- 3 ln2--~-ln x--3iTr], 

I2I(°)(x) , , / ~ [ 8 1 n 2 - 1 - ~ r Z - 4 1 n 2 1 n ( 1 - x ) + i ~ 6 ( 1 - x ) l n ( 1 - x ) ] .  (2.17) 
X ~ I  

Due to the P-wave denominator (klk2) 2 the integrals diverge logarithmically in 
both limits, in contrast to the pseudoscalar case. The real part dominates again in 
the limit rn2/M2~O ( x ~ l )  since the Ore-Powell  amplitude supresses also the 
production of real gluons in the 0 ++ configuration [2]. In fig. 3 we plot the real and 
imaginary parts of/~(o). 

For 1 ++ production there are two independent amplitudes /"/(01) a n d  HI  1). We 
multiply A v and A 1 from eq. (2.1) and (2.2), project onto the proper helicity basis 
with the help of the two projectors P~ (i =0 ,  1) defined in appendix A and obtain 
two integrands of a similar structure as in the 0 +÷ case. They are decomposed 
into a sum of three-point functions and integrated with the same techniques as 
before (appendix C). In this case one gluon propagator is immediately cancelled 
due to the k~,2 factor in eq. (2.3) dictated by "Yang's theorem"• One finds (see 
also ref. [7]) 

• 4Rv(0)  842 ~/4--~m 3 R ~, (0) - -  
2 1 7r 

(277") 4 i 
iA l  , 

/ 4 ] ' ) - 4  ,/]-_ x 1± (~:(1)_ ~:(1_ 2 x ) ) _ l - -  2 x ( ~ 2 ( 1 - x ) - ~ 2 ( 1 - 2 x )  
- -  x 2 Lx  x -  

- I n  2 In (1 - x ) )  -~ 2 - Xx- 2x2 In (1 - x) + 2(1 + x) In (2x) ] , 
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/4~o ') =4~-5 (~2(1)-~2(1-2x))-6(1-x)(~z(1-x)-~2(1-2x) 

-ln21n(1-x))+2 (1-x)(1-2x)ln( 1-x)+2-8x+7x2 ] x 1 - 2 x  ln (2x)  , 

with the limiting behaviour. 

/~(01) :' 7 r 2 - - 4  In 2 ,  
x ~ l  

H I  l) ) 4~/]Zx[-l+~rr2+41nZ-ln(1-x)+21n21n(1-x)], 
x ~ l  

/~(o~) . ) z ~ _ ~ l n  ( 2 x ) ,  
x ~ O  

123 

(2.18) 

(2.19) 

(2.20) 

/ ~ 1 )  , ~ - ]  In ( 2 x ) .  (2 .21)  
x ~ 0  

The longitudinal amplitude dominates for rn<< M: H1/Ho = O((m/M) In (m/M)) 
as expected. In the nearly equal mass case the electric dipole transition dominates: 
H1/Ho -->x~0 1 (see appendix B), which provides an additional check on our calcula- 
tion. The absorptive contribution vanishes identically since 1 ++ does not couple to 
real gluons. The dispersive part is shown in fig. 4. The overall magnitude of the 
amplitudes for scalar, axialvector and, as we shall see, tensor mesons is roughly the 
same and our model does not confirm the enhancement of 2 ++ versus 0 ++ and 1 ++, 
which would be natural if virtual gluons did not contribute [2]. 

10 0 ~ . . , j  j ~ [ , ] r ~ I ] ' ~ J I ' ' ' J 

7.5 

R e H o  . . . .  . "  ~ 

5.0 

2..5 

00 , , ~ I 1 J J J I J I I I I I ~ I I I 

O0 025 050 0.25 100 
X 

Fig. 4. Dispersive contribution to the two dimensionless helicity amplitudes /Q~0 a) and /-1~(]) in the 1 ++ 
case as function of x. The absorbtive contribution vanishes. 
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For  the spin-two case we proceed as before.  The  three  helicity projectors  p z 
(i = 0, 1, 2) are given in appendix A. One  finds [8]* 

~ 4 ~ - ~  1 ~2 /£1!2) HI2) = .  4Rv(0____~) 8, /2  R~,(0) (27r) 4 i t / a 7  - ,  , 

^ 2~/3 F 2 6 -  1 9 x +  18x 2 
H~o 2) = x3 [ _ ( 6 - 5 x ) x + ~  ( l - x )  In ( l - x )  X 

1 1 0 - 1 2 x + 5 x  ~ 2 6 - 3 8 x + 7 1 x 2 - 3 7 x  3 
- 3  2 - x  (~2(1)--£9~2(1 - 2x))-~ 3 1 - 2 x  In (2x) 

(1 --X) 2 
x2(2-- x) - -  (~LP2(I -- 2X) -- 2,.~f'2(1 --X)--½ ln2(1 -- x) + 5f2(1) + irr In (1 - -x))  

4 6 - 6 x - x  z 
+ 3 x (In 2-½i7r) - 4 ( 1 2 -  26x + 13x 2) 

× (SE2(1 - x) - ~2(1 - 2x) - in 2 In (1 - x)~ 

/~2) _-2 x/1-x~ [ - ~ ( 3 8 -  9 x ) x - 2 "  x ( 4 - 1 3 x + 1 6 x 2 - 4 x 3 ) I n  (1 - x )  

4 
+ 2  x(12_x-X) ( £ P 2 ( 1 ) - ~ 2 ( 1 - 2 x ) ) -  1 - ~ - ~ x  ( 2 -  a l x +  1 6 x 2 -  4x 3) In (2x) 

(1 - x)(2 - 2x + x 2) 
+ 8  x2 (2_  x ) (Gt?2(1 -- 2X) -- 2=LP2(1 -- X) -- ½ In 2 ( l - - x )  + ~ 2 ( 1 )  

+ i~r In (1 - x ) )  

16 3 - - 3 x + x  2 
(In 2 - ½ i~r) + 4 ( 8  -- 12x + 3x 2) 

3 x 

x (3?2(1 - x) - ~ 2 ( 1  - 2 x ) -  In 2 In (1 - x ) ]  

- x5 ~ x +  ( 1 - 6 x + 6 x  2) I n ( I - x )  

2 
-2-----7 ( 5 -  6x + 2x2)(3f2(1) - ~ 2 ( 1  - 2x)) + 4 ( 1 - 6 x )  In (2x) 

2 - 4 x  + 6 x 2 - 4 x 3  + x 4 
- 4  x 2 ( 2 _  x ) (~2(1 - 2x) - 2~£2(1 - x) -½ In 2 ( 1 -  x) + ~2(1) 

+ irr In (1 - x)) 

* Our normalization convention differs from that of ref. [8] by a factor 1/2~/2. 
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4 6 - 6 x + l l x  2 
-4 (In 2 - ½ i ~ r ) -  16(1 - x )  

3 x 
-I 

× (~2(1 - x) - ~e (1  - 2x)  - I n  2 In (1 - x))~ . (2.22) 

The  relat ive magn i tude  of the absorb t ive  parts  Im/.~}2) agrees  with earl ier  calcula- 
tions [3]. In the limit x ~ l  one finds 

/~o2) 4 ~-~ [ -  2 In 2 In (1 - x ) - 4  In 2 +43-~7r2 + i~-], 

/_~2) 4x/l_--~ [2 in 2 in (1 _ x ) _  3 in (1 _ x) +~o in . ,  29 1 2 - - 4 .  1 
x~l 

IFt? ~ , - 2 x / 2 ( 1 - x ) [ - l n 2 ( 1 - x ) - 2 1 n ( 1 - x ) + S l n  "z-~*,2rr8- 5 2 
x ~ l  

+ 2rri(ln ( 1 -  x) + -~ ) ] .  (2.23) 

U p  to logar i thmic factors  the three  ampl i tudes  behave  as (1 - x) ° : (1 - x) 1/2 : (1 - x) 1. 
The  origin of this relat ive ( 1 -  x) power  is the mass  dependen t  normal iza t ion  fac tor  
m ~ of the hel ic i ty-zero spin-1 states that  are  used to construct  the spin-2 f -meson*.  
For  x-~0 on the o ther  hand (soft pho ton  limit) the electric dipole t ransi t ion domina tes  

/~(0 2) ~ / 3 1 - - / ~ ]  2) ~ d 6 T - / ~ ( 2 2 ) ~ 5 - ~  ( ~ l n  x + 4 1 n  2-~96+i~r ) . (2.24) 

As can be seen f rom eqs. (2.4) and (2.5), the ampl i tudes  are  dominan t ly  real bo th  
for  x + 0  and x + l .  

Fig. 5 shows the th ree  H~ 2) in an Argand  plot. The  individual phases  decrease  
monoton ica l ly  f rom 180 ° at x = 0 to 0 ° at x = 1. It  is quite r e m a r k a b l e  that  the 

r r x r r----- 
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I Y--,,, f +¥  
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. . . . .  

E r.&U. . ~ "  - 
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0 
-7.5 - 5  -2 .5  0 

Fig. 5. Argand plot of the dimensionless helicity amplitudes/~}2) as functions of x. 

"N ~121 

i /" 
i 

2.5 5 7.5 

* This result is consistent with ref. [24] which predicts the dominance of the helicity-0 final states in 
the limit m2/M2~O. For the reaction J / O ~ f +  y however helicity 1 and 2 contributions are still of 
comparable importance (cf. table 1) and only Y ~  f + 3' can be treated in this limit. Note, that the 
naive scaling law for the rate as function of M is modified by a logarithmic factor. 
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three amplitudes are very close in phase over the whole range 0~<x~ < 1 (for 0~<x<0.6 
their phase difference never  exceeds one degree) and thus the original predictions 

u ( 2 ) / ~ ( 2 )  for the relative magnitudes *-1~-z(2)/~(2)/,-0 and ,~2 /~,0 which were only based on 
the absorptive parts remain practically unchanged. 

In order to obtain the decay rate for all three P-states we multiply with the 
electric- and strong-coupling constants, the quark charge O and the color factor (2)2 

F(3S1-->3Pj -'1- T )  - -  1 ~ Ip~/. 2 ~ ]H/] 12 
6 M  47r M i 

2 4 256 IRv(0)l 2 IR~(0)I~ ? .  

= crQ a~ 97r2 M4 rn 3 x Y~ I/q[ (2.25) 
i 

The sum of the squared reduced amplitudes multipled by x is shown in fig. 6 for 
the three cases. Over  a large x range the production rates for all three P states are 
of comparable  magnitude. For x--> 1 we find for their relative strengths 

IA~ I~  : i A , o , i  ~ : Z IzQ? )1 ~ : ~ IHI 2) 12 
(~TrR-ln 2)2:~ lne 2 In2 ( 1 -  x) : 0 I t - I n  2)2:~ ln2 2 In2 ( 1 -  x ) ,  (2.26) 

and in the soft photon l imit (x->0) 

I ~ V  : I~ ' °V  : ~ IAi ') I ~ : z I~I 2' 12 
, (In 2 -  1)2:~7 In 2 x : 3 .  ~71 n2 x: 5 .  287 In 2 x" (2.27) 

X~0 

Note that, in this limit, the P-wave states are produced with weights 2 J +  1. 

3. A n g u l a r  distributions 

Although the absolute rates depend crucially on our input values for a~ and R (0), 
the relative magnitudes of the various helicity amplitudes are predicted independent 
of any adjustable parameter  and depend on the mass ratio m 2 / M  2 only. They can 

be determined experimentally from an analysis of the angular distributions in the 

1 0 0 ' 0  . . . .  I - - I  I I I t I I I ' I I I I 

75.0 

¢~ ...., 

~'T_ 50.0 . . . . .  " 
¢'Ir" , . . "  i 
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0 . 0  ~ f " ' l " ' "  " l" '  "l -[* I I I I ] I I 1 1 [ I I I I 

0.0 0.25 0.50 0.75 1.00 
X 

Fig. 6. Summed squares of the reduced amplitudes x ~ I/4, .] 12 for the four cases 0 -÷, 0 ++, 1 ++, 2 ÷+. 
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decay chain 3S1+ 3'+3Pj(~M~M2). For decays into spin-zero mesons the form of 
the amplitude for the decay 3pj+MaM2 is uniquely fixed. 

Aj=o = const ,  A j= 1 = e p ,  A j=  2 = e,,~p~'p ~ , 

P =- PM1 - -  P~42. (3.1)  

For J - - 0  the angular distribution of M1 and M2 in their c.m. frame is of course 
isotropic. Note that for J -- 1 the mesons M1 and M2 have to have opposite parities. 
For J = 1(2) we find the 2 (4) parameter angular distributions 

J = 2 :  

J = l :  

15 d cos (0 r) d4~p d cos 0p 
d N =  

256 ¢r(1 +[X[2+[ Y[ 2 ) 

X{(1 +cos  2 8~)[2(3 cos 2 8p -  1)2+3 sin 4 (0p)] y[2] 

+ 2 sin 2 (0~)[3 sin 2 (20p)[X[ 2] 

+2  sin 2 0 r cos (24~p)[~/6 sin 2 0p(3 cos 2 0p-  1) Re Y] 

+ 2~/2 sin (207) cos ~bp[-23 sin (28p) sin z 0p Re ( X Y * )  

+ ~ / 6  sin (20p)(3 cos 2 0p -  1) Re X]}.  (3.2) 

dN  
- - o c  1 + a c o s  2 O, 
d cos 0 

1 J - - 0  

1-21XI2 J =  l 

l+21X[ ~ 

1-2[X[2+[Y[2 J = 2 . 
. l  + 2[x[g + [ Y [  2 

(3.4) 

9 dcos07d~bpdcos0  e 
d N = - -  

32 ~(l+lXl 2) 

X{(1 +COS 2 07) COS 2 0 p + s i n  2 0~ sin 2 0p IX[ 2 

+½ sin (207) sin (20p) COS Sp Re X } ,  (3.3) 

where X-=/~r,//qo; Y =-H2//qo. 0r is the polar angle between the photon and the 
e ÷ beam axis. 0p and Sp are the polar and azimuthal angles of M1 and M2 in their 
c.m. frame. The z-axis is defined by the flight direction of the M 1 M 2  system. The 
y-axis is proportional to z x e ÷ and x = y  × z. $p is measured in the xy plane. For 
real X and Y this coincides with'the one (two) parameter form of Kabir and Hey 
[10], which was used in the experimental analysis of J / ~  ~ 3' + f(-> zrzr). The photon 
angular distribution is of the form 
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TABLE 1 

Ratios of helicity amplitudes X =-H1/H o, Y = - H E / H  o (absolute value, phase) for 
various radiative decays 

J/O(3100) ~'(3685) Y(9460) 

D(1285) X 0.36; 0 ° 0.29; 0 ° 0.07; 0 ° 

E(1420) X 0.41; 0 ° 0.32; 0 ° 0.08; 0 ° 

x1(3510) X 0.31; 0 ° 

X 0.77; 2.0 ° 0.65; 2.8 ° 0.27; 5.2 ° 
f(1270) 

Y 0.55; 4.0 ° 0.42; 6.0 ° 0.10; 16.2 ° 

X 0.90; 1.3 ° 0.77; 2.0 ° 0.32; 5.0 ° 
f'(1520) 

Y 0.72; 2.4 ° 0.55; 4.0 ° 0.13; 14.7 ° 

X 0.96; 1.1 ° 0.83; 1,7 ° 0.34; 4.9 ° 
0(1640) 

Y 0.81; 1,8 ° 0.62; 3.2 ° 0.15; 14,0 ° 

X 0.70; 2.4 ° 
X2(3550) 

Y 0.48; 5.1 ° 

The ratios X and Y are listed in table 1 for the various decay modes  of J/q,, q/ 

and Y. 

For  J/~0~ 3' + f  our  angular  dis t r ibut ions are practically indis t inguishable  from the 

previous analysis of K r a m m e r  [3], which was based on the absorpt ive part  only. 

Exper imen ta l  results have been  obta ined  by P L U T O  [12], M A R K  II [17] and 

C R Y S T A L  Ball [17]. The  most  recent  exper iment  [17] finds X = 0 . 8 8 + 0 . 1 1 ,  

Y = 0 . 0 4 + 0 . 1 4  (only statistical errors are quoted!)  assuming, however ,  in the 

analysis the ratios X and Y to be real. It remains  to be seen, whether  a reanalysis 

of the data using the general  d is t r ibut ion (3.2) and including systematic errors 

reduces the significance of the d isagreement  be tween  exper iment  and the model.  

For  aSI-~ 3' + 3P 1 we find purely  real ampli tudes,  a predict ion which should be tested 

experimental ly.  We note  that  the coefficient a of the pho ton  angular  d is t r ibut ion 

in the decay J/~0-~ 3' + ~ (1440) has been  measured  to be 1.4 + 0.8 in good agreement  

with the pseudoscalar  ass ignment  0 +. However ,  if we would mis in terpre t  ~ as a 

3P 1 state (E(1420))  the model  predicts a - - 0 . 4 ,  which is disfavored. 

4. Application to J/~, 0' and Y decays 

W h e n  we apply our  model  to J/qJ, q,' and Y decays, we have to specify as and  

the wave funct ions at the origin. Decays into light mesons are part icular ly sensitive 
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to this input.  In the  decay  J / 4 , ~  y + f for  example  it makes  a big d i f ference  w he the r  

we use Mf o r  M~ as the  r e l evan t  mass  scale in the  s t rong-coup l ing  cons tan t  as*. ** 

A l so  the  non- re la t iv i s t ic  and  the  ze ro  b inding  ene rgy  a p p r o x i m a t i o n  may  be d i spu ted  

for  l ight mesons.  In ou r  case the  wave  funct ion at  the  origin will on ly  serve as a 

useful  p a r a m e t e r  which re la tes  the  two shor t -d i s t ance  processes:  t w o - p h o t o n  decay  

of the  l ight mesons  and Z w e i g - f o r b i d d e n  rad ia t ive  J/~b decays.  W e  shall  now discuss 

the  ra tes  and  our  input  in m o r e  detai l .  

(a) Pseudoscalars. The  ra tes  for  J/t~y+*1' or  .1 and  Y-~y+*1c have been  

discussed prev ious ly  [4] and  we briefly r e p e a t  the  resul ts  for  comple teness .  F r o m  

J / 0 ~ e ÷ e  - we find R 2 ( 0 )  = 0.46 G e V  3. F o r  .1' the  wave funct ion at the  origin can 

be o b t a i n e d  f rom the  t w o - p h o t o n  width  of 5 . 0 +  1 . 4 k e V  [13] t h rough  the non-  

re la t ivis t ic  fo rmula  
F(tSo---)yy) = 12a2(QZ)2R2s(O)/m2 , (4.1) 

fol lowing f rom eq. (2.2). (Q2) is r e l a t ed  to the  SU(3)  mixing angle  0 p s = - l l  ° and  

the  charge  of singlet  and  oc te t  combina t ions  

( Q 2 ) ,  = ( Q2)~ cos 0ps "~ ( Q2)8 sin 0ps 

- -  ] - 4  1 1 ] - 4  1 2 - x/7 (~+~+~)  cos 0ps +x/~ ( ~ + ~ - ~ )  sin 0ps = 0.35 . (4.2) 

The  va lue  RZps(0)= 0.059 + 0 . 0 1 6  G e V  3 comes  surpr is ingly  close to the  p red ic t ion  

of the  empir ica l  fo rmula  for  the  3S1 states  R2(0 )  = 0.056 G e V  • m 2. To ob ta in  the  

width  for  J /q~o y + .1' we mul t ip ly  eq. (2.12) by the SU(3)  fac tor  3 cos 2 0es and use 

as = 0.31 as sugges ted  by the  f i r s t -o rde r  fo rmula  for  the  runn ing  coupl ing  cons tan t  

12~- 
a s ( m 2 ' )  = 2 7  In (m~ , /a2 )  ' (4.3) 

with A = 100 MeV.  The  resul t  F( J~ ~0~ y + .1') = 188 eV is in r ea sonab le  a g r e e m e n t  

with the  expe r imen ta l  resul ts  of 2 2 3 + 3 2  eV [18] as l is ted in t ab le  2. 

The  es t imate  for  the  ra t io  F(J/~b~ y + *1)/F(J/O-~ y + '1') is r a the r  ambiguous  in 

our  model .  If we use eq. (4.1) to deduce  R ,  (0) we ob ta in  a d isas t rous ly  small  resul t  

( 7 5 a  4 eV).  H o w e v e r ,  if we assume SU(3)  invar iance  for  R , ( 0 ) ,  i.e. the  same value  

as for  .1', and  as = 0.41 as sugges ted  by eq. (4.3),  we find 

r ( J / q , - ~ v + n ' ) = ( a s ( M , , ) ]  4 cot2 __M, °PSM.=5' (4.4) 

a~ (the rate F) differs by a factor 1.35 (3.3) for the two choices, if we use eq. (4.3) for a~ and 
A = 100 MeV. 

• * If the dominant contribution to the loop integral stems from regions where all intermediate propagators 
are far off shell, the relevant scale will be M times a finite scale factor s to be determined from 
higher-order calculations. This is the case in the reaction 3S~(QQ)~y+ ~S0(q~l) for mZ/M2-~O. For 
3S~ (QQ)~ y + 3p2(qq) on the other hand the absorbtive contribution is only logarithmically suppressed 
and hence the mass of the light meson will also influence the scale for a~. In practice, however, for 
radiative J/0 decays the uncertainty of the scale factor s is equally important and for simplicity we 
shall use m (~(¼ to ½) • Mj/~,)!) throughout. 
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TABLE 2 

Measured branching ratios for radiative decays of J /0  and 0' 

X Br ( J / ~ y X )  " 10 3 Ref. Br (q/--, yX)/Br (J/~9~TX) Ref. 

0.85 + 0.086 [18] <0.08 [21] 

• t' 3.55 ± 0.46 [18] 0.06 ± 0.03 [21] 

~. Br (KTr~r) 4.0± 1 .2 Crystal Ball [17] <0.03 [21] 
4.3±1.7 Mark II 

f 1.5 ± 0.35 [18] <0.2 [20] 

f' [19] 
<0.4 [20] 

0.32±0.1 ±0.16 [22] 

D. Br (KI(Tr) <0.7 [19] 

0- Br ( ~ )  0.49±0.24 [17] 

in r easonab le  a g r e e m e n t  with the  data .  This  should  be  cons ide red  as an indica t ion  

tha t  ne i the r  the  non- re la t iv i s t i c  mode l  nor  p e r t u r b a t i v e  Q C D  are  g o o d  a p p r o x i m a -  

t ions in this case. Cons ide r ing  these  ambigui t ies  we p re fe r  to use the  e xpe r ime n t a l  

va lue  of 5 4 e V  as input  to  p red ic t  0 ' ~ y + ~ ?  and Y~y+r 1 since we expect  the  

re la t ive  ra tes  to be m o r e  re l iable .  

F o r  l ight pseudosca la rs  we could  a l t e rna t ive ly  cons ider  the  l imit  m2/M2-~O and 

a l low for a rb i t r a ry  rela t ivis t ic  qua rk  wave funct ions  ~0(u). This a p p r o a c h  which 

a l lows us to  no rma l i ze  the  decay  r a t e  with respec t  to  (010AIPs) will be t r ea t ed  
e l sewhere  [25]. 

I t  is an in teres t ing  p r o b l e m  whe the r  t (1440)  can be  a c c o m m o d a t e d  in our  m o d e l  

as a rad ia l  exci ta t ion  of  7 ' .  W e  find* 

Hps(X~) 2 2 2 2 R,/m~ F(J/O~y+t) x, m, R~/m~ 
= -  2 2 = 1.41 2 2 " ( 4 . 5 )  

F ( J / 0 ~ y + r / ' )  x. ,  ~ m.,R. , /m. ,  R. , /m. ,  

F o r  pseudosca la r  mesons  the re  is no empir ica l  i n fo rma t ion  on the  wave  funct ion of 

rad ia l  exci tat ions.  F o r  vec to r  mesons  the  fol lowing regula r i ty  is obse rved :  

F (  Y ' ~  e+e - )  ' + F ( O  ~ e  e ) 
~ 0 . 4 6 ,  (4.6) 

F ( Y ~ e + e  - )  F ( 0 ~ e + e  - )  

and  for  ~b'/4~ and o ' / P  the  co r r e spond ing  ra t io  seems to be even l a rge r  (0.54 + 0.1 

* If we incorporate the mass dependence of %, this estimate is lowered by a factor 0.5, 
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2 2 2 2 and 1.1 +0.2)*. If we use (R~m, , /R , , rn , )=0 .54  as suggested from ~b'/ch we find 

F(J/O~ y + t) 
= 0 . 7 6 ,  (4.7) /'(j/~0~e+ n') 

in reasonable agreement with experiment.** 
Taking the absolute normalizations as before, an interesting pattern is predicted 

for the radiative decay of g/. The ratio of the branching ratios is given by 

Br ( q / - > y + 0 ) _  Br ( q / + e + e )  { M6"~ 2 (l~mZ/M2~,) H(m2/M2~,)__[ 2 

B r ( 0 + 3 , + 0 - )  Br(0-- ,e+e -) \Mo,] ( 1 - m 2 / M ~ )  H(m2/M2~) I 
~ 0.70 for r/,~ 

=0 .13"  ~0.72 for 71 ~, (4.8) 

( 0.78 for ~ J 

consistent with the expectations from quark counting rules [24]. Thus our model 
explains why this ratio is found to be below the naive expectation of 0.13. 

A crucial test, which will allow us to discriminate our approach from other models, 
will be the radiative decay of Y. Models based on the duality between the two 
gluon P-wave amplitude and ~7' production [2] or on QCD sum rules*** predict a 
strong decrease of ~7' production with increasing quarkonium mass - M  -6, since 
the emission of a pair of quasireal gluons in the 0 -+ state is strongly suppressed. 
This is reflected in our calculation in the strong decrease of the absorbtive part. 
However,  for the total rate, which is dominated by the dispersive part, we find a 
behaviour roughly - M  -2. The analogue of eq. (4.8) then yields 

0.10 for ~ )  
B r ( Y - - > y + 0  ) _ Br(Y-~/x+/x -) x 0.10 for "0 ~ . (4.9) 

B r ( J / 0 ~ y + 0 - )  Br(J/0-->/z+p. -) 0 . 1 2 f o r ~ J  

If we allow as to decrease from J / 0  to Y, these predictions could be lowered by a 
factor - 2 .  We thus predict Br (Y--, y + ~7')-2 • 10 -4, a rate eventually accessible to 
experiment. 

The decays of Y into a photon and charmonium are theoretically of great interest 
since in this case all our approximations are well founded. The corresponding 
branching ratios, however, are rather tiny, typically around 10 -5 . They are listed 
in table 5. In this case the purely electromagnetic contribution is no longer negligible, 
and has to be added coherently. For example, in the Y--> y +  ~7c case it interferes 
constructively and rises the branching ratio by a factor 2 [4]. We shall not list the 
corresponding contributions to P-wave production, since they are extremely small. 

• The following leptonic widths have been quoted  [ 14]: F(4~' --> e+e - )  = 0.69 ± 0.11 keY; F ( p '  ~ e+e ) = 

7.5 ± 1.5 keV. 
• * Even if we take the mass dependence of % into account, there is no striking disagreement considering 

the large theoretical and experimental uncertainties. 
• **Compare the discussion of ref. [15], following eq. (12). 
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(b) Tensor mesons. Among the various P-states only the f meson has been seen 
clearly in radiative J/q/decays.  We obtain the derivative of the radial wave function 
at the origin (R[ 2 (0) = 7.7 • 10  -3 GeV 5) through the non-relativistic formula for the 
two-photon decay 

F ( f o  yy) = ~ a  2( Q 2)2 [R  ~ (0)[2/m 4 ' (4.10) 

derived from eq. (2.3) with the experimental input F(f-~yy)----3keV [16] and 
(Q2)=0.41  from eq. (4.2) (01.=26°). We multiply eq. (2.25) by 3cos2 0T, use 
as=0 .275 ,  as suggested by eq. (4.3) and find F ( J / O o y + f ) = 8 8  eV in excellent 
agreement with the data. 

To estimate f' production, we use SU(3) since the two photon widths are not well 
known to date. To wit, we equate (R'2/m 4) and find* 

/~(f,)\4 x , , iH(x , , ) l  2 m,, 
tan 20T = 0.37" 10 -3 Br(J/q/-->3'+f ')=Br(J/ql->3'+f)~(f)}  ~ mr 

(4.11) 

in nice agreement with the recent experimental result [22] of (3.2 + 1.0 + 1.6) • 10 -4. 

Very little is known about the wave function of radially excited P-states. To get an 
idea about the potential order  of magnitude, we reduce R '2 (0 ) /m 4 by a factor 0.5 
in an ad hoc manner. For an SU(3) scalar state of mass 1640 MeV we then find a 
branching ratio of around 10 -3, a number compatible with our present knowledge 
on J / 6 - * y +  0(1640). 

The corresponding branching ratios for 6 '  and Y decays are listed in table 4, 
those for Y~3,+Xj in table 5. Measurements of all Y modes are difficult but 
experimentally challenging. 

(c) Axial vector mesons. For a while the reaction J/qs~ y + ~(1440) was misinter- 
preted as J / 6 ~  y + E(1420) and the relatively large rate for the decay into the axial 
vector meson was considered as a great surprise. By now it is well known that the 

should be interpreted as pseudoscalar [15]. Nevertheless, a sizeable contribution 
from E could be hiding underneath the ~. Experiments have looked for D(1285) 

TABLE 3 

Predictions of our model for the branching ratios of radiative J/~b decays 

X ",1' 0+(1300) ,  SU(3) singlet D E f f' 

Br ( J / g , ~ T + X )  • 103 3.0 1.6 1.0 0.4 1.5 0.4 

For n see discussion in the main text. Our input values are [R , (0 ) I2=0 .46GeV 3, JR,,(0)] 2= 
0.059 GeW3; IR'~(O)12/m 4= 2.96. 10 -3 GeV for all P-waves and a 4 from eq. (4.3). 

* Alternatively we could have related also R '2 or R ' Z / m  5. The resulting uncertainty is a factor between 
0.5 and 1.2. 
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TABLE 4 

Predictions of our model for the branching ratios of radiative ~b' and Y decays r(V,X)~ 
Br (V~ yX)/Br (J/~-~ yX) Br (J/4,-~/z+/x-)/Br (V~/~+~ -) 

X */ 7' t 0++(1300) D E f f' 

r(0', X) 0.70 0.73 0.78 0.67 0.76 0.75 0.76 0.74 

r(Y,X) 0.10 0.11 0.13 0.24 0.15 0.16 0.24 0.21 

and  an upper  limit of 0 . 6 . 1 0  3 has been  quo ted  [18]. Assuming  ideal mixing, i.e. 

E = s g ,  D =  (uQ+dd) /x /2 ,  and R ' 2 / m  4 to be the same for f, D and E, we find 

F ( J / O ~ y + { D } ) = { 6 2 ~ } e V # _ B r ( J / O ~ y + { D } ) = { ~ : ~ } . X O  -3 .  (4.12) 

The  theoret ical  b ranching  ratio for D(1285)  exceeds the present  upper  limit of 

0.6 • 10 -3. Our  model  predict ions are of course uncer ta in  within a factor - 2 ,  if we 

consider  the large uncer ta in t ies  in the choice of wave funct ion and a~. Thus  we are 

not  worr ied by this discrepancy;  nevertheless ,  we predict  a b ranching  rat io not  much 

below the present  upper  bound.  Branching  ratios for O' and Y decays again are 

listed in tables 4 and 5. 

(d)  Scalar mesons. Not much is known  at present  about  the wave funct ion and  

the mixing angle of scalar mesons.  For  the purpose  of i l lustrat ion we have calculated 

the radiat ive width into a SU(3)  singlet state of 1300 Me V  with the same assumptions  

as before.  We  find a b ranch ing  rat io of 1.6 • 10 3 which indicates that  the 7rTr signal 

f rom a broad  0 ++ resonance  in the 1-1.5 G e V  region might be a non-negl ig ib le  

background  and could eventua l ly  even affect the helicity analysis of the J / 0 ~  y + f  

mode.  

5. Summary and conclusions 

We have calculated ampl i tudes  and rates of radiat ive 3S1(O0 ) decays into 1So(q~l) 

and 3ps(qft) mesons.  Our  model  is based on lowest -order  per tu rba t ive  Q C D  and  

the non-rela t ivis t ic  and  weak-b ind ing  approx imat ion  for the mesons.  Cons ider ing  

T A B L E  5 

Radiative Y decays into charmonium (QCD contribution) 

~'c Xo X1 X2 

F( Y-~ ~,X) 
12.8.10 -4 3.3 • 10 -4 3.5 • 10 -4 4.0.10 -4 

F( Y~e+e -) 

Our input values are Rp2s = 0.98 GeV 3, ,2 4 R x / m  = 1.75- 10 -3 GeV, a s = 0.2. They are 
obtained from ref. [17] using _s 2 2 4 __ 1280f2 t2 4 Fn -~asRvs/m and Fx:-~- sRx /m . 
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these approximations our results are in good agreement with the experimentally 
measured rates. A number of predictions are made for the yet unobserved decays 
into other P-wave mesons (f', D, E, e) and for q~' and Y decays which are well 
compatible with present upper limits. We do not find a strong suppression of scalar 
and pseudoscalar channels which would be expected from the duality between "real 
gluon" emission and meson decay. Our result for the relative magnitude of the 
three helicity amplitudes of the f meson is at variance with present experiments. 
However,  no provision was made in these analyses for complex amplitudes and a 
coherent 0 +÷ contribution. Radiative decays of Y will provide the most stringent 
test of our model. For the most prominent channels (77', ~, f) we predict branching 
ratios of the order (0.5-2) • 1 0  -4 .  m measurement of these decays should constitute 
an important aim of future experiments at CESR and DORIS. 

Part of this work was done while J.G.K. and J.H.K. were visitors at the DESY 
Theory Group. We would like to thank T. Walsh for hospitality and DESY for 
support. 

Appendix A 

C O V A R I A N T  H E L I C I T Y  P R O J E C T O R S  

As has been explained in the main text, it is convenient to convert loop integrands 
involving loop momentum tensors into scalar integrands by contractions with outer 
momenta. Integrand scalars involving loop momenta can then by partially cancelled 
against pole denominators thus reducing the number of necessary Feynman para- 
meter integrations. In this appendix we develop a systematic approach to the 
necessary contractions on the tensor integrands by defining covariant helicity projec- 
tors. That is, we expand the transition amplitude along a set of orthogonal covariants 
for which we choose for convenience a set of helicity covariants. These can be 
constructed by inverting the matrix that connects the helicity amplitudes to a given 
set of invariant amplitudes. 

We discuss the four cases treated in the main text in turn (K, k, P denote the 
momenta of 1-- ,  the photon and the decay meson): 

(i) 1- (cQ-~T(v)+0 ++ . 

The transition amplitude T.~ resulting from the loop integration T ~ =  
d4q L ~ ( P ,  k, q) (q = loop momentum) is expressed in terms of the one independent 

helicity amplitude: H = Hs~,~=l; A~=-I.~M=0 (H-;+0 =/4+;-o--= H from parity)* 

T ~ E ~ e  *v = H h ~ E ~ e  *~ , (A.1) 

* The  posi t ive  z-axis is chosen  a long  the m o m e n t u m  of the  ou tgo ing  meson.  W e  use the J a c o b - W i c k  
convent ion .  
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where 
/ k~PA 

h ~ = ~ - g ~ + ~ ,  k ) ,  (1 .2)  

E~ and e~ are the polarization vectors of the J / 0  and the photon. 
Multiplying (A.1) with E *~' and e ~', doing the spin sums and contracting with 

h~,~, one obtains from (A.1) 

H = -½h,~,~,S(~)'~"'(g)g~'T,~ 

-= ~W~T.~, (A.3) 

cry where the normalized tensor P ~ ( P  P ~  =½) will be referred to as a helicity 
projector. S~12, (K)  = ( -g~d  + K~K~, /M 2) is the spin-1 projector of the J/~b project- 
ing out the appropriate 3-dimensional subspace of a massive spin-1 object. For the 
photon we have exploited the gauge freedom to write the spin sum as ( -g .~) .  

(ii) 1 - - ( a ) ~  3'(v) + l++(a) .  

There are two independent helicity amplitudes Hi (i = 0, 1) which we label by the 
helicity of the 1 ++ meson. From parity one has /-/ ;+o=H+; o=-/4o and Ho;++ = 
Ho;---= H~. The transition amplitude T,.o is written as 

. . . i  ~,-.~ .~ .,, 
,~Olc~va 12"~c~E*~e*a= i ~=0-,1 l-1inava]12, e e , (A.4) 

where 

hoar a . m = t ( ~ j 5  e,~b~pbkCka, (A.5) 

M 
h~.a =-i7-gZ~,_~2 k,.e~.bcpbk c (A.6) 

(Pk) 

and where e. denotes the polarization vector of the 1 ÷+ meson. Proceeding as 
before we find for the two helicity projectors 

o~va 1 i (1)eta '  (1 )aa '  vv' P. )  =-~hw~,wS ( K ) S  (P)g , (A.7) 

with ~ ( i )~ -~ j )  ~ ~ * ~  = ½6 0. The helicity amplitudes are then obtained by the contraction 

I~:~ ava  "F H / =  --(i) . . . .  • (A.8) 

(iii) 1 - - ( a ) ~  3'(v) + 2÷÷(ab).  

There are three independent helicity amplitudes H 1 ; 1 , o = H l ; _ l , o = - g o g o ; 1 , 1  = 

H0;-1,-1 ~ HI and H1;l,2 = H-1;-L 2------Ha. We have labelled the helicity amplitudes 
Hi by the helicity of the 2 ++ meson, The covariant expansion along the helicity 
amplitudes reads 

..oLZ e e = Hih .~ .ab  E'~e*~e *ab, (A.9) 
l 0 1 2  
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where  

J . - G .  K S r n e r  e t  a l .  / Z w e i g - f o r b i d d e n  r a d i a t i v e  

- -  m 2 
h°.~b =--lx/67-W-Z~,_~2(g~ P~k~'~k k 

( / " ' K )  \ F : k /  a b ,  (A.10) 

mM ( P.ko \ 
h ~ a b = X / 2  ( p .  k) 2 g,o -fi: ~ ) k ,  kb,  ( g . l l )  

1 
P"  k g""(P"  kgb , -P~kb)  

1 (M2+m2) ( P~k_~ ~ 
2 ( i f : - ~  g~a p .  k]k,~kb 

1 rn 2 ( P~k"'~k k 
-t 2 (/9-: k)2 g~- ff~ ~} a b. (A.12) 

The helicity projectors are given by 

ffsD a l ,a  b • , , (i) =_½h,  , a,b,S(1),, (K)S(E)aba b'(p)g ~' , (A.13) 

trD°tvablD:~ = ½8ij. c(2) is the spin-2 projector with ,-<i) Ir (j)avab ""aba'b' 

(2) _ l / c ( 1 )  c ( 1 )  ..t_ ~ ( 1 )  c ( l )  -~ __1 ~ ( 1 ) c ( 1 )  
a b a ' b '  - - 2 \ O a a ' O b b  ' - - O a b ' O b a ' ]  3 O a b O a ' b  ' • 

The helicity amplitudes are then obtained by the contraction 

__  i i ~ a v a b  ,'lr, Hi - ~(i) . . . .  b. (A.14) 

(iv) 1 (a)->y(~,)+0 -+ . 

In this case there is only one independent helicity amplitude H = H~ ;-1,0 = -H_~ ;1,0. 
The covariant expansion of the transition amplitude reads 

T , ~ E " e  *~ = H h ~ E ~ e  *~ , (A.15) 

where 

1 
h,~ = i - -  e,  vcaPCk d (A.16) 

P ' k  

The helicity projector is quite simple in this case due to the fact that only the metric 
contraction of the spin-1 projector survives. One has 

ff~ctvff~:g - -  1 
--ct t ,  - -  2 ,  

p , ~ = _ l h  , , S ( l ) , , ' (K)g~V'_  I ~ - -~h  , (A.17) 
and, finally, 

H = P * " ' T . . .  (A.18) 
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MULTIPOLE AMPLITUDES 

The multipole expansion of the transition amplitude is very useful in the limit 
m 2 / M  2-, 1, i.e. when the photon is soft. One expects on very general grounds that 
the lowest multipole contribution dominates the transition in this limit. We have 
used this as a consistency check on our calculations in the main text. 

For the cases 1- ->3,+0++(0-+) there is only one multipole each, namely the 
electric E1 and magnetic M1 dipole transition, respectively. In the case 1 ---> 3/+ 1 ++ 
one has the electric dipole (El)  and magnetic quadrupole (M2) transitions. From 
ref. [23] one finds 

E1 = x/~ (Ho+HI)  , M2 =4T ( H 0 - H 1 ) .  (B.1) 

For the case 1---> y + 2  ++ there is in addition to the E1 and M2 transitions the 
electric octupole transition E3. One has 

E1 = ~/~o (-Ho -~/3 HI --~6 H2), 

M2 = ~/7 ( -~/3Ho-H1 + ~/2 H2), 

E3 = ~/~ ( - , /  6 14o +,/-8 H, - 1-12), 

Ho = , / ~  ( - E l  - , f 5  M2 - 2E3),  

H1 =~/~  ( - 3 E l  -,/-5 M2 +4E3) ,  

H2 = ~/~ ( - 3 E l  + , /5  M 2 -  E3).  (B.2) 

Appendix C 

ALGEBRAIC IDENTITIES FOR P-WAVE NUMERATORS AND RESULTS FOR 

LOOP INTEGRALS 

In the evaluation of P-wave helicity amplitudes we encounter integrals of the type 

I =--~ 1~ d4qf(q, k, P)[Ol Q2GIG2B2] -1 , 

q = kl - k2 ,  P = kl + k2, (C.1) 

where f denotes a scalar even polynomial of fourth order in q and 

O1,2 ~ k2,2 +ie  =l (q2±  2q- p + m 2 + i e ) ,  

Q l , z = = - ( k  + k2,1) • k l ,2=~(q2 + 2q • k - M 2 )  , 

B = - - k l . k 2 - - - ~ ( q 2  m2). (C.2) 
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The following identities will be useful: 

q • P =  G 1 - G 2 ,  q • k =  Q 1 - Q e ,  

1 = ( G14- G 2 - 2B) / rn  z , 

1 = 2(Q1 + Q 2 - 2 B ) / ( r n 2 - M  z) , 

1 = 2(G1 + G 2 -  Q 1 -  Q e ) / ( m 2 + M e ) .  (C.3) 

We shall now demonstrate that the integrand can be decomposed into a sum of 
three-point functions through the help of the following successive sequence of 
substitutions which have been performed with the help of Schoonschip for all 
integrands: 

q2=>(4B+m 2) , q a ~ ( 4 B + m 2 )  2 . (C.4) 

(i) Fourth order in q without B: 

(qp)4 ~ -4N1 + 4N2 + (qp)2m2(m2 + 4B) ,  

/ m 2 - M Z \  / m 2 - M 2  t -4B) 
( q k ) 4 ~ - 4 N 3 + 4 N 4 + ( q k ) 2 ~  2 ) ~  2 ' 

(qp)3(qk ) ~ - 4 N 5  + 4N6 + (qP) (qk ) m 2(m 2 + 4B) ,  

[ m 2 - M 2 \ / m 2 - M  2 
( q k ) 3 ( q p ) ~ - 4 N T + 4 N 6 + ( q P ) ( q k ) ~ ) ~  ~-4B) , 

(qk )2 (qp)2~  - 4N8 + 4N4 + (qk)2me(m 2 + 4B) .  (C.5) 

(ii) (Second order in q) * B 

B(qp)2 ~ - 4 N 9  + 2Nlo + 2B2m 2 + B m  4 , 

B ( q k ) Z ~ - 4 N 1 1  + 2N12--]-2B2(m22 M 2 )  
[ m  2 -  M2\  z 

) , 

B ( q P ) ( q k ) ~  N13 . (C.6) 

(iii) Second order in q without B 

(qp)2 ~ -4N~4 + 4B 2 + m2(m 2 + 4 B ) ,  

/ m  2 M 2 \ [ m  2 M 2 
( q k ) 2 ~ - 4 N 1 ' + 4 B 2 + ~  2 ) ~ 2  I-4B) , 

(qp)(qk ) ~  N16 . (C.7) 
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(iv) Independent of q and B 

4 ( 1  4 ) N  
l ~ m 2 ( m 2 _ M 2 )  N17"~MZ+m2 m 4 (mZ_M2)2 18 

_~ M2@ma ( 4 Nlo_  m14 NI2) (m2_M2)2 

(v) (Independent of q) * B 

4 
B ~  

(vi) B 2 
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NI -- N18 

(c.8) 

(C.10) 

stand for numerators, which immediately lead to two- or three-point 
functions: 

N 1 ~ (qp )2G 1G2, 

N3 =- (qk)2OlO2 , 

N5 =- ( q P ) ( q k ) G ,  G2,  

N7 =- (qP) (qk )  O,  0 2 ,  

N9 =- G 1 G z B ,  

N i l  ~ Q I Q 2 B ,  

N13 ~ ( G 1 -  G2)(Q 1 -  Q 2 ) B ,  

N15 -= 01Q2,  

N17 ~ (G1 + G2)(Q1 + 02 ) ,  

N2 =- ( qP)(  G1 -- Gz) B 2 , 

N4 ~ ( q k ) ( Q l  - Q2)B 2 , 

N6 =- (qP)(  Q1 - -  Q2)B 2 , 

Ns=- ( q k ) 2 G i G 2 ,  

Nlo =- ( G1 + G2)B  z , 

N 1 2  ~ ( O l  "+- Qz)B 2 , 

7414 =- G1G2 , 

N16 ~ (GI - G2)(QI -- 0 2 ) ,  

N18 ~ (Ol + G2)(Q,  + Q2)B, (c.11) 

The resulting individual integrals are partly infrared divergent, which is an artifact 
of our decomposition. We introduce an infrared cutoff e, and, after combining all 
integrals, all terms proportional to e -~ and In e cancel as expected. We now list the 
integrals 

i 
i d 4 q N , [ Q ,  O2G,  G2B2] - ,  (C. 12) 1,= 7 

where apparently at most three denominators survive: 

I~ = 4 [ 6 0 -  96x + 3 5 x 2 [ .  ]--~x ~ ~ ( 1 0 -  x)(1 - x)2 l n 3 x  3 (1 - x)]  

4 2x ( 2 x ) ] ,  12 = 2 [ ~ - ~ ( 3 7 2 ( 1 ) - ~ 2 ( 1 - 2 x ) )  - - ~ l n  
J 

2 
(Nlo - N12) B 2 :::::> M 2 + m 2 

2 B 2 
m2(mZ M2  ) N104 m2(m2 M2  ) NIs-2 m2. (C.9) 
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2( )2 
I3= 5 ~ [-4+ln2-31ne-½iTr], 

~= 2 [~-~ ( ~ . -  2 ~ ) -  2~e~(1- x ) - ~  ~n ~ ~1- ~)* ~(~)) 

-l-2x2-----~X ln(2x)-41n2-21n(1-x)+i~'(2+2-Xln(1-x))] ' x  

2x 
/6 = - 2  ~ In (2x), 

x 
/ 7 = - 4  .... [ l+ ln  el ,  

1--x 

I8---0, 

I9 = 4..1--~_. [ 1 + ~  In (1 - x) ] 
M x  

Iao=4 1 [~2 (1 ) -~2 (1 -2x ) ]  M2x 
1 

I~1 = - 4  M2(1 - x )  [ln 2 -½iTr], 

1 
I~2 = - 4  ~ [~2(1 - 2x) - 2~f2(1 - x) 1 in 2 (1 - x) 

ivI x 

+ ~2(1) + ilr In (1 - x)], 

I13 = 8 1 [,~2(1 --X) - - ~ 2 ( 1 - 2 x ) - l n  2 In (1 - x )  M2x 
- l n  e In ( l - x ) ] ,  

4 2 
I14=(--M-~x) [2+2-X ln (1-x)] 

I~5=8 M 2 ( l _ x  ) [ ln2-1ne-½ivr] ,  

x,~ \ ~ x /  1 \1 -x  +21n 

x x lne---ln(2x)-ln(1-x , 
+ l - x  1 - x  
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_ (  4 '~2[__.x__x x ln e 
117= \M2x] [ . l _ x l n ( 2 x ) + l n ( 1 - X ) - l _ x  

1 [ ~ 2 ( 1 - x ) - ~ z ( 1 - 2 x ) - l n 2 l n ( 1 - x )  Il8 = 8 M2---- £ 

+ln e In ( l - x ) ] .  

The Spence function ~ ( x )  is defined as 

_ f ' l n  ( 1 - t )  dt. ~2(x) 
J0 t 
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(C.13) 
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