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The continuum limit of a Z 4 gauge plus matter lattice theory is identified with massless scalar and vector fields with 
quartic self-interactions q~4 and (AgAu)2 , Zta A~, respectively. The analysis is based on the mean field approximation after 
gauge fixing. 

1. Introduction. In a recent paper [1] a method based on the mean field approximation combined with a loop 
expansion around it, has been suggested by Brdzin and Drouffe as a general approach to investigate the field theo- 
retic content of  lattice theories in the neighbourhood of  a critical point [2]. They applied the method to a Z 2 
gauge model coupled to matter. They showed that the scaling limit of  this model is a continuum one component 
massless scalar field with quartic self-interaction. 

In this note we apply the same approach to a Z 4 lattice gauge theory coupled to bosonic matter. We are motivat- 
ed by the fact that a richer structure of  the gauge group will be reflected in a more complex structure of  the con- 
tinuum limit. After gauge fixing, the mean field approximation leads us to the detection of  a second order transi- 
tion point (critical point), end of  a first order line. The choice of  a particular gauge is necessary in order to avoid 
the restriction imposed by Elitzur's theorem [3], namely the vanishing of  the expectation value of any non-gauge 
invariant quantity. We then study the correlation functions which are relevant to the long distance limit of  the mod- 
el at this critical point, and obtain the vertices and propagators of  the associated field theory. These correspond to 

4 massless scalar and vector fields, with quartic self-interactions of  the type t~ 4 and (AuAu)2, Z u Au, respectively, 
and uncoupled among themselves. The interaction Z u A 4 has cubic symmetry, but not euclidean symmetry. Thus, 
euclidean invariance is not fully obtained at the critical point. This should be related to the lack of  a formal con- 
tinuum limit for the lattice action. 

We do not include the loop expansion around the mean field approximation [4]. This would lead to a quantum 
field theory with vertices and propagators as given by the tree approximation considered here. 

2. Critical point. Let us begin by recalling the definition of  the model. With each site i of  a d-dimensional hyper- 
cubic lattice and each oriented link i,/~ (/a is a unit vector along the positive axis/1) we associate, respectively, the 
variables h i = exp(i~bi) and Ui, u = exp(i~bi, u) , with ~b i = 7rni/2, qbi, u= nni, u/2, n i, ni, u = 0, 1, 2, 3. The Z 4 locally in- 
variant action is defined by 
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S = S G + SGM, (1) 

where 

S G = tip ~ .  Re(U/,,u Ui+,u,u Ui*+v,,u V;~v) (2) 
I, ,U~ 

and 

SGM = fl~ E Re(h;U/,,u hi+,u ). (3) 
i,,u 

/3p and Be are non-negative real parameters (plaquette and link coupling constants, respectively). For later conve- 
nience, we shall express the pure gauge part of  the action, SG, in terms of  two-dimensional real unit vectors [5]. 
Defining 
^ 
ki,,u - (cos dpi,,u , sin (~i,u) =- ki~,,u , a = 1,2 

it is easy to obtain 

S G = ~ p  E [ (k i ,u ' ]¢ i+u,u)( l¢ i+,u  v ° I~ iu ) - ( ]¢ i , , u ' ]¢ i+ ,u ,u ) ( l ¢ i+u ,u ' I~ i v )+( ]¢ i , u ' ]¢ i , v ) ( l~ i+v , , u ' ]¢ i+ ,u ,u ) ] .  (2')  
i,,uu ' ' ' ' ' ' ' 

As we mentioned in the introduction, we are interested in the detection of a second order transition point, end of  
a first order fine. In a straightforward application of  the mean field approximation this point disappears, therefore 
making it necessary to first fix the gauge. We shall work in the unitary gauge, defined by the condition that the ac- 
tion depends only upon the gauge variables. After gauge fixing, the gauge matter piece of  the action becomes 

SGM = ~ i "  ~ /~i,,u' (3 ' )  
l,,u 

where | is a unit vector along the positive direction 1 in internal space. In the mean field approxinlation, the inter- 
action among the dynamical variables is replaced by an external field Ki,,u = IKi,,u [(cos 7rni,,u/2 , sin 7rni, u/2), ni,,u 
= 0, 1, 2, 3, coupled to the gauge variables through the independent link action 

SO = .~ Ki,,u "lci,,u" (4) 
l,/.z 

By using standard techniques, one obtains for the generating functional of  vertex functions the expression 

r({xi ,u}) = --~P E [(X i ,U " Xi +v ,U ) (Xi +,U,v " Xi, v) - (Xi,,u " Xi +,u,v) (Xi +v,,u " Xi, v) + (Xi,,u " Xi, v) (Xi +v,,U " Xi  +`u,v)] 
' i ,  u v  ' ' 

- (3~ .~ xi, u cos rrni,,u/2 + .~[ ( l+xi , ,u )  ln(1 +xi,,u ) + (1 -xi , ,u  ) ln(1 -xi , ,u)] ,  (5) 
I,̀ U l,,u 

where Xi,`U = (/¢i,`u)0 and xi,,u = [xi,,u [. ( )0 denotes the expectation value with exp(iS0) as weight factor. 
The vertex functions are obtained by taking derivatives of  F with respect to the averaged link variables xi,,u, 

and evaluating them at the configuration {xi~,u ) which minimizes F. This configuration is easily obtained if we con- 
sider the translationally invariant situation xi,,u = x = x (cos lrn/2, sin 7m/2). In this case, (5) reduces to 

P ( x ) / N d =  ¼J3x 4 { 3 ~ x c o s ~ n / 2 + ( l + x )  l n ( l + x ) + ( 1 - x ) l n ( 1 - x ) ,  (6) 

where N is the number of  lattice sites and/3 = 2~p (d - 1). The minima of  F(x)  are obtained by setting n = 0 and 
by solving the equation 

j3~ = - j3x  .3 + ln[(1 +x*) / ( l  x * ) ] .  (7) 
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Fig. 1. f(x) = 3x 3 + ln[( l+x)/(1-x)]  for different values of 3. 

In fig. 1 we plot the rhs o f (7 )  for different values of  3. For/3 > 8/3 there exists a first order transition line in the 
(3, 3~)-plane defined by the condition P(x~) = P(x~). This line ends at the critical point 

C ~ (13c, 3~) = (8/3, 2 [ -  x/~-/3 + ln(1 + x/~)] , x c = (1/V"2) i, (8) 

where the transition is of  second order. In fact, P" ( I /V~)  = 0 for 13 = 13c. In the neighbourhood of  the critical point 
the equation for the first order line is approximately given by 

(3 - 13c)/2xQ + (32 - 3{) = O. (9) 

(see fig. 2). 

3. Cont inuum limit. In this section we shall consider the vertex functions which are relevant to the long distance 
behaviour of  the model, namely the two-, three- and four-point functions. Their study will lead us to the identifica- 
tion of  the continuum field theories associated with the discrete theory at its critical point. 

Let x* = x* i be a minimum of  P({xi ,  u} ). For the two-link inverse two-point function a straightforward calcula- 
tion leads to the result 

2 
IF ~x*2p.h,ul;i2,u2 + 1" x .2 ~ii1'~1;i2'~2 0 1 

r . (2 )~ .  = O2F__i ,u} _ ( { x )  = / - v  . (10) | --h'/al;z2'~*2 ~x~,,u 1 axt3 x* / 
t2,/22 X i ,  la = L 0 flpX*2(-T-Pil,l~l;i21.t 2 + 2 (d - -1 )~ i1 , . 1 ; i 2 . 2 )  j 

The - and + signs refer to the choice of  links indicated in figs. 3a and 3b, respectively, and 

Pil,ul;i2,u2 = l, if the links il,/a 1 and i2,/.z 2 belong to the same plaquette 

= 0, otherwise. (11) 

Notice that P (2) 11 i~,~;i2,,,2 is the same as the corresponding quantity in ref. [1]. The Fourier transform of  (10) is given 
by 
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Fig. 3. Choice of links in the calculation of the two-point func 
tion. 

Fig. 2. First order transition line in the neighbourhood of the 
critical point. 

r (2) at3 F(2)at3(q) = ~ exp[iq ' (r l  - r2)] xil ,ul;i2 u2 /21 M2 
1"2 

o12/3pX'2 8.1U2 ~ cosq  + 2 ( 1 - - S m . 2 ) c o s ½ q m  c o s l q u 2  + ~ 0 
g =~/~I l --x .2 

-2/~pX* 2 (Sul u: ~ cos qu + 2(1 - 8UlU2 ) sin ~ qul sin ~ q.2 - 6ul u2 (d -- 1) 
g = ~ g l  

(12) 

where r / is  the position vector of the center of the link ij, I~]. At the critical point and for small q (long distances) 
this expression reduces to 

i 2 1 : 2  +_2-~ J 4d(Su lu2  - l /d )  + 6,Ul u2(q 2 - 2 q u l )  +7 I.qul qu2/ 0 

2 -~ + O(Iq14). (13) 
F21~u2 ;c(q) 3(d 1) ! 

L 0 q2(Sulu2 - qul qu2/q2 

A simple analysis of this matrix reveals the continuum limit that is associated with each of the two directions in in- 
ternal space: 

(i) F(2)~1 ,u211;c ~.q): " is not an euclidean tensor. However, the diagonalization of the matrix P (2)ul u211;c (0) leads to one 
zero eigenvalue in the direction (/~1,/~2 . . . . .  /ad) = (1, 1 . . . . .  1) and to d - 1 non-zero eigenvalues in the transverse 
directions. Therefore, there is only one mode relevant to the long distance limit of the discrete model, namely a 
massless real scalar field ~ with an inverse propagator given by 

I"~2) 11(q)=~2 ~ I "(2) 11 " " --~4 q 2 +O(Iq14). (14) 
re,u2 ul,u2;ctq) = 3d 2 

(ii) p(2)Ul,U2;cl.q ) 2 2  " "is a tensor, which can be identified with the inverse propagator of a massless vector (V) field 
A u in the unitary gauge. 

The nature of the interactions among these fields is obtained from the three-and four-point functions evaluated 
at zero momenta and projected along the direction (1, 1,..., 1) when they involve the massless scalar field. 

102 



Volume 134B, number 1,2 PHYSICS LETTERS 5 January 1984 

The three-point function vanishes identically when evaluated at zero momenta and at the critical point (8). This 
is a trivial consequence of  the simultaneous vanishing of  the two-point function at this point when evaluated at 
zero momentum [6]. An explicit calculation confirms this fact. 

At d = 4 the relevant interactions also allow for a term proportional to the momentum i.e. a ~bV interaction 
with derivative coupling. However, a straightforward calculation leads to the vanishing of  this three-point vertex 
when evaluated at non-zero momenta, namely 

r(3)~O-r (ql, q2, q3) (2rr) d 8d(ql + q2 + q3) = 0, (15) P ' l  ~ 2 . t t 3  

o~ 7 = 112, 121, 211. This fact is related to the real, and therefore neutral, character o f  the ~ field. 
For the four-point function, at zero momenta and at the critical point, we obtain 

p (4) ~3"r8 t~ 
#i#2#3#4;c~-q'1, q2, q3 '  q4)Iqi=O = N ( - [ 4 / 3 ( d - 1 ) ]  [~#l~t28#ag4(1-5#2#a)A aB76 + ( 1 -  ~i#l #2) (~#3#1 ~#4#2Ba378 

Ca~8 *a *3 * *8 +SUaU28Ugu 1 )] +8#1ta26u2taa6UaUg[64X c Xc XcTXc /Xc4 + ~(~3~'Y8 +t5o~"/~36 +tSa6~3"r)]), (16) 

where 

Al111=A2222=A2211=Al122=Bll11=B2222=B1212=B2121= C 1111= C 2222= C 1221= C 2112 = 4, (17) 

and the rest of  the components being zero. From the last two equations, 

1], (4) 1111  - 6 4 N d ,  F (4) 1112 _i-,(4)2221 - ~ F (4)2211 =0 ,  (18a, b) 
p.1 p , 2 P , 3 ] . t 4 ;  c - -  g , l / 2 2 k t 3 ~ 4 ; c  - -  - - p , l / . t 2 P 3 ~ 4 ;  c - -  / . t l  ~ 2 P . 3 P . 4 ; c  

k t l  , t t2 / - t3 , t t  4 .tt 3/.L 4 

and 

p(4) 2222 _ 16 d 6ulu6u2u6uau6u4u" (18c) 
"ttlP'2P3U4;C 3(d 1)(Stalta26u3u4+Sulta38u2u4+Sul#')Su2u3)+16d-lu 

Eq. (18b) shows the vanishing of  the 4)q~V, VVV4~ and q~VV couplings, while (18a) shows that the scalar field 
has a quartic self-interaction. The reason for the vanishing of  the would-be seagull term ~ V V  is again in the neu- 
tral character of  the scalar field. Thus, to the order considered, the correlation functions for this field are the same 
as those corresponding to a single component ~4 theory. Finally, let us consider (18c). The first term corresponds 
to a quartic self-interaction of  the form (A u Au)2 for the massless vector field. This interaction is clearly non-gauge 
invariant what is consistent with the fact that we are working in a fixed gauge. As to the second term, we notice 
that it corresponds to an interaction of  the form 

d 

5uvSuo6uoAuAvAoA o = ~ A 4. 
#vpo p = 1 

Since its associated coupling constant is dimensionless for d = 4 and has positive dimensions for d < 4, it can not be 
ignored in the above mentioned loop expansion. However, notice that this interaction is not euclidean invariant, 
but only cubic. This means that a full euclidean invariance is not obtained at the critical point. Presumably, this is 
related to the fact that the original action has no classical or formal continuum limit. However, this point deserves 
further research. 

In summary, by applying to a Z 4 lattice gauge model with bosonic matter the mean field approximation in the 
unitary gauge, we have detected a critical point, end of  a first order line, where a second order phase transition oc- 
curs. At this point, the long distance limit o f  the relevant correlation functions of  the model has the same struc- 
ture as that of  the correlation functions associated with continuum massless one-component scalar and vector fields 

4 respectively, and uncoupled among themselves. with quartic self-interactions of  the type q~4 and (AuAu)  2, 2, u Au, 
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discussions, and H. Joos for a critical reading of  the manuscript. 
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