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Abstract. We describe a direct method for calculating 
the glueball mass spectrum in QCD and apply it to 
the SU(2) non-abelian gauge theory. The method 
involves the application of Monte Carlo methods to 
the lattice regulated theory. We calculate the masses 
of states of various spins and parity. We check for the 
absence of finite size effects, for the desired tenor- 
realization group dependence and that our higher mass 
states do not merely reflect a continuum cut. Finally 
we repeat the calculation in the "Hamiltonian" limit 
and in the high temperature deconfining phase of 
QCD. 

I. Introduction 

Motivation 

The present moment in particle physics is a particular- 
ly exciting one. The problem of understanding the 
strong interactions appears to be on the brink of 
resolution. To reach this point has required two 
developments: firstly the construction of a theoreti- 
cally appealing and phenomenologically reasonable 
fundamental field theory, quantum chromodynamics 
(QCD), and secondly the development of non- 
perturbative methods, the lattice [1] Monte Carlo 
techniques [2, 3], to solve and hence to give a real 
meaning to the QCD Lagrangian. 

In this series of papers we shall discuss the calcu- 
lation of that part of the hadron spectrum that is 
composed primarily of the gluon degrees of freedom. 
These hadrons, the glueballs, are of particular interest 
given the historical development of QCD. Quantum 
chromodynamics has its origins in the merger of two 

[4, 5] rather separate areas of investigation: on the 
one hand hadron spectroscopy gave us quarks and 
the global symmetries of the theory, while on the other 
hand deep inelastic processes turned this into a non- 
abelian gauge theory by requiring asymptotic freedom. 
As a result of its local non-abelian character QCD 
possesses a richer spectrum than that of the traditional 
quark spectroscopy. In particular a whole sector of 
the spectrum should consist (before mixing) of pure 
glue states [4]. These glueball states are very much a 
prediction of QCD, and the absence of specific ex- 
perimental information on these states provides us 
with the opportunity of making quantitative pre- 
dictions that have no experimental bias. 

Our calculation will be of the pure glueball spectrum 
before mixing with quarks. That is to say we shall 
perform the calculation in the pure non-abelian gauge 
theory. In most cases the effects of mixing may well 
be smaller than our quoted statistical errors. In 
particular this should be the case for those glueballs, 
the oddballs, which have quantum numbers inacces- 
sible to a simple qO pair. The main advantage of doing 
a full calculation with fermions is that we could express 
the overall mass scale more readily in physical units 
(GeV). As it is we set our overall scale through the 
string tension [6] which is a less reliable procedure. 

Preliminary results of our calculations have ap- 
peared in several brief publications over the last year, 
in particular results on the SU(2) [7] and SU(3) [8] 
glueball spectra, the renormalization group behaviour 
of the S U(2) spectrum [9] and on low-lying oddballs 
in SU(3) 1-10]. Here we will present some new results, 
and we will also take the opportunity to give a detailed 
account of our methods and of what we have learned 
during the course of our work. 
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In the present paper (I) we shall describe the general 
method and shall discuss its application to the S U(2) 
non-abelian gauge theory. Since corresponding cal- 
culations are about a factor of 10 slower for SU(3) 
than for S U(2), we have performed most of the checks, 
such as searching for renormalization group behaviour 
or finite size effects, in S U(2) rather than S U(3). The 
present paper describes all this. The companion paper 
[11] (II) will contain our results for the physically 
more interesting (but, as it turns out, not so different) 
SU(3) glueball spectrum. In our conclusion we shall 
compare our results to those of other recent cal- 
culations [12-22] of glueball masses. 

Lattice Gauge Theory [1] 

Our starting point is the Feynman path integral 
representation [23] of the gauge theory in Euclidean 
space time: 
Z = ~ [dAu(x)]e-(1/2g2)Id4xTr(Fu'Fuv)' (1) 

where the field strength tensor is 

F.~ = ~.A~ - ~ A  u + [ A . , A  3. (2) 

Note that the coupling has been absorbed into the 
matrix-valued vector field A.(x): 

Au(x ) = gA~(x) T", (3) 

where the A"(x) are the gauge potentials and the T" 
are a representation of the S U (2) or S U (3) Lie algebra. 

As it stands the representation (1) is incomplete: 
any attempt at a calculation with (1) will encounter 
ultraviolet infinities. The conventional way to deal 
with this ultraviolet problem is to add to (1) a 
regularization prescription: the theory is first muti- 
lated by the arbitrary removal of the offending high 
momentum/short distance components of the fields, 
and then these components are systematically re- 
introduced (in order of increasing momentum) while 
varying the coupling in such a way as to keep the 
theory finite--which means that beyond a certain 
momentum the reintroduction of the even higher 
momentum components will not affect the low energy 
physics. To implement the regularization procedure 
one must specify a momentum Po such that mo- 
mentum components higher than Po are to be thrown 
away, and then the bare coupling g2 in (1) is effectively 
the coupling on the size scale Po-1. We then take 
Po ~oo  varying gZ(po) so as to keep the low energy 
(P ~ Po) physics unchanged. The full specification of 
the theory is no longer scale invariant. 

The widely applied regularization procedure in 
perturbative calculations is dimensional regularization 
[24]. Another way to remove high momenta is to 
remove small distances by discretising space-time [1]: 
if we put the theory onto a lattice of spacing a, 
we automatically restrict all the components of the 
momentum to be less than or equal to pm~, where 

7/ 
pm,~ = - .  (4) 

a 
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To recover the full theory we let a--.0. Once a is 
much less than the dynamical lengths in the theory, 
characterized by some correlation length 4, the physics 
of the theory should remain unchanged as a-+ 0 as 
long as we vary g2 with a according to the usual 
renormalization group formula (which to two loops 
is the same for all regularization procedures, apart 
from the A parameter which can be related to, say, 
the more familiar Amo m via a perturbative calculation 
[32]). For  reasons of calculational convenience we 
may also wish to confine space-time to a finite volume, 
say L lattice spacings in each direction. Then if 

t a  >> ~ (5) 

the physics should be the same as for the infinite 
volume limit. 

The purpose of the above elementary discussion is 
to make the point that lattice QCD [25] is not some 
kind of qualitative approximation to "true" QCD: 
lattice QCD when treated in the appropriate region 
of parameters 

La >> ~ >> a (6) 

is precisely "true" QCD. 
We now turn to the detailed specification of the 

lattice regularized gauge theory [1]. The basic geo- 
metric facets of the lattice are the sites, the finks, the 
plaquettes, etc. If we had a scalar field we would place 
it on the sites (labelled by n): 

qS(x.)--, (7) 

A vector gauge field belongs most naturally to the 
links joining neighbouring sites: 

Au(x ) ~ U u(n) = e iaA~', (8) 

while a tensor field could naturally be associated 
with a plaquette. With fermions the situation is less 
straightforward, and this contributes to the difficulty 
in calculating with them. 

So the degrees of freedom of our lattice system are 
the N c x N  c unitary matrices Uu(n ) associated with the 
finks of the lattice (Nr number of colours). The 
partition function becomes 

z = 1-I [dts e-S(u), (9) 

where the measure is the Haar invariant measure over 
the group. The action S(U) must reproduce the usual 
continuum Euclidean action in (1-3) in the limit a ~ 0. 
An example is the Wilson action 

= (10) 

where Tr [] means taking the trace of the matrix 
obtained by multiplying together the 4 matrices on 
the finks forming the plaquette, and which we shall 
use in our work. In addition to having the correct 
continuum limit it also possesses positivity properties 
[26] that will be required in our calculations. 
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Monte Carlo Solution 

Formulated in Euclidean space-time, the lattice regu- 
lated gauge theory, as in (9), looks [25] just like a 
statistical mechanical system with a Boltzmann factor 
e -s. This suggests [25] using methods developed for 
solving such systems. The method that interests us 
here is the Monte Carlo technique [2, 3]. The essence 
of this method is the generation of gauge field con- 
figurations over the lattice according to the distri- 
bution l-I [d Uu(n)] e-sw). Suppose we have generated 

n 

N such configurations 

{U~(n)}~= ~,..., N . (11) 

Then any vacuum expectation value is given by 

1 N 
( qS(U)} ~_ ~ i=~a qS({ U u (n)}~), (12) 

where the approximate equality in (12) becomes exact 
as N ~ o% and where the deviation from the correct 

value for finite N is 0(1/x/-N ). One may think of the 
gauge field configurations in (11) as representing 
typical "snapshots" of the vacuum, so that the vacuum 
expectation value of any functional q5 may be obtained 
by averaging the values it obtains in these snapshots. 

To obtain the S U(2) gauge field configurations we 
have used standard heat bath routines [27] and have 
followed the standard convention of sweeping through 
the lattice in a regular systematic fashion. For our 
S U(3) calculation (described in the companion paper 
(II)) we have performed some of our calculations 
sweeping regularly through the lattice, but the bulk 
of our calculations have been performed by picking 
at random the link to be updated [3]. We have also 
investigated the effects of using different random 
number generators. The results of this investigation, 
showing significant effects for some states, are des- 
cribed in detail in [11]. 

Calculating the Mass Spectrum 

A general way to estimate the lowest glueball mass in 
the theory is to introduce some disturbance into the 
system and to observe the way the effects of this 
disturbance are damped at large distances away from 
the source of the disturbance: the damping will be 
exponential in distance (at large enough distances), 
and the scale of the exponent will be the lowest glueball 
mass. The disturbance could be a defect in the lattice, 
a change of boundary conditions (or size of the 
lattice), a local heating of the lattice, etc. Or, more 
conventionally, one can look at the long distance 
behaviour of a correlation function of some operator 
q5 (which is local in time) 

(~b(t)~b(0)} ,-~ e -uz, (13) 
[-+oO 

where # is the mass of the lowest mass glueball that 
communicates with (and so has the same quantum 
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numbers as) the operator ~b. By considering operators 
of various spins, parities and charge conjugations, jec, 
one can obtain the corresponding spectrum of glueball 
masses. 

The problem with this method is that the' ,mass 
determination can only be made where (13) is valid, 
and that is where the signal has become (exponentially) 
small. It is clear that a method such as the above is 
hardly the most appropriate for a Monte Carlo 
calculation. What we really want is a method where 
the mass is most reliably extracted where the signal 
is largest. 

The transcription of the usual variational calcu- 
lation onto the lattice is such a method and was 
suggested by Wilson [28]. Suppose we have a system 
characterized by H and we want the ground state 
energy. The variational method instructs us to choose 
some a priori reasonable class of wave functions, { qS}, 
and then to vary the wavefunction within this class so 
as to minimise the energy expectation value 

}=0 (141 
Suppose ~ is the wavefunction for which the minimum 
is achieved, and suppose/~ is the corresponding energy. 
Then q5 and/~ are our best approximations to the true 
ground state wavefunction q~o and energy E o. More- 
over, we know that 

E o __<L (15) 

On the lattice the relevant operator is not H but rather 
the transfer matrix V = e -n" (the Euclidean time 
translation operator). So the variational method will 
instruct us to search for a q5 that maximises the 
expectation value 

(since minimising H implies maximising e-U"). This is 
just what we wanted: a technique which involves 
searching for a large rather than a small signal. 

The method can be extended to a general correlation 
function as follows (we represent the vacuum by If2 }, 
and the complete sets of states we insert are energy 
eigenstates): 

( 4(t)qS(O)} (~b(O)e-m4(O)} 

< r <r 

= F e-~.~ 
I(olq~ln)l 2 

,=o~ ~ I(O[~bln}l= 
n = O  

< e -e~ (17) 

so that (taking the E, to be in order of increasing 
energy) 

Eo < _1 In ( ~ (0) ~b (0) } (18) 
- t  ( r  
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and given some set of trial wavefunctions {46 }, our best 
estimate for E o will be 

I rain [In ( 46 (0) 46 (0)) ~. 
eo =7 ~+~ L <46(t)46(0)> J 

(1 9) 

Before continuing some comments are in order. First 
it is easy to see from (17) why at large enough t we 
recover (13). It is also clear that the more the operator 
~b projects onto the lowest energy state In = 0) ,  i.e. 
the greater is 1(OI461n=0>12, the sooner will the 
simple exponential behaviour (13) set in, and the larger 
will be the measured signal. Indeed in the limit where 
our operator 46 projects entirely onto In = 0) ,  we only 
need to measure the correlation function over one time 
lattice spacing because (19) will be exact for all t. 

In practice one must work with a limited class of 
trial wave-funcfionals, {r and then it is not clear 
how good the energy estimate using (19) really is except 
that we know that it provides an upper bound, as in 
(17). One test is to evaluate (19) for several values of 
t and check if E o is roughly independent of t. In 
practice one gets reasonably accurate measurements 
for t = 0, a, 2a, but  beyond that the signal is largely 
lost in noise. If we define for our future convenience 

r , -  < 46(t)46(0) >, (2o) 
then our variational calculational will be successful if 
we obtain 

Fo ~ (21) 

We return now to our main goal, that is to calculate 
the lowest glueball masses for various j l ,  C quantum 
numbers. So first we form wave-functionals with the 
desired j e c  quantum numbers (see below), localised 
in some sense about the lattice sites. Then, since 
we are interested in masses, we form translationally 
invariant, zero momentum operators by simply 
summing up our basic operator over all spatial sites 
at a given time. We then ensure that our operator has 
no projection on the vacuum by explicitly subtract- 
ing the vacuum expectation value, this being only 
necessary for our 0 + + operators. Equation (19) then 
becomes 

m(e_j~) 1 . [-, ( 46 (0) 46 (0) ) 7 = - m m  H n  - - / .  (22) 
t~<~.,,-%,=o~ k (46(t)46(0)) _1 

We have not yet been very specific about the operators 
q$. Since the theory is confining [2, 6], the glueballs 
are colour singlets, and an (over) complete set of colour 
singlet operators is given by the set of all closed loops. 
By a loop we mean multiplying, in order, the U 
matrices along the links forming the perimeter of the 
loop: 

46 = qS(Tr ~ x  )' (23) 

For 46 to project strongly onto the lowest glueball 
state it should in some way mimic the structure of the 
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glueball wavefunction. In the ideal calculation deep in 
the continuum limit, where the glueball is many lattice 
spacings across, the number of possible loops will be 
large, and in order for the computer time not to grow 
similarly, some way, aided by intuition, will need to 
be developed to select good wave-functionals, 46. In 
this paper we shall be content to work on as coarse 
a lattice as possible, while still being consistent with 
being in the continuum limit. In practice this means 
that the gluebaU will be about two lattice spacings 
across. So the typical loop contributing to 46 will have 
an extension of two lattice spacings. Not surprisingly 
it is easy to find wave-functionals that project reason- 
ably strongly (~_ 50~) onto the lowest glueball state. 
However, even in this case the number of possible 
loops is extremely large, and a devoted variational 
calculational aiming at something like 100~ pro- 
jection onto the lowest glueball state promises to be 
very lengthy. 

Given this fact we pursue the following strategy [7]. 
We observe from the expansion (17) that even if our 
wavefunction possesses only, say, 50~ projection onto 
the lowest glueball state, the estimate 

= l l n r  F" ) (24) 
m a \ r z a ]  

can be very good even though l n ( F o / F , )  may be a 
poor estimate. This follows because the higher mass 
contributions to F,  and F2a will be severely suppressed 
by the exponential factors. To see how this works 
in practice we perform a simple illustration using 
numbers that are reasonable for our 0 + calculation. 
We take the wavefunction to project equally onto two 
states. The first has a mass ma = 1 (this is the mass 
we want to measure), and then there is a higher mass 
excited state with M a  = 4. We insert these numbers 
into (17) to obtain F f f F  o and I~2a/['a, and then we 
insert the resulting values into (22) and (24). We find 
ma = 1.64 when we use (22) with t = a, ma = 1.35 when 
we use (22) with t = 2a, and ma = 1.05 when we use 
(24). Within the typical (_~ 10~) statistical errors of 
such a calculation this last value is identical to the 
correct value ma = 1. 

In the following work we shall search for several 
reasonably good wavefunctions and shall calculate 
Fz f f I ' a  for each of these wavefunctions, finally obtain- 
ing the glueball mass by statistically averaging the 
mass estimates obtained using (24) for each case: 

ma = ,~=1 In (49,) . (25) 

Some comments. Clearly Fza ~ F, and so to obtain 
I"2a/1" a to a given accuracy will require many more 
configurations than to obtain F J F  o to the same 
accuracy. In our example above it would be a factor 
of 10. We can gain a large part of this factor back by 
calculating with several wavefunctions at once, since 
in practice the computer time needed for generating 
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a new gauge field configuration is much greater than 
the time needed to measure Fa and Fza fo r  a given 
wavefunction. All this is only true in our type of 
calculation, where the glueball is about two lattice 
spacings across. Much deeper into the continuum limit 
the time for the measurement of I "  a and / " 2 a  wIH 
certainly dominate the total calculational time, and we 
anticipate that it will become much more difficult to 
find a "reasonably good" wavefunction. Here a de- 
dicated variational calculation will need to be implem- 
ented cleverly if it is not to require astronomical 
amounts of time. In any case the variational calcu- 
lation has the added advantage of yielding the 
glueball's detailed wavefunction as well as its mass. 

At the heart of our calculation is the unitarity style 
decomposition in (17). The validity of (17) requires 
the lattice theory to possess appropriate positivity 
properties [25, 26]. This is not automatic, and 
one reason we use the Wilson action with periodic 
boundary conditions is that it is known to possess 
these. One could argue that any action which has the 
correct continuum limit can be used, since deep in the 
continuum limit we will necessarily recover the correct 
positivity properties (along with full rotational in- 
variance etc.). This is true, but in our calculation, where 
we work near the "edge" of the continuum limit, we 
judge it prudent to avoid such arguments. 

Wavefunctions and Angular Momentum 

We now describe how to construct operators of a given 
spin, parity and charge conjugation, jec. Charge 
conjugation reverses the direction of going around a 
loop. So the real part of the trace has C = + 1, and 
the imaginary part has C = - 1. In S U(2) the trace 
is real, and charge conjugation is trivial: hence we 
shall suppress that quantum number in our S U(2) 
calculations. It will reappear explicitly in our S U(3) 
calculations described in the companion paper (II). 
Parity inverts a spatial loop. Taking linear com- 
binations of a loop and its.parity inverse allows us to 
construct operators of P = + 1 and P = - 1. In parti- 
cular if our basic loop has a geometrical handedness, so 
that under inversion it becomes a loop which cannot be 
obtained from the original loop by any combination of 
rotations and/or charge conjugation, then we can use it 
to form operators of P = + 1 and P = - 1 for various 
J and C. Explicit examples will arise when we discuss 
our SU(2) calculation in this paper. 

Angular momentum on the lattice is a little more 
subtle. Naively a cubic lattice is invariant not under 
the full rotational group but only under the 24 element 
octahedraI group, one of the 32 standard crystallo- 
graphic point groups. Indeed in the strong coupling 
limit one should use this group to classify the states 
of the system. In the continuum limit, however, 
one recovers full rotational symmetry, and the cubic 
character of the lattice only shows up on the scale of 
the cut-off, a. This recovery of full rotational symmetry 
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is a dynamical phenomenon: the correlation length 
becomes large compared to the lattice spacing, so that 
on the size scale of the interesting "low energy" physics 
one can to an increasing (as a -4 0) accuracy disregard 
the particular granularity of space-time. 

Because we are calculating properties of the theory 
in the continuum limit, we shall use the language of 
the full rotation group. On the other hand, because 
we are in fact working with a rather coarse lattice, we 
shall in practice be using only those rotations that are 
elements of the octahedral group. This means that we 
shall only be able to discuss glueballs of small J, and 
we shall not be able to form pure angular momentum 
states. 

As an example we will now construct J = 0 and 
J = 2 operators (other examples will appear later 
in the paper). We pick as our angular momentum 
quantization axis one of the three axes of the cube, 
and we label the component of angular momentum 
along this axis by m. We construct operators of a 
particular J, m by adding a basic loop to rotations of 
the same loop, with the coefficients of the terms in the 
sum being determined by the values of the appropriate 
rotation matrices. So, turning to J = 0 first, we choose 
as our basic operator the square loop, two links on a 
side, centred at the site n (Fig. 1 a). We add to it, with 
coefficients + 1, the two other such loops that can be 
obtained by rotations about n (Fig. lb). The resulting 
operator will have a general decomposition 

~= ~ ~a,,~(J,m). (26) 
3,m 

�9 2.Z. 

n x 

( a )  

~ § 

(b) 

/Y 
U - 

(, I 
Fig. 1~ a A 2 x 2 loop of tink matrices, b a 0+ combination of 2 x 2 
loops, e a 2 + combination of 2 x 2 loops 
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We now rotate it by an angle ~ about  the quantization 
axis, 

4 ~05'= ~ o~sme.-i"o r (27) 
Y,m 

For 0 = ~z/2, ~b'= q5 by construction, so that in the 
above sum 

m = 0, 4, 8 , . . .  (28) 

Now rotate ~b by an angle 0 around one of the 
other axes 

dm,m(O)(a(J, m ). (29) 
J , r t I  m '  

ff we focus on terms with J < 4, then (28) tells us 
m =  m ' = 0 .  Now 05 is invariant under 0 = rt and 
0 = re/2, whereas 

( )  , (j,)2 a , rc 2 - s  ~ ( - 1 ) "  1 ) , 4 o  = n=o ((J - n)! n!) 2 
(30) 

So we see that  only J = 0 contributes. Hence the 
operator we have constructed has J = 0  with an 
admixture of J=>4. We assume that the lightest 
glueball has d = 0 rather than d > 4, so we shall refer 
to such an operator  as having d = 0. To construct a 
d = 2 operator  take our basic square in Fig. l a  and 
subtract from it the same loop but rotated by re/2 about 
the quantization axis (Fig. lc). Applying (27) we find 
now that, because 05' = - r we have 

m = 2, 6 . . . .  (31) 

so that a d = 0  component  is excluded. Rotating by 
~z about  one of the other axes we recover qS, i.e. 
05--, qS'= qS, whereas 

dS2z(rc) = ( -  1) "-2,  (32) 

which tells us there is no J = 3 piece ((31) already 
excluded J =  1). Hence this wave-functional has 
J = 2, 4 . . . .  pieces. Assuming again that amongst all 
these the J = 2 glueball is the lightest, we shall refer 
to this operator as a d = 2 operator. 

To construct p = 0 wavefunctions of J = 0 or 2 we 
simply sum the above constructed wavefunctions over 
all lattice sites n (at a fixed time). 

Momentum-Smeared Wavefunctions 

Since we are interested in masses, the appropriate 
wave-functionals to use are ones with zero momentum. 
Occasionally we shall also use p ~ 0 wave-functionals. 
The reason for this is as follows. 

Consider working on a lattice with spatial extent 
L,a and temporal  extent L,a. On a given gauge field 
configuration we get one p = 0 wavefunction (of any 
given type) at any given time, and hence we get 
altogether L t measurements contributing to a cor- 
relation function such as F2~. On the other hand the 
statistical error will decrease as N -  1/2, where N is the 
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total number  of measurements. At the same time the 
computer time required to generate a gauge field 
configuration increases as the volume of the lattice, 
L~Lt. Thus the computing time required to achieve 
a given signal/error ratio will increase as L~, if we 
vary L,. 

This means that in a calculation with p = 0 wave- 
functions one must keep L, as small as possible. This 
is unfortunate because one would really like to reduce 
any systematic errors associated with finite size effects 
by making L~ as large as possible. Moreover, as we 
go deeper into the continuum limit, we must increase 
L~ even if we only demand that 

L~a > 2D~, (33) 

where D G is the glueball size (this is surely the very 
least that one should require from a lattice with 
periodic boundary conditions). Hence from these 
purely practical considerations it is clear that we must 
do better. 

A solution to this problem would be to use wave- 
functionals not just with p = 0, but with any p small 
compared to the mass of the state being considered: 
pZ~  m 2. For  such a low momentum we expect the 
continuum dispersion relation, E 2 =  m2+ p2, to be 
valid, so m can be obtained from the correlation 
functions of such a p =fi 0 wave-functional through an 
extension of (24): 

= ~ l l n (  Fa "~ ]2_  p2. 
m 2 L a \ ~ / j  (34) 

For a lattice of spatial extent L~a the number of 
such low momentum states, and hence of possible 
measurements, increases as L~, so that we lose nothing 
in going to larger lattices (to the extent that the various 
measurements are indeed statistically independent). 

In a systematic calculation along these lines 
one would construct wavefunctions of all possible 
momenta  

2~n 1 1 L, 
P~,,Pr, Pz-  L, a' n = 0  . . . . .  ,~- ,  (35) 

measure the corresponding energy of the glueball state 

E = l l n [ -  Fa(p) ] (36) 
a LG.(P)_I 

and hence determine both the dispersion relation and 
the mass of the glueball (one could also take the 
opportunity to check for rotational symmetry in 
obvious ways). 

One can also formulate this idea in position space 
rather than in momentum space. Instead of the p = 0 
wave-functional, which is given by the translationally 
invariant sum 

~b(p =0 ,  t) = • qi(x, t), (37) 
x 

this then leads us to consider forming wave-functionals 
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+ 

m 

Fig. 2. A "2 +,, combination of loops which is actually 0 + 

that are only partially translation invariant 

~(6p, t) = ~ q~(x,t), (38) 
x ~ D  

where D is some subset of the complete set of sites at 
time t, and where 6p represents the spread of momenta 
contributing to ~b. The simplest example is where D 
consists of just one site so that our momentum smeared 
wave-functional is just (b(x,t). A more complicated 
example would be for D to be a 23 sublattice of 
neighbouring sites. The number of measurements will 
now vary as (Lff2) 3. It is clear that the smaller is D 
(and hence the larger the number of measurements 
one can make), the greater will be the momentum 
smearing and the less reliable will be the extraction of 
the mass. 

In some of our published work and in some of the 
calculations to be described later in this paper we have 
employed the position-space version of the above idea 
and have obtained results, which would have taken 
an order of magnitude more computing time if we had 
confined ourselves to p = 0 wave-functionals. 

We finish this section with a caveat concerning the 
construction of wavefunctions with a particular J and 
with p ~ 0. Consider for example the J = 2 operator 
in Fig. ic. Now consider the operator in Fig. 2 obtained 
by separating the two squares and duplicating them 
about the origin so that our overall wave-functional, 
which we consider centred at x = 0, becomes 

4~(0, t) = qS(x, t) + ~b( - x, t) - R~b (y, t) - R~b(- y, t). 
(39) 

Here q5 is the elementary 2 x 2 square as shown in the 
figure, and R~b is the rotation of this square by g/2 as 
shown, x 2 = y2 so that �9 has explicitly a negative sign 
when rotated by ~/2 about the z axis. Hence it appears 
to be a d - - 2  wave-functional. On the other hand if 
we consider a typical correlation function 

F, = ( q~(0, t)~(0, 0)),  (40) 

the only place the negative sign in (39) enters (and it 
is this negative sign that makes J = 2 rather than J = 0) 
is in cross products, which themselves vanish as Jx - Yt 
grows: 

(O(x,t)Rfb(ymO)) ,e -Np-yl, (41) 
[ x -  yp-~ao 
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where p is the J = 0 glueball mass. Hence for t large 
but smaller than Jx - y[ 

r ,  ~ e  -u' (42) 

(with the mass # as above) despite the fact that ~ is 
a J = 2  operator. If we take t ~ > l x - y  I (which we 
should), (42) remains correct except that some extra 
inverse powers of t appear. 

So we seem to have the asymptotic decay of the 
correlation function of a spin 2 operator being 
governed by a spin 0 mass[ Actually what has 
happened is that we have constructed a state consisting 
of a J = 0 glueball with L = 2 relative to our lattice, 
hence also the extra powers of t in (42) as t --, c~. 

This example shows that one has to be careful in 
forming linear combinations of loops to simulate some 
spin a. If different pieces are even a little separated, 
this will show up in the correlation function at large 
enough t. 

Systematic Errors 

As we have already pointed out, working with p = 0 
wave-functionals presses us to work with lattices that 
have as few spatial sites as possible. That means we 
do not work deep in the continuum limit, as specified 
by (6), but on lattices that are rather small and rather 
coarse. So we must check that our results do not 
change as we make a smaller (i.e. we check for 
the renormalization group behaviour of our mass 
estimates). We must also check that our results do not 
change as we increase the overall size of the lattice 
(i.e. we check for the absence of significant finite size 
effects). 

Particularly important is the temporal extent of the 
lattice, since the physical temperature of the system 
is equal to the inverse of its temporal extent (for 
periodic boundary conditions). At high temperature 
non-abelian gauge theories are not confining. The 
deconfining phase transition for SU(2) and SU(3) 
gauge theories is at around 200 MeV [29]. Hence it 
is important to have L t a large enough for the lattice 
to be in the confined phase. Making L, large enough 
does not cost any extra time, since the number of 
measurements will be proportional to L v The physical 
temperature at which we shall work will typically be 
about 100 MeV. We shall present results for a range 
of temperatures and shall check for variations in 
our mass estimates. We shall also demonstrate what 
happens when we do the same calculation in the high 
temperature, deconfining phase of the theory. 

Systematic errors can also arise in more subtle ways 
from the Monte Carlo procedure itself. One worry 
concerns the lack of true randomness of so-called 
random number generators [303: does their use 
perhaps give rise to long range fluctuations ? We shall 
go no further here than to mention this possible 
problem. A detailed analysis with a comparison of 
various random number generators will appear in the 
following S U(3) paper. 
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Another worry is that our generated gauge field 
configurations may get effectively stuck in some 
metastable state, so that our calculated masses are 
characteristic of this false vacuum and not the true 
vacuum. A procedure to deal with this is to generate 
10 or 20 independent sequences of gauge field con- 
figurations rather than just one. One can generate such 
a sequence by starting with, say, unit matrices on all 
the links (fl = oo), then running at a randomly chosen 
value of fl for, say, 20 configurations, and only then 
beginning to run at the desired value of ft. Any 
"metastable states" should show up in comparing 
the results obtained from the different sequences of 
configurations. In the S U(2) calculations described in 
this paper we use 2 or 3 such sequences starting at 
fl = oo (unit matrices) and fl = 0 (random matrices). In 
the SU(3) calculations [8] we used about 10. We see 
no signal for any such "metastable states". 

At a more practical level systematic errors can arise 
in our mass estimates because of higher mass states 
contributing significantly to F,. One can check this 
by comparing the measured values of Fa/F o and 
F2JF .. If we assume the lowest mass state to dominate 
both F,  and Fz,, then the ratio of FJF o to F2, / 
F, obviously is just the probability for our wave- 
functional to project onto the lowest state. If this is 

40~ or greater, then the higher mass admixture will 
be small. If, however, it is much less, then we have 
cause for concern. We shall perform such checks in 
the second part of this paper. 

Once we have obtained our results for the various 
glueball masses in terms of a -1, we shall want to 
reexpress these numbers in physical GeV units. The 
first step is to express a -  ~ in terms of a A mass scale 
through the usual renormalization group formula for 
g2 (a) [31]. This A mass scale appropriate to the lattice 
action we are using can be expressed in terms of the 
more familiar Amo m through a perturbative calculation 
[32]. In principle we could now take Amo ~ from deep 
inelastic data. But unfortunately we do not know Amo m 
to better than a factor of two. The usual procedure 
therefore is to invoke the string tension, K [2, 6]. 
This can be calculated on the lattice from the area 
decay of large Wilson loops [1]. One then uses the 
"experimental" value of the string tension given by 

= ~ (GeV) z, (43) K 

where a' is the slope of Regge trajectories (so cd ~ 1.). 
The argument for (43) is not particularly rigorous. 
Indeed open decay channels and fermion loops are 
not included properly. Nonetheless as a mass scale it 
is far more reliable than Amo m. In our work we shall 
express masses in GeV units by using (43). This 
introduces an unquantified systematic error. Our cal- 
culated mass ratios on the other hand are free of any 
such error. 

The string tension is useful because it is a quantity 
that to "leading order" does not depend on fermions. 
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There are other quantities in the pure gluon theory 
able to play a similar role. One is the gluon condensate, 
fi-1 (F~ ,F ,v ) ,  which is estimated in applications of 
QCD sum rules [33], and which can also be measured 
on the lattice [34]. Another is the fluctuation of the 

topological charge, FP(n) , which can be 

related to the t/' mass from arguments concerning the 
SU(Nc) theory as Nc--.oo [35], or from effective 
Lagrangians [36] embodying similar physics. At the 
moment the status of the lattice calculations [37] of 
this quantity is obscure. 

The ideal way to set the overall scale would,be either 
for the experimentalists to come with an observed 
glueball, so that we could then tell where to look for 
the other glueballs, or for us to put in fermions, 
calculate the p meson mass, and use that as our scale. 
We expect progress in both directions in the not too 
distant future (and indeed two glueball candidates have 
recently been announced [38]). 

Before leaving our discussion of systematic errors 
we should mention what is perhaps the most obvious 
one. In generating our lattice gauge field con- 
figurations we start from some readily constructed 
configuration, which will usually be totally atypical of 
the configurations at the value of g at which we wish 
to work. However, the Monte Carlo procedure is 
guaranteed to eventually produce us configurations 
which are in equilibrium with the desired e -s  
Boltzmann factor, irrespective of the starting point. 
The problem is to know when this point has been 
reached. One way of telling is to measure such simple 
quantities as the action and to multiply by a "safety 
factor" of, say, 10. So in our calculations the number 
of iterations before measurement will always be at 
least several hundred, and frequently several thousand. 
In addition we check and compare results from 
different sequences of measurements. We believe that 
this type of systematic error contributes insignificantly 
to our results. 

Statistical Errors 

To understand the statistical errors afflicting meas- 
urements of p = 0  correlation functions, such as 
(~b(t)~b(0)), it is useful to write out this expectation 
value explicitly in terms of the way it is measured. 
Let qb(i;x,t) be the measured value on the gauge 
field configuration labelled by i of a glueball wave- 
functional centred on the point (x, t). The p = 0 wave- 
functional measurement is obtained by summing over 
the L~ spatial sites labelled by x 

1 
qS(i; p = 0, t )=  ,-~Ts E ~b(i; x, t). 

C~'- '7 
(44) 

The p = 0  correlation function (qS(t)~b(0)) is then 
obtained as follows: 
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1 N  1 ~ 1 
(qS(t)~b(O)) = ~i=~ 1 ~t ,,__~1 L~, 3 

{ ~ q ~ ( ' " '  ' } f  ~ q~('" ' ) t  (45, �9 l , X , t  + t  t , y , t  . 
k Y J 

The objects in the curly brackets are just the p = 0 
wavefunctions. The first sum represents the average 
of the measurements over all N gauge field con- 
figurations. The sum over t' uses time translation 
invariance 

< 4) (t) 4) (0)) = < q~ (t' + t) ~b (t')) (46) 

to boost the number of measurements. One may 
further boost the number of measurements in special 
cases. For example if L s =L,,  then we can obtain 
4 sets of measurements from a given configuration by 
defining the time axis to point in each of the 4 possible 
directions. 

The individual q~ in (45) will fluctuate about some 
mean value that will depend on ft. These fluctuations 
will be uncorrelated in all the terms of the product in 
(45), except for those terms very close together. There 
are (L~) 2 such terms, so the net fluctuation in the 

product will be proportional to ~ ~L~. The 
signal on the other hand comes from those terms close 
enough to have an appreciable correlation, i.e. x ~ y, 
and there are 0(L~) such terms. 

If we label (q~(t)q~(0)) by a subscript N denoting 
the total number of configurations used, so that 
(q~(t)~b(0)) ~ is the exact value, then (45) gives us 

(q~(t) q~(0))rc=(qS(t)(b(0)}~+a ~ ~ ,  (47) 

where the second term is the statistical error. The 

factor of V / ~ N  in (47) is just what one expects 
from L t N  uncorrelated measurements. However, our 
measurements are not totally uncorrelated. There 
will be some correlation between measurements at 
neighbouring times in a given configuration, and also 
some correlation between gauge field configurations 
that are close in the generated sequence of con- 
figurations. These correlations are represented by the 
effective correlations lengths Ct and ~ in (47). 

In most of our calculations the correlation function 
is small even over one lattice spacing, hence we expect 
~ _~ 1. For the magnitude of~r we have no expectation. 
Our experience with measuring glueball correlation 
functions is that generally ~ is not very large. 

To illustrate ~ we have measured it for the average 
action in a configuration (i.e. the plaquette expectation 
value). Let A (i) be the plaquette expectation value for 
the i'th lattice configuration (in the sequence in 
which they were generated). Split the total number of 
configurations, N, into K blocks of M sequential 
configurations and consider the subaverages 

1 M 
~]J = M k ~  A((j - 1)M + k). (48) 

�9 f l  : o start 

�9 [3= ~ stort 
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Fig. 3. The correlation length for measurements of the average 
action on the lattice for various fl and two sequences of con- 
figurations 

Let the K M  values of A(/) have a standard deviation 
~7(A), and let the K values of A~ have a standard 
deviation of a(A). Then 

~(A)= ~(A) 
(49) 

We have performed such an exercise on an 84 lattice 
at fl=2.2, 2.3, 2.4 with 2400, 1850 and 950 con- 
figurations, respectively. We used M = 25 and also 
M = 30 to check for the stability�9 The configurations 
came in two sequences: in one case the original starting 
configuration was random (corresponding to fl = 0), 
and in the other case all links were taken to be unit 
matrices (corresponding to fl = oc). The results for ~c 
are plotted in Fig. 3. We observe that ~c is surprisingly 
large. Whether such a long "correlation length" is 
peculiar to measurements of the action is something 
we do not know. We also note some indication of a 
systematic difference between the sequence starting 
from fl = 0 and the sequence starting from fl = ~ .  The 
quality of this data, however, is not good enough for 
any firm conclusion on this point. 

Let us return now to (47). We use the notation F, 
for the correlation function. We now claim that a is 
calculable so that (47) can be written 

Fo 
(r,), = (r,)~ _+ , ~  (50) 

as long as 

F , ~ F  o and (~b) =0,  (51) 

where n is the number of uncorrelated measurements; 
so for example in (47) 

n = Li fe  , r (52) 

Proof .  The measurement of (FI), involves n measure- 
ments of the random variable y=~b(t)qS(0). The 
distribution of y has a mean 

( y )  =(~b(t)~bO)) ~ (gb(O)) 2 = 0 (53) 
r,~ro (4,) =o 
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and a width 

= < [~(t)q~(0)] 2 > 

= < [~b(t)] ~ [ ,~(o)3 2 > 

<[~b(t)]=><[~(O)]~ > 
F t < P o  

= C~, (54) 

which gives us (50) as desired. 
In most of our calculations (51) will be satisfied and 

(50) will be valid. The quantities we shall usually 
measure are F,]F o and F z J F  a. Using (50) we find 

( ~ o )  ( F o )  x/nl (55) 
Fa = Fa q - F -  

n oo 

and 

F2a -t- - (56) 
- 

In practice equations (55) and (56) are very important. 
It is clear from (55) that a rough estimate of F,/F o can 
be obtained very rapidly. Typically measurements 
on about 100 configurations will suffice. From the 
fluctuations in F,/F o we can estimate n, i.e. the overall 
correlation length in our measurements. We now can 
estimate, from (56), the error which our measurement 
of F2a/Fa will possess after any number of con- 
figurations. Eq. (56) highlights the desirability of 
using as good a way• as possible. Maximising 
F,/F o minimises the eventual statistical error on 
Fza/Fa, which via (24) will be the source of our mass 
estimate. 

Now that we understand the error on F2JF~, how 
does this translate into an error for the mass 

m 9 (57) 
a \ r ~ . } "  

Let the mass m have (asymmetric) errors + 6m+ and 
- 6 m .  Using (57) we find 

1 6 m •  T ! l n [ 1  T- \ ~ Z a ] ~ ] .  (58, 

While it is clear that asymptotically 

gm• Z ~ 5 1 (  F~ ~ 9 (59) 
a \ r 2 .  J"  

it is also clear that this behaviour will only set in once 
ac~m is small. In particular while & n  behaves roughly 

like 1/x/~ from fairly early on, this is not the case for 
6m+, which has a highly irregular behaviour, being 
oo until a certain value of n, n o say, at which point it 
collapses very rapidly with increasing n. In Fig. 4 we 
plot the factor by which 6m+ decreases when the 
number of measurements is doubled. Note that we 

always do better than the 1/x~n expectation once 

(a§ 
(~§ 
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Fig. 4. The variation of the upper error on the mass as we double 
the statistics 

n > n 0. On the basis of the 1/x/n factor in (50) one is 
tempted to say that if there is no signal after measure- 
ments on, say, 10000 configurations, then doubling 
the number of configurations will not buy you much. 
Figure 4 shows that this is not true: either it will not 
buy you anything at all (6m+ stays at oo), or the error 
will be dramatically reduced! 

The second point to note is that while F2,/F . will 
have a normal probability distribution, the mass esti- 
mate m will not. Thus when we quote a mass as being 
m__ 6m_+, the reader should be aware that the two 
standard deviation limit on the mass is not m +_ 26m• 
Generally we will provide the reader with the values 
of F2JF~, so he can make his own estimates. A 
problem only arises once the error in F2,/F ~ is not 
small, and in that case the problem will be with 6m§ 
and not with 3m_. We note that in this case F J F  o 
will provide a definite upper bound for the mass, which 
will make any concern about the true extent of the 2o- 
effect irrelevant. 

The above analysis of statistical errors also has 
implications for what is the best way to do a dedicated 
variational calculation, where we vary ~b so as to 
maximise F,/Fo. Let us parametrise Fa/F o by the 
lowest mass, m, contribution which we are interested 
in, plus an effective higher mass, M, piece: 

Fa = ee -m"* + (1 - oOe -Ma*, (60) 
Fo 

where we allow for the possibility that the temporal 
and spatial lattice spacings differ, a~ =~ % The point of 
the variational calculation is to maximise ~. Now, an 
increase in e may be masked by the statistical error, 
and this will be worst in the limit of large a, where 
the e -m~' factor will be very small, or, less obviously, 
in the limit of small a, where 

,ScffM - m)a~ ---, 0. (61) 
a t ~ O  
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The best value of a~ to use is the one for which the 
ratio of 6(F,jFo) to the error is as large as possible 
for a change 6e in cc As we have seen, the error will 
be roughly independent of a~, so we want 

\ t o / _  o, (62) 
6~ 

which is satisfied by 

a, - 1 in M. (63) 
M - m  m 

So for a dedicated variational calculation this is the 
best temporal lattice spacing to use. 

We shall later find that for the 0 + glueball, M ~ 4m 
typically, and for the 2 + glueball typically M ~ 2 m .  
So (63) becomes 

0.5 0+ 

m(--O-~ : (64) 
a, ~ 0.7 § 

Now, as we are pressed to work with lattices of minimal 
spatial extent, we must keep a~ as large as possible 
(consistent with being in the continuum limit), and 
this requirement will clash with (64). In practice 

a s ~ 1.2/m(0 +) ~ 2.4/m(2 +) (65) 

in our calculations. This emphasises the desirability of 
using lattices with a, < as. A second observation is that 
a variational calculation tuned to work best for one 
glueball is not necessarily going to be optimised for a 
glueball of different mass. 

A final caveat is this. Generally we will have some 
basic wavefunctions 4~, and we search for the linear 
combination q5 = ~ c~zqS~, which will maximise F J F  o. 

Given finite errors on all the (~b~qS~) products in F, 
one must take care that the maximisation procedure 
does not merely search for the linear combination 
where fluctuations are maximal, so that F , / F  o sits on 
such an upward fluctuation! One should not consider 
a wave-functional better if the increase of F, /F  o over 
its largest value with the q~ is not much larger than 
the statistical error. This caveat is especially relevant 
if one uses Fa, /F,  for a variational calculation. 

I I .  T h e  S U ( 2 )  C a l c u l a t i o n  

We will base our calculation upon the Wilson action 
[1] (10) as has been mentioned. For  this action we 
have for sufficiently small coupling constants 

57.5 (3rc2,1 / 6 h e  \ s l / , 2 t  
a = - - e -  / l ) ~ . f i )  (66) 

Ninon 
where we have expressed the lattice A parameter  in 
terms of A~o~ [32]. We shall assume that in our region 

average �9 L = 4 
action o L = 6 

[] L = 8  
�9 L=IO 
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Fig.  5. "/'he average action on  an L '~ sub-lattice of a 104 lattice with 
antiperiodic boundary condit ions  

of couplings (fl > 2.2) a is reliably given by (66). This 
is on the basis of previous work by other authors 
[6, 39]. Note  also that rotational symmetry has been 
restored [40] at these values of/L 

We shall use periodic boundary conditions. This is 
crucial to being able to use very small lattices: with 
periodic boundary conditions the conditions on our 
lattice are translation invariant. With other boundary 
conditions the boundary will usually be a special place, 
and its effects will pollute the physics two or three 
lattice spacings inward. This is illustrated in Fig. 5, 
where we show the results of antiperiodic boundary 
conditions: 

U , (n + e~Ls,,) = U ~ (n), e,, unit vector in v'th direction. 
(67) 

We plot the average action of the sublattice obtained 
from a 104 lattice by systematically stripping layers of 
sites in all directions inwards from the boundary 
(leaving an L 4 lattice embedded at the centre of the 
104 lattice). The dashed line is the average value of 
the action on an 84 lattice, at fl = 2.3, with periodic 
boundary conditions. In Table 1 we present values of  
the average action as measured on lattices of various 
sizes with the boundary conditions (67). It is clear that 
in order to work with p = 0 wave-functionals under 
such boundary conditions one would have to go to 
enormously large lattices. 

Table 1. The average action of various sublattices centred within 
a 104 lattice with antiperiodic boundary conditions and the value 
on an 84 lattice with periodic boundary conditions 

lattice action 

4 a 0.4386 + 0.002 
6 '~ 0.4830 +_ 0.001 
8 4 0.5108 4- 0.004 

104 0.5225 + 0.001 

84 with periodic b.c. 0.6019 4- 0.0003 
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Fig. 7. The diameter of the glueball DG, the lattice spacing and 
half the lattice spatial extent versus fl 

Choosing the Lattice and Latt ice Parameters 

Let as, a t be the spatial and temporal  lattice spacings 
of  our  La~Lt lattice and  let D G be the diameter  of  the 
gluehall. In order  for the calculation o f  glueball 
properties to be credible, we require 

�9 / L , a ,  L,  
man ~ ~ , -} ) >> D G >> max (a,, as) (68) 

and 

1 
T ( =  temperature) = ~ < 200 MeV, (69) 

so that  the lattice is not  too coarse, no t  too small and 
not  too  hot. 

A priori we do no t  know DG, and the first par t  o f  
the calculation involves obtaining an estimate for it. 

�9 To do so we calculated Fa/F o for 0 + wavefunctions 
composed  of planar loops of various sizes ranging 
from 1 x 1 to 3 x 3 on a 64 lattice at fl = 2.3 (for now 
take a s = a  t - a ) .  The value of F J F  o peaked for the 
1 x 2 and 2 x 2 loops, see Fig. 6, indicating that 

Da ~ (1.5 - 2.0)-a(fl = 2.3) (70) 

For  a more  sophisticated analysis support ing (70) we 
refer to [41]. 

In  Fig. 7 we plot  the lattice spacing, a, half the 
spatial lattice extent, ~Lsa, and the glueball size, DG, 
as functions of #. The scale is in fermi, using (66) and 
measurements of the string tension [6]. The curves 
are for L~ = 4 and 8. 

F r o m  Fig. 7 it is clear that  if one wants to have L s 
as small as possible, one should work  with L s = 4 at 
fl ~ 2.3. Therefore our  initial calculation of  glueball 
masses was on 4 a. 8 and 64 lattices at fl = 2.3. The time 
extent was chosen larger so that  (69) should be satisfied. 

If  one then wants to check for cont inuum behaviour  
by calculating the glueball masses at fl values a round  

f f  
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Fig. 8. Fluctuations of the average action on 8 4 lattices versus fl 

fl = 2.3 and seeing if they are indeed independent of  
r, it is clear from Fig. 7 that  we should work at fl > 2.2 
and that  L s should be greater than 4. If  one wants to 
go as high as, say, fl = 2.5, then L s should be chosen 
close to 8. Hence our  calculation to check for the 
renormalization group behaviour of  the glueball mas- 
ses will be performed on an 84 lattice. 

Another  reason for not  working at values o f  fl less 
than 2.3 is the existence of  a specific heat peak at 
fl = 2.1-2.2 [42].  This is a reflection of  a not- too-  
distant critical point, and there is the danger  that the 
spectrum will be affected in its vicinity. This peak can 
be seen in Fig. 8 where we plot 

o" = (<(�89 U1) z > - <�89 [ ]  ) 2)1/2 (71) 

versus fl for an 84 lattice. Here the bar  denotes the 
average over a single lattice configuration, and the 
brackets denote an average over all the configurations 
at the given #. 
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Fig. 9a-i. Loops used to form our wave-functionals 

Glueball Masses on 4 3. 8 and 6 4 Lattices 

In this section we summar ize  the results obta ined on 
4 3.8 and 6 4 lattices. Mos t  of  the data  was taken at  
fl = 2.3. We also have some data  at fl = 2.5, but  mos t  
of  the results there are not  significant. 

Some of the da ta  presented here has already been 
reported on elsewhere [7]. We repeat  it here, together  
with previously u n p u n i s h e d  numbers ,  for the sake of 
completeness.  

The loops used to form our  p = 0 wave-functionals 
are shown in Fig. 9. (The F F  opera tors  are not  
explicitly drawn due to their complexi ty;  they are 
defined below). The reader  will note that  several 
o f  the opera tors  ( ( f )  to (i)) have an explicit geometric 
handedness. This will enable us to construct  wave- 
functionals of bo th  positive and  negative parity. The 
reader  will also note that  while we employ  linear 
combinat ions  of  loops, we do not  use products  of  such 
loops. This is because such a product  has the form of 
(colour singlet)-(colour singlet), and we would expect 
it to possess a large con t inuum cut projection. This 
expectat ion will be shown to be correct  in some 
calculations presented later on in this paper.  

Using these loops we calculate F, /F  o and _Fza/F a 

for the states 

j r =  0 +, 0 - ,  1 +, 1 - ,  2 +, 2 - ,  3 +. (72) 

Table 2. 
based on 
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Values of F,,/Fo for p=0, 0 +, 2 +, 2- wave-functionals 
the operators in Fig. 7 (a-h) on a 43.8 lattice at fl = 2.3 

Va/Vo 
loop 0 § 2 + 2 - 

(a) 0.121 + 0.003 0.0295 + 0.0015 - -  
(b) 0.154 +- 0.004 0.039 + 0.002 - -  
(c) 0.158 + 0.003 0.0444 + 0.0017 - -  
(d) - -  0.027 + 0.002 - -  
(e) - -  0.016 __+0.002 - -  
(f) 0.113+0.006 0.019 +0.003 0.015+0.002 
(g) 0.122+0.006 0.020 +_0.002 0.015+_0.002 
(h) 0.168 +_ 0.003 0.022 +_ 0.002 0.020 +_ 0.002 

We obta in  statistically significant mass  estimates f rom 
F z a / F  a for the 0 +, 0 - ,  2 +, 2 -  states. Fo r  the other  
states we only get upper  bounds  on the mass  (from 
F,/Fo). We now present our  results. 

(a) 0 +, 2 + and 2 - .  The  0 + and 2 + wave functionals 
are constructed f rom all the operators ,  except F P ,  in 
Fig. 9. They  are constructed as outl ined previously. 
Fo r  the 0 + add all possible orientat ions and for the 
2 + subtract  loops that  are or thogonal .  To  obtain  the 
2 + f rom a loop with a geometr ic  handedness,  we add 
loops of opposi te  handedness (while preserving 
the minus sign under  rotat ions of  re/2 abou t  the 
quant izat ion axis), and  to get the 2 -  we subtract  them. 
So the 2 -  is formed f rom the basic loops ( f -  h) in 
Fig. 9. 

In Table 2 we present  the values of F,JF o for  the 
0 +, 2 +, 2 -  states for the various loops on the 43.8 
lattice at  fl = 2.3. Our  data  on the 6 4 lattice uses loops 
(a) and (h). The  values of  F~,/I" o are similar to those 
in Table 2 except for the 0 + (h) operator ,  where the 
value is F, /F  o =0 .19  +0.003.  This is p resumably  a 
finite size effect, s i nce the  opera tor  (h) is large for an 
L s = 4 lattice. We find a similar effect when we compare  
the 0+(c) loop  on  the 43.8 and 84 lattices. Wha t  is 
perhaps  surprising is that  the finite size effects are so 
small. 

The m a x i m u m  value of  F , /F  o gives an upper  bound  
on the corresponding mass. We find compar ing  all our  
results (including arb i t ra ry  linear combinat ions  of  
(a-c) and ( f ,g)  separately): 

m 0  +) < (4.88 + 0.15)Amo m = 1.33 _ 0.04 GeV, 

m(2 + ) <  (8.53 + 0.27)Amo m = 2.32 + 0.07 GeV, 

m(2- )  ~ (11.38 + 0.20)Amo m = 3.10 __+ 0.06 GeV. (73) 

To obtain  the actual  mass  estimate we use F2,JF a. To 
redue the con tamina t ion  of F2a/F a by higher mass 
states it is best to confine ourselves to the operators  
with largest F,JFo; (b, c, h) for the 0 +, (a, b, c, h) for 
the 2+, and (f,  9, h) for the 2 - .  We obtain [7]:  

m(0 +) = (3.6 _ 0.35)Amo m = 0.98 + 0.10 GeV, 

m(2+) = (6 .5  + 1 8  ) + 0"49GeV, 
_1 .1  A m o ~ = 1 " 7 7 _ 0 . 3 0  
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Fig. 10. Fz,/F ~ for a 0 +, p = 0 wave-functional composed of 1 x 2 
plaquettes for two sequences of configurations with differing starts 

m(2-)  : (5.5 + 2"5~Amona - - - - -  1.50 +068. 
- 1.3J - 0 . 3 5  GeV" (74) 

In converting Amo ~ to GeV units we have used our 
measured value of the string tension 

x / ~  = 1.47 Amo m (75) 

at fl = 2.3 (which is consistent with previous results 

[6]) and have put in x / ~  = 400 MeV [7]. In evaluating 
(74) we note that the small value of FffF o for the 2 -  
suggests its real mass will be at the top end of the 
quoted error range�9 

In Fig. 10 we plot F2,/F a as a function of the 
number of  iterations for the 0 + p = 0 wave-functional 
formed from the 1 x 2 plaquette. This illustrates the 
appearance of statistical errors in our calculations. 

(b) 1 +, 1-  and 3 + . For these states we have no 
significant results for f'Za/Fa. Our results on l 'Jl" o are 
presented in Table 3. They provide the upper bounds: 

m(1 +) =< (14.6 +_ 0.4)Amo ~ = 4.0 _+ 0.1 GeV, 

m(1-)  < (12.8 _+ 0.4)Amo m = 3.5 __+ 0.1 GeV, 

m(3 +) < (13.0 + 0.6)Amo~ = 3.5 +__ 0.2 GeV. (76) 

Given the coarseness of our lattice one need not regard 
these numbers as being very relevant to continuum 
physics. 

(c) 0 - .  For  this state we use two classes of wave- 
function. The first class, ( f - h )  in Fig. 9, consists of 
purely space-like loops with a geometric handedness. 

Table 3. As in Table 2 for 1 +, 1- and 3 + 

F./Fo 
loop 1 + 1 - 3 + 

(d) - -  - -  0,012 + 0.002 
(e) - -  - -  0.011 _-t- 0.002 
(f) 0.007 • 0.001 0.013 • 0.001 - -  
(g) 0.0025 --• 0.001 0.008 • 0.001 
(h) 0.0025 • 0.001 0.002 • 0.001 
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The second class ofwavefunctions possess an extension 
in time and are variations on the FP--eu~p~F~,~.Fp~ 
continuum operator ("E.B"). We employ two versions 
[43]: 

- - 4  

( F P ) ~  = ~ '  ~..p.Tr [U,(n)U~(n + e.) 
, u , v , p ,a=  +_ 1 

�9 Uo(n + e~ + e,)U~(n + e, + e, + %) 

�9 U 2 (n + e v + e, + e,)U~ + (n + ep + e,) 

�9 U 2 (n + e.) U~  (n)] (77) 

and 

_ + 4  

(FF)z = }-' ~,~,~ Tr [U,~(n)Uo~(n)], (78) 
/ ~ , v , p , o  " =  ~+ 1 

where U~(n) is the matrix along the link in the # 
direction leaving the site n, and U~(n) is the matrix 
associated with a plaquette open at the site n, and 
obtained by going first in the # and then in the v 
direction. The values of #, etc. are extended to include 
- 1 to - 4 ,  where the negative value, - I # l ,  denotes 
going out of the site n in the negative # direction. The 
~,~p~ tensor coincides with ~ ~ ~ for all indices positive 

. . n o  . 

and is extended to negatwe values by the defimtion 
gxvo~ = - e- 1~0~, etc. In these definitions we follow ref. 
(43). 

These F F  objects are clearly 0- .  They remain 0 -  
without the time antisymmetrization, and sometimes 
we use them so. One reason for turning to these rather 
cumbersome loops is that we find, in fact, no significant 
signal for F2a/F . using the purely space-like loops in 
Fig. 9 ( f - h ) [ 7 ] .  N addition F F  is a 0 -  operator that 
appears in the (general form of the) Q C D  Lagrangian 
and so is a natural choice for the 0-  glueball just as 
Fu~Fu~ is a natural choice for the 0 + glueball. In using 
these F F  operators it is important  to recall that the 
positivity [26] of the Wilson action tells us that  the 
following correlation function is positive when the two 
operators do not overlap: 

( O(t)RtO(o) > > O, (79) 

where R, reflects the operator in time. Since our F F  
operators are odd under time reflection, but since the 
square of the operator is always positive, we have 

<FP(o)FF(o)> > O, 
<FP(a)FF(o)> ?, 

<FF(2a)FP(o)> <= 0?, 

( V F ( t  > 3a)FF(o)> < O. 

The question mark denotes the fact that F a and Fza 
involve time-overlapping operators, so it is not clear 
what sign to expect. In fact the overlap of the operators 
in Fza is SO small that it can probably be ignored and 
we expect F2, < 0. Oue measurements confirm this 
pattern. 

Since we want to use F2~/F, for the mass estimate, 
we would like to reduce the operator overlap. To do 
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so we note that if we just use the positive time piece 
of(FP(t))~, it looks like a 0-  operator  centred at time 
t + at2. Such an operator reflects into itself and will 
produce no overlap in F2a and minimal overlap in F,. 

The calculation of these operators is very slow, and 
the time required to obtain a reasonable signal/error 
ratio using p = 0  wavefunctions would have been 
prohibitive. The solution to this problem, as discussed 
previously, is to use momentum smeared wave- 
functions: specifically our wavefunction consists of a 
nearest neighbour sum of truncated (FP)~ terms (as 
above). The calculation is on a 64 lattice at fl = 2.3. 

From F2~/F . we obtain an energy 

E 2 ~, m 2 +p2,  (81) 

where pZ represents the unknown momentum smear- 

ing. To determine p2 we do the same calculation for 
the 0 + and 2 + and use the previously established 
values. We find 

re(O-) = (6.5 _+ 1.1)Amo m = 1.77 + 0.3 GeV (82) 

with an upper bound from F , / F  o of 

m(0-) < (8.04 + 0.23)Amo m = 2.19 + 0.06 GeV. (83) 

From the space-like operators ( f - h )  we obtain a 
much less useful upper bound 

m(0-)  < (11.9 + 0.8)A . . . .  �9 (84) 

The space-like 0 -  operators appear  not to have any 
significant projection onto the lowest 0-"s ta te  seen 
using the F P  operators as wave-functionals [7]. 

(d) /3 = 2.5. At /3 = 2.5 we find that our wave-func- 
tionals have become very poor, and we have no useful 
numbers for the masses beyond the upper bounds 

m(0 +) < (6.8 __+ 0.4)Amo m = 1.85 __+ 0.11GeV, 

m(2+) < (9.1 + 2 . 1 )  + 0"57 GeV. (85) 
- 1.5 Am~ = 2.48 _ 0.41 

Masses and Renormalization Group Behaviour 
on an 84 Lattice 

In performing our calculation on the 43.8 (and 64 ) 
lattice we were careful to satisfy, as well as we could, the 
obvious physical requirements (68, 69) for being in the 
continuum limit. However, in order to work on as 
spatially small a lattice as possible, we actually satisfy 
these requirements with weak rather than strong 
inequalities. The fact that scaling behaviour of the 
string tension has already set in at this value of/3 [6] 
suggests that this is enough. Nonetheless additional 
evidence is required to support  the assertion that our 
results pertain to the continuum limit. To do so we 
have recalculated [9] the 0 + and 2 + masses on an 84 
lattice for/3 = 2.2, 2.3 and 2.4. For  these values of fl 
an 84 lattice is a large lattice, see Fig. 7. 

To be able to perform these calculations in a 
reasonable time we used momentum smeared wave- 
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functions. To be specific, we summed our basic wave- 
function over a 33 block of adjacent equal-time sites 
to give a single wave-functional. At each time we split 
the 83 sites into 27 such blocks (so there is minimal 
overlap), so that each time slice now gives us 27 
measurements rather than just one. The price we pay 
is that F2a/F a now gives us an energy, E, rather than 
a mass, since the wavefunction is not completely 
translation invariant and hence contains p 5~ 0 com- 
ponents. However, since the wave-functionals have a 
rather large spatial extension, this momentum smear- 
ing should be reasonably small. If  it is small compared 
to the mass, then we can use the relation 

E 2 = m 2 + 62/a 2 (86) 

to parametrise the energy obtained from F2, /F . in 

terms of the mass and an average momentum ~z = 
62/a e. The momentum pa has an a -2 dependence, be- 
cause the size of our wavefunction is fixed in units of a. 

The use of (86) will be accurate as long as the mass 
term dominates. This needs to be checked, and we will 
do so below. We shall see that the heavier 2 + meson 

is wholly insensitive to the presence of p2. So we shall 

have to estimate pZ using the 0 + measurements. 
The results we summarize come in three parts. In 

the first part  we calculate m(0 +) and m(2 +) using only 
the 84 data, but assuming the masses are independent 
of ft. In the second part  we put together the 84 and 
4a.8 data and check that indeed the masses do not 
vary with ft. In the third part  we check for finite size 
effects. 

For  a calculation of the wavefunction projection 
onto the lowest 04,2  + glueballs we refer to ref. (10), 
where the expected rapid worsening of this projection 
with increasing fl is demonstrated. 

(a) m(0 +) and m(2+). The basic loops we use are the 
1 x 1 and 2 x 2 plaquettes in the by now familiar linear 
combinations. We take our 04 results for F2a/F a at 
fl = 2.2, 2.3, 2.4 and use them to obtain the corres- 
ponding energies. We transform all lattice spacings to 
a(fl = 2.3) = a, express the energies as in eq. (86) and 
solve for m(0 +) and 6: 

+0.11 
m(O+).a = 1.15 _ 0.22' (87) 

+O.5 
62 = 1.5 _ 0.3" (88) 

We now use this 62 and our 2 + values of F z J F  . to 
obtain 

+ 0.07 
m(2+).a = 2.46 _ 0.21" (89) 

These results are consistent with our previous results 
on smaller lattices and reveal the absence of large finite 
size effects. 

(b) Renormalization Group Behaviour. We want to 
demonstrate now that our 0 + and 2 + masses are in 
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Fig. 12. F,/F o for various operators on lattices of differing sizes 

fact independent  o f / / i n  the range 2.2 to 2.4. We take 
our  previous estimate, on  a 43. 8 lattice, o f  the 0 + mass 
at/3 = 2.3 and combine it with our  energy measurement  
on  the 84 lattice a t /?  = 2.3 to extract 62 (using (86)): 

+ 0.29 
6 z = 1.35 _ 0.32" (90) 

We use this value of 62 in conjunct ion with (86) and 
our  other  measurements  on the 84 lattice to obtain 
the masses of the 0 + and 2 + glueballs at/~ = 2.2 and 
/~ = 2.4 as shown in Fig. 1 i. We observe that  the masses 
are indeed independent  of  /~ within the statistical 
errors. The lattice spacing changes by a factor of about  
1.7 between /~ = 2.2 and 2.4, while the errors could 
hide a change of perhaps at most  _~ 20%. Hence the 
scaling result we have is significant. 

(c) Finite Size Effects. Our  mass measurements  show 
no finite size effects within the errors. To search for 
small changes and /or  wavefunction effects we compare  
our  measurements  of s  o for p = 0  0 + and 2 + 
operators based on 1 x 1 and 2 x 2 plaquettes on 
lattices of sizes 44, 43-8, 64 and 84. This is shown in 
Fig. 12. We observe no significant finite size effects 
except for the 2 x 2 0 + operator ,  and even there the 
change is only ~_ 20%. 

Finally we return to the question of how good is 
(86). As we remarked this will be accurate to the extent 
that  E/m is close to unity. We now have the information 
to perform the necessary consistency check on our  
results. Taking our  calculated masses in (87) and (89) 
and taking our  measured energies, we plot  in Fig. 13 
the ratio E/m for 0 + and 2 + as a function o f /L  We 
see that  the 2 + meson is insignificantly effected by 
m o m e n t u m  smearing, and that  even for the 0* (86) 
should be reliable. 

i L I 

2+ 

[ I I 

0 + 

I I 
Z2 21.3 2.~ 

13 

Fig. 13. Ratio of energy to mass for our momentum smeared 
wavefunctious on an 84 lattice 

Glueball Masses in the Hamiltonian Limit 

In  this section we describe results obtained on a lattice 
with a very small temporal  lattice spacing: 

a, ~ % (91) 

which we may  regard as a good approximat ion  to the 
Hamil tonian formulat ion of  lattice gauge theory. The 
Hamil tonian formulat ion is conceptual ly closer to the 
con t inuum theory, and the propagat ion  in time of our  
g luebal ls - -mut i la ted  though  they may  be through 
the spatial d iscret izat ion-- is  as in the cont inuum 
theory. 
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The primary motivation is to obtain a finer grained 
picture of the glueball correlation functions, both to 
check explicitly that beyond some distance the cor- 
relation functions are indeed dominated by a single 
glueball of non-zero mass and to obtain some in- 
formation on higher-mass excited states. One can also 
use such an asymmetric lattice to obtain a rough 
estimate of heavy glueball masses very quickly, as if 
one were to measure, say, F,/Fa/2 on one of our 
previous lattices. This would be important  in a 
dedicted variational calculation as discussed in the 
introduction. 

A further advantage concerns glueballs such as the 
0 - ,  whose wavefunct~ons have a temporal  extent. This 
temporal  extent should obviously be much less than 
the time extent over which the correlation function is 
measured: the time extent in the wave-functional 
represents a time derivative in the continuum (and 
hence an infinitesimal time interval), whereas the time 
in the correlation function really does represent some 
fixed time interval. On the usual hypercubic lattice it is 
not really possible to satisfy such a condition. Here we 
c a n .  

A further motivation for such a calculation is that 
it provides a check on the sensitivity of our results to 
changes in the action, i.e. to changes in our manner  of 
approaching the continuum limit. 

(a) Formulation 

The scales of a lattice are determined by the values of 
the coupling. So in order to have different temporal 
and spatial scales one must introduce two couplings 
into the action 

f l Z T r D ~ / 3 s  Z T r D + f i ,  Z T r D .  (92) 
all spatial temporal 

Suppose we want to achieve a ratio 

at/a s = r, (93) 

and suppose /3 is the coupling appropriate to the 
hypercubic lattice with a t = %. Then, ignoring per- 
turbative corrections, for the action to give the correct 
continuum limit we require 

/3~ = r /3, /3, =/31r. (94) 

The perturbative corrections are small and have been 
calculated in [44]. We wish to have /3 = 2.3 and 
r = 0.25. According to the calculations of [44] this 
means taking 

/3s = 0.664,/3, = 8.5. (95) 

We shall work with (95) on a 53 .40 lattice. Thus the 
temporal extent corresponds to about 90 MeV which 
is well in the confining phase. The spatial extent is 5 
rather than 4 lattic spacings so as to provide a safety 
margin. 

Before proceeding to the main calculation we check 
to make sure that the perturbatively motivated coup- 

Table 4. Parallel plaquette correlation functions 

F.a/Fi.- x Io 
53-40 43. 8 

n time space time space 
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1 0.341+0.001 0.134_+0.004 0.0302_+0.0005 0,0316+0.0005 
2 0.367 -+ 0.002 0.084 -+ 0.028 0.045 _+ 0.01 0.057 _+ 0.03, 
3 0.390 + 0.002 
4 0.412 + 0.002 
5 0.434 _+ 0.003 
6 0.42 _+0.02 
7 0.47 _+0.05 
8 0.51 _+0.04 

lings (95) are indeed in the right ball-park. To do 
so we measure the correlation function of parallel 
plaquettes, ~b, in both the spatial and time directions, 
i.e. ( ( o ( x , t  + na , ) (o(x , t ) )  and ( ( o ( x  +nas ,  t )d?(x, t ) )  , 
where the orientation of the q~ is such that they face 
each other, and the vacuum expectation value has been 
removed. We measure these correlation functions on 
our old 43. 8 lattice at/3 = 2.3 as well as on our current 
54.40 lattice at/38 = 0.664,/3t = 8.5. A comparison of 
the large distance behaviour of these correlation 
functions should allow us to compare the scales. In 
Table 4 we present the results based on about  1000 
lattice configurations in each case. The results are 
consistent with 

a s ~ a(fl = 2.3),a s ~ a~.(3.5 - 4.0). 

We now proceed with our main calculation. 

(96) 

(b) Glueball Correlation Functions 

0 +. We use a p = 0 , 0  + wave-functional constructed 
out of 2 x 2 plaquettes. In the usual fashion we add all 
such 2 x 2 squares at a given time. The correlation 
functions are measured on 15000 gauge field con- 
figurations of our 53 .40 lattice. These configurations 
were produced in two sequences, one from an ordered 
(fl = oo) and one from a disordered (/3 = 0) starting 
configuration. No differences were observed between 
these sequences within the statistical errors. The same 
is true of our other data on this lattice. 

In Fig. 14 we plot the 0 + correlation function 
F,at /F  o out to 12 lattice spacings, and in Table 5 we 
give the actual numbers. For  n ~>4 the data falls 
on a single exponential. This can be seen better by 
calculating the local exponent. This we do by the 
formula 

re(n) = 3.5 In (97) 
1,,~ J 

The factor of 3.5 may  at this moment  be viewed as an 
arbitrary overall normalization factor. It represents, 
as we shall later argue, an estimate of the factor 
required to take us from our old lattice spacing at 
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Fig. 14. The 0 + , p = 0 correlation function on an asymmetric 5 a .40 
lattice 

Table 5. 0 +, 2 + correlation functions on a 5s.40 lattice 

r..,//% 
0 + 2 + 

1 0.416 • 0.004 0.314 4- 0.0013 
2 0.230 4- 0.003 0.125 4- 0.0007 
3 0.146 4- 0.004 0.0566 __ 0.0008 
4 0.099 4- 0,003 0.0278 4- 0.0006 
5 0.070 +_ 0.003 0.0145 _+ 0.0015 
6 0.052 • 0.003 0.0082 _ 0.0009 
7 0.038 __+ 0.002 0.0046 _ 0.0008 
8 0.028 + 0.002 0.0024 _ 0.0008 
9 0.019 + 0.002 0.0012 4- 0.0009 

10 0.013 4- 0.002 0.0011 4- 0.0009 
i I 0.008 4- 0.002 0.0015 __+ 0.0011 
12 0.004 4- 0.003 0,0009 4- 0,0022 

fi = 2.3 to a t. Hence re(n) can be compared to our 
previous results on m.a. Ignoring this for now, we plot 
re(n) in Fig. 15 and observe the very clear dominance 
of the long distance (n ~> 4) correlation function by a 
state of non-trival mass. 

Does this prove that the theory really has a non-zero 
mass gap? Another much more obscure suggestion is 
that there may be no clear pole but just a cut. Our  
data demonstrates that such a cut would have its 
branch point at m ~ 1 (in the units of our figure), and 
that this branch point would have to be singular so 
as to dominate the correlation function from small 
distances. That  is to say the cut would have to look 
like a pole at its branch point. All this seems very 
unlikely, and our data points very clearly to the 
existence of a non-trivial mass gap and pole in the 0 + 
channel. 
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n 

Fig. 15. The local slope of the 0 + correlation function 

0 + Recurrences.  The fine-grained data we now possess 
invites an at tempt to determine the next higher excited 
state in this channel. It  is obvious that only a crude 
determination is possible. Any states which are close 
in mass will be effectively degenerate for our purposes. 
The best we can search for is the dominant  range of 
masses beyond that around the lowest mass. The kind 
of fit we therefore at tempt is as follows. On the basis 
of Fig. 15 we assume the contribution of the higher 
mass state to F,at for n > 4 to be negligible. The fit 
with two masses should be a good fit to F,a ~ for n > 2, 
and all of the F's should be well fitted by the inclusion 
of a third mass (although a third mass may not be 
necessary). The functional form of the fit is 

F n a t  O~ e - mnat "~ e - m"nat  - + fie -m'"a~ + (98) 
F0 

(subject to the above stated constraints). Typical values 
of the parameters turn out to be 

= 0.35 - 0.40, m a  t = 0.33, 

f i = 0 . 4 0 - 0 . 6 0 ,  m'a  t = 1.11 - 1.51, 

7 = 0. - 0.20, m" a t > 2.4 (99) 

so we estimate the excited 0 + mass, m', to be 

m'/m = 4.0 _+ 0.6 (100) 

in terms of the lowest glueball mass m. The error in 
(100) is only a crude estimate. One might worry that 
on a small lattice such a high mass might be purely 
a lattice artifact. We point out, however, that the 
time-like cut-offenergy is rc/az, which is about  2.5 times 
larger than m', and so while m" is surely not to be 
taken seriously, we believe that m'  is indeed relevant 
to cont imuum physics, although one should bear in 
mind that it might well correspond to, say, i f =  4 + 
rather than 0+. 

2 +. As for the 0 + we use a p = 0  wave-functional 
constructed out of 2 x 2 plaquettes, except now we do 
not sum all the plaquettes but instead take the 
difference of orthogonal planes to construct a 2 + 
operator in the usual way. 
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Fig. 16. The 2 +, p = 0 correlation function on an asymmetric 53. 40 
lattice 
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Fig. 17. The local slope of the 2 + correlation function 

The discussion is just as for the 0 + case. In Fig. 16 
we plot the 2 + correlation function F,, , /F o out 
to 12 lattice spacing, and in Table 5 we give the actual 
numbers. In Fig. 17 we plot the effective mass versus 
distance using (97). Beyond n = 8 the errors become 
very large on this linear scale, so we do not show the 
data beyond n = 8. We conclude, as for the 0 § (though 
with somewhat weaker statistical significance), that we 
see a non-trival mass gap in the 2 + channel. 

2 + Recurrences. Again we can attempt to obtain an 
estimate of the next excited mass. Using a fit as in (98) 
with the same criteria we find typical values o f  the 
parameters to be 

c~ = 0.35, ma t =0.63, 

f l = 0 . 6 0 - 0 . 7 0 ,  m'a t = 1.61 - 1.72, 

7 - - 0 . - 0 . 1 0 ,  m"at>~2.6. (101) 
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So we estimate the excited 2 + mass, m', to be 

m'/m = 2.6 + 0.1. (102) 

This mass, although high, is again about  a factor of 
2 lighter than the cut-off energy and hence should be 
significant. 

0- .  For the 0-  we use a p = 0 wave-functional based 
on the P operator defined in (78). This operator is 
rather slow to calculate with, and so we calculated 
wave-functionals only for even times. Hence we have 
available only Fo, Fa,~, F4,~, etc. Since the 0 -  mass is 
close to that of the 2 +, we anticipated obtaining results 
comparable to those of the 2 + in statistical accuracy. 
Thus we expected to have statistically useful results on 
such ratios a s  _F6aj_F4a and Fs , /F4 ,  for which all time 
intervals are large cornpared t~ the ~ time extension of 
the F P  operator, so that systematic errors due to this 
extension would be minimal. 

The surprise was that the statistical fluctuations 
turned out to be much larger than in our previous 
calculations based on hypercubic lattices. This can be 
understood as follows. It  is clear that the internal 
cancellations in F F  between the positive time and 
negative time pieces becomes more important  as the 
lattice spacing decreases. To at tempt to salvage this 
situation we also began to calculate with two other 
variations on the full F F  operator  (called F F D  from 
now on). The first variation was to take just the positive 
time piece o f F l  ~ at time t and calculate the correlation 
function with the negative time piece at time t '  < t as 
in Fig. 18a. This has the advantage of decreasing the 

time 

t 
/ Y  

- ' - X  

{al 

tin~ 

.i~ "x ..~-- 

lb) 
Fig. 18 a and b. 0- correlation operators using two different FF 
operators 
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Table 6. As Table 5 but for 0- 

n FFD 
r.=]Fo 

FFDU FFU 

0.055 -+ 0.003 
0.013 _+0.002 
0.0012 4- 0.0014 

0.20 4- 0.01 
0.049 +__ 0.006 
0.018 + 0.005 
0.012 + 0.008 

0.131 + 0.006 
0.041 -+ 0.005 

t 

(101 

, , ~ , , , , i , 

O'(FFD) 

n 

Fig. 19. A 0- correlation function on the 53-40 lattice 

time extension and the overlap of operators and 
hopefully the statistical fluctuations. We refer to it as 
FFU.  The second variat ion is to do the same only 
with t '  > t and then to add F F U  to it as in Fig. 18b. 
We call this F F D U .  Fo r  F F D  we have measurements  
on 9000 lattice configurations, for F F U  on 3000 
configurations and for F F D U  on 6000 configurations. 

Our  data  is tabulated in Table 6, and in Fig. 19 we 
plot the F F D  correlat ion function. The largest n for 
which we have small statistical errors is n = 4. So we 
make our mass estimate f rom F4a~/Fza ~. For  such small 
n the admixture of  higher masses, especially in F2,,, 
is p robably  significant. This is certainly the case for 
the 2 + glueball. In the spirit of the variational 
calculation we obtain  a mass estimate f rom F4at/F2a~ 
for each of our  three operators and take the lowest 
mass to be the best estimate. This turns ou t  to be for 
the F F U  operator,  and the mass estimate is 

ma t = 0.59 + 0.06. (103) 

In  terms of the 0 + glueball mass we find 

m(0- )  = 1.8 + 0.2, (104) 
m(0 +) 

which is consistent with our  earlier results. A more 
detailed compar ison  will be given later. 

We note that  the construct ion of the F F U  wave- 
functional is such that  there are no overlapping 
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operators in s and the intervals over which 
the correlations are taken are large compared  to the 
time extension of the wave-functional itself. Thus this 
0 -  mass estimate removes the theoretical uncertainties 
afflicting our  previous measurements  of the 0 -  mass. 
In  addit ion the estimate has the advantage of using 
p --- 0 rather  than momentum-smeared  wave-function- 
als. 

The mass estimate in (103) is consistent with our  
data  at larger n (within errors). Moreover ,  our  three 
estimates of the mass using s  +_ 0.06, 0.71 
___ 0.06, 0.69 _ 0.05 for F F U ,  F F D ,  F F D U  respectively) 
are so close together that  the error  due to higher mass 
admixtures is likely to be well within the quoted 
statistical errors. 

(c) Glueball Masses and Previous Results 

Mass Ratios. In Fig. 20 we plot our  results for the 
ratio of the 2 + to 0 + masses taken on three different 
lattices. The results are in very satisfactory agreement. 
In  Fig. 21 we plot the ratio of  0 -  to 0 + masses. Again 
all the data  are consistent. For  compar ison  we plot 
the SU(3) results (to be discussed in the compan ion  
paper  [8, 11](II)). The results are very similar to those 

, , , m(2" . )+  
su(z) m(0") m(O**) 

s~0 ~.8 s ~ ~?.~6 ~J. a 
l a t t i c e  s i z e  

i 

su(3) 

Fig. 20. A compilation of our results on the ratio of 2 + to 0 + masses 

intO-) 
:3. -m(O'} 

2. 

I i 
- -  SU (2) 

m(O-*t] 
3 - -  rn(O'*) 

t 2:  

I I I 
5 & 4 0  l,a.8 t,3.18 t ,3~  

tattice size 

su(3) 

Fig. 21. A compilation of our results on the ratio of 0- to 0 + masses 
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Table 7. Comparison of 0 + and 2 + correlation functions on a 53.40 and 43.8 lattice 
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r~~ ro/;o 
je r 53"40 43"8 84 5 a "40 43"8 84 

3.5 0.31 + 0.02 + 0.07 0.120 + 0.004 
0 + 0.29 + 0.03 0.32 0.158 -+ 0.002 0.122 -I- 0.007 

- 0.04 
4.0 0.28 +_ 0.02 0.099 + 0.002 

3.5 0.116 + 0.02 + 0.02 0.040 + 0.001 
2 + 0.11 +0.05 0.085 0.044_+0.002 0.046+__0.005 

- 0.005 
4.0 0.086 + 0.02 0.028 + 0.001 

of the S U(2) theory.  If  Nc = 3 is close to N~ = ~ ,  then 
so is N c = 2 !  

At  least  as far as the mass  rat ios are concerned the 
da ta  in Figs. 20, 21 provide  evidence that  systematic  
errors  afflicting ou r  calculat ions are small. 

Normalization. The per tu rba t ive  expressions for the 
couplings tell us that  

a~ = 0.25a, (105) 

where a is the hypercubic  la t t ice spacing at  fl = 2.3. 
We cannot ,  however,  expect  (105) to be exact  because 
of  higher  o rde r  correct ions.  O u r  ear l ier  ca lcula t ion 
with paral le l  p laquet tes  conf i rmed that  (105) is not  a 
bad  approx ima t ion .  In  fact we found that,  roughly,  

a, = (0.25 - 0.29)a. (106) 

Can  we do  bet ter  now? 
Let a = ra t. Then we can compare  I~at/Fra~/2 to our  

old  F2,/Fa, and  _Fratj2//" o to our  old  Fa/F o. The la t ter  
measurement  provades a weaker  cr i ter ion since it 
involves the wavefunctions and  higher  mass states as 
well. We show the results of such a compar i son  in 
Table 7. The  da t a  for 0 + and 2 + glueballs  has been 
t ransformed into the fi = 2.3 ra t ios  F J F  o and _Fza/F a 
for r = 3.5 and r = 4 (using F3.5, ~ = (F3a .F4o) 1/2) and  
c o m p a r e d  to our  previous  da t a  on the 43.8 and 84 
lattices. No te  that  the d a t a  on F 2 J F  ~ for the 84 lattice 
involves da t a  at  f l =  2.2,2.3 and  2.4 t ransformed to 
fi = 2.3 by the usual  pe r tu rba t ive  formula  for ft. The 
F J F  o da ta  is all f rom fi = 2.3. 

We see that  relying on F2a/F ~ alone tells us that  
r~ [3.5, 4-1. I f  we include F J F  o into our  considerat ions ,  
then r = 3.5 is preferred. 

Using r~[3.5,  4] it is now of interest  to ask how good  
was our  technique of es t imat ing  the mass using F 2 J F  ~. 
The er ror  arises because, as we can see from our  
effective mass plots in Figs. 15, 17, Fo(~  (F3, .F4oy/2 
or  F 4 , )  still possesses some con t amina t i on  from higher 
mass states. A detai led examina t ion  shows that  the 
"true" mass is 0 (5~)  less for the 0 + and 0(8~)  less for 
the 2 + than  that  which we would ob ta in  from F2, /F ~. 
This .number lies within our  typical  s tat is t ical  errors,  
and  hence we have conf i rmed that  using F2JFa to 
ob ta in  masses on  a hypercubic  lat t ice at  fl = 2.3 is 
indeed an accurate  prescript ion.  

(d) Con t inuum Corre la t ion  Func t ions  
O u r  2 + gluebal l  mass  is app rox ima te ly  twice the 0* 
glueball  mass. One  may  ask whether  it is possible that  
we are seeing not  a 2 + gluebal l  but  s imply the 2 + 
par t ia l  wave of  the two-0 + gluebaU cont inuum.  In the 
case of the 2 + it is in fact obvious  tha t  such a possibi l i ty  
is most  implausible.  Since the piece of the wavefunct ion 
that  is at  our  2 + gluebal l  mass is -~40~o, a re- 
in te rpre ta t ion  in terms of a con t inuum cut would 
require the same ,-- 4 0 ~  pro jec t ion  to be onto  the tip 
of the cut, whereas we would actual ly  expect  very litt le 
such p ro jec t ion  because of  angu la r  m o m e n t u m  sup- 
press ion factors. Nonetheless  it would be interest ing 
to see how a con t inuum cut  cont r ibutes  to a cor re la t ion  
function, since some of  the higher spin states are 
cons iderab ly  heavier  than  the sum of two 0 + gluebal l  
masses. 

In  this sect ion we shall  cons t ruc t  wave-fuunct ionals  
that  have a large pro jec t ion  on to  the two-gluebal l  
cont inuum.  To do  so, we de l ibera te ly  use opera to r s  
that  are p roduc ts  of  loops. 

We shall  cons t ruct  two 0 + con t inuum cor re la t ion  
functions and  two 2 + con t inuum cor re la t ion  functions. 
All  use the 2 x 2 p laquet te  as their  bas ic  component .  
The first 0 § wave-funct ional ,  label led RPR00,  is 
const ructed as follows. F o r m  a 0 + wave-funct ional  
centred on the po in t  x by  summing  all  the 2 • 2 
spacel ike p laquet tes  centred on  x and  sub t rac t ing  the 
vacuum expecta t ion  value. N o w  square  it and  sum 
over all the points  x at  a given time. O u r  second 0 + 
wave-funct ional  is cons t ruc ted  in the same way except 
that  instead of squar ing  a 0 + o p e r a t o r  at  x, we 
square a 2 + opera tor .  We call this RPR22 (the vacuum 
expecta t ion  value is subtracted).  O u r  first 2 + "con-  
t inuum" opera tor ,  call it WPR02 ,  is const ructed  as 
above  except that  at  each po in t  x we mul t ip ly  a 0 + 
with a 2 + wave-functional .  O u r  second 2 § opera tor ,  
call it W P R L 2 ,  is a little more  complex.  Choose  a 
po in t  x. Mul t ip ly  the 0 + o p e r a t o r  a b o u t  x by  the 0 + 
ope ra to r  abou t  x '  = x + e 1 a + e2a. N o w  mul t ip ly  the 
0 + o p e r a t o r  abou t  x" = x  + ej a by  the o~.'~ a b o u t  
x ' " =  x + e2a. Subs t rac t  the two produc ts  f rom each 
o ther  and  sum over  al l  x a t  fixed time. 

We have measured  the cor re la t ion  functions as- 
soc ia ted  with these wave-functionals ,  and  the results 
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Fig. 22 a -d .  Correlation functions dominated by the two-0 + 
glueball continuum: a ,b 0 + partial wave, e,d 2 + partial wave 

are shown in Fig. 22a - d. The curves represent "fits" 
which we shall explain presently. First we outline what 
we might expect to find with these measurements. The 
continuum projection will be across some range of 
masses, and as n increases F,a ' will be increasingly 
dominated by masses nearer the cut. The effective 
mass, re(n), as defined earlier should therefore start at 
high values and decrease gradually. For  the 0 § "con- 
tinuum" wave-functional, if there is any projection 
onto the 0 + glueball pole, this should dominate at 
larger n. In the 2 § wave-functional there will be no 
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0 § pole, but there can be a 2 + glueball pole. This will 
be much less clear, since this pole will be competing 
with the tip of the cut. Its only advantage is that it 
will be free of any angular momentum suppression 
factors. So it should show up eventually. A further 
feature we would look for in comparing the two types 
of  continua is the presence of these angular momentum 
suppression factors. All other things (i.e. dynamics) 
being equal we expect an extra factor of qZL = q4 (for 
L = 2) in the 2 + case, where q is the centre of mass 
momentum. If m~ is the threshold of the cut, then 

q2 =- m2 _ tt,t2c ,~ ( m  - -  m c ) 2 m  c. (107) 
m ~ m e 

We now turn to our data. We have in general 

F. ,~  = ~ dm0:(m)e_ , . .a t ,  (108) 
Fo 

and we parametrise 0:(m) by a pole and cut term 

0:(m) = 0:o f i (m - rap) + 0:10(m - 2mo)(m - 2mo)~ e -~". 
(109) 

Here mp is the pole position, m o is the 0 + glueball 
mass (so 2m o is the threshold of the cut) and the cut 
discontinuity is parametrised by a function that can 
vanish at threshold (depending on 7) and dies away 
exponentially at large masses (0:~ is determined by the 
condition F,~, =o / s  = 1). Actually there are many cuts, 
e.g. the three 0 + glueball cut, and our parametrisation 
does not try to be realistic in detail. Neither do we 
attempt precise fits. We are searching for rather gross 
features of the data. 

If we begin with the 0 + correlation functions, 
RPR00 and RPR22, we immediately see at large 
distances the presence of the 0 + pole. Indeed for n >~ 4 
the correlation functions fall exponentially, with the 
exponent determined by the 0 + glueball mass. 
However, they differ from our previous 0 + correlation 
functions in that they fall m u c h  more steeply at smaller 
n. The curve through the RPR00 data is using a mass 
spectrum 

0:(m) = 0.0156(m - too) 

+ 0:10(m -- 2mo)(m -- 2mo)Ze  -"~ (110) 

For  the solid curve through the RPR22 data we used 

0:(m) = 0.0156(m - too) 
+ 0:, O(m - 2 m o ) ( m  - 2 t o o ) e -  o.s3m,t (111) 

The 0 + pole term has a small coefficient; however, it 
is necessary. The dashed curve shows what happens 
when we try to do without it, using 

0:(m) = 0:10(m - mo) (m  - 2mo)~ e -~  (112) 

(the reason for an a t in the exponent is that 2 has the 
dimensions of an inverse mass). The two fits have 
apparently different mass spectra. However, their 
grossest feature is the same: the continuum mass 
spectrum has a maximum at about  8m 0 in both cases. 
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This is because the maximum, rh, is given by 

Y (113) rh = 2m o + ~. 

They differ in their threshold behaviour, but the 0 + 
pole term takes over before the threshold of the cut 
dominates. Our  intuitive expectation that a product 
wave-functional would have little projection onto the 
single colour singlet state has turned out justified. 

Consider now the 2 + correlation functions WPR02 
and WPRL2. We can no longer see any very obvious 
pole term at large n. However, having a pole term 
improves the typical fit to the data, typically to the 
extent shown in Fig. 22d, where the solid curve has a 
2 + pole term (m = m2), while the dashed curve has no 
such pole. Within the statistical errors the improve- 
ment is marginal but probably there. This solid curve 
in Fig. 22d is based on the mass spectrum 

e(m) = 0.0136(m - m 2 )  

+ oq O(m -- 2mo)(m -- 2mo)ge- 1.9m,,, (114) 

while the dashed curve comes from using 

c~(m) = cq O(m - 2mo)(m - 2mo)ae- 1.56=,, (115) 

The solid curve in Fig. 22c comes from using 

c~(m) = 0.013 (m - m2) 

+ ~10(m - 2 mo)(m - 2too) 2 e-  o. 91,,% (116) 

We observe at most  a small projection onto the 2 + 
pole, comparable in fact to the previous projection 
onto the 0 + pole. Using (113) we see that the 
continuum mass spectrum peaks at n~, where 

rh ~ 8m o (117) 

for all the fits. This is the same value as for the 0 + 
correlation functions, and we can thus take it to be a 
"typical" parameter  for continuum contributions. 

A second feature of the continuum mass spectra 
concerns the threshold factors. Comparing (110-112) 
with (114-116) we observe that the 2 + continuum has 
an extra threshold factor compared to the 0 + con- 
tinuum. Averaging over all the fits it comes to a factor 

(m -- 2m0) 2. (118) 

If we recall (I07), we see that this is precisely what we 
expect from the L = 2 angular momentum factors for 
a 2 + partial wave! How real is this effect? We 
emphasized earlier that there can be some trade-off 
between 7 and 2 in (109). The extent of this trade-off 
is, however, limited. The e -~m factor is more important 
to what happens between F o and F~L , while the 
(m-2mo)~  factor determines to what extent 5 
deviates from the naive extrapolation of the ~ 2 ~  
behaviour. The smaller is F 2 , J F ~  as compared to 
F~]Fo, the larger will be the required value of 7. So 
we see that (118) is a real effect. If  we compare 
Figs. 22a, b to Figs. 22c, d we observe that although 
F ~ f F  o is comparable in all cases, F2a,/Fa, is smaller 
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for the 2 + correlation functions, and so a larger 7 will 
be required there. 

Finally we turn to the question of how much our 
2 + glueball wave-functionals project onto the con- 
tinuurn. If  this continuum piece is similar to the ones 
we have described above, then we can immediately 
estimate that any such projection is much less than 
5%. The same is true for the 0 + glueball wave- 
functionals. One may perform a similar exercise for 
higher-spin states as and when they are calculated. 

"Glueball" Correlation Functions at  high Temperature 

It would be interesting to compare the correlation 
function measurements we have used to display the 
existence of a non-trivial colour singlet mass gap 
(in various channels) with the results of a similar 
calculation in an unconfined phase of the theory, 
where we expect no colour singlet bound states but 
presumably would be seeing only the multi-gluon 
continuum. 

The simplest way to enter an unconfined phase of 
the theory is by raising the physical temperature of 
our lattice through the deconfining phase transition 
at T ~ 200 MeV [-29]. We shall work on a 53.9 lattice 
at the same values of fls,/~t as in the previous sections 

/~ = 0.664,/3, = 8.5. (119) 

The temperature, T, of this lattice is 

1 1 
T =/~a, - 9a t ~ 400 MeV (120) 

(very crudely), which is well into the high temperature 
unconfined phase of the theory. We measure F,a,, n = 
0, 1 . . . .  ,4, for 0 +, 2 + p = 0  wave-functionals con- 
structed out of 2 • 2 plaquettes in the usual fashion. 
We perform our measurements on 2500 lattice con- 
figurations. Note how, because of our use of an 
asymmetric lattice, we can work with lattices that have 
large L~ even at high temperature, in contrast to the 
usual studies, which use Lt = 2 or 3 which may distort 
the physics. 

In Fig. 23 we plot the 0 + and 2 + correlation 
functions, and in Figs. 24, 25 we plot the corresponding 
effective masses 

r e ( n )  = 3.5 In I c'~ |, (121) 
p 

L 3 
both for the present data and for our previous data 
on the 53-40 lattice. Since the time extent of the lattice 
is now necessarily small in physical units, the cor- 
relation functions do not get to be at large distances, 
and only the grosscst differences with our previous 
data will be visible. 

The major difference between our old data at 
T ~ 90 MeV and the new data at T ~ 400 MeV is the 
steady collapse of m(n) in the high temperature phase, 
with no sign of the levelling off, which by n - - 4  is 
already apparent  in the T, .~90MeV data. If the 
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Fig. 23 a and b. 0 +, 2 + correlation functions in the high tem- 
perature, unconfined phase 
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Fig. 24. The local slope of the 0 + correlation function below and 
above the deconfining transition 

correlation functions do level off, it is clear that the 
masses must be less than 500 MeV for both the 0 + and 
2 + . However, there are no signs of an eventual 
non-zero mass, and indeed if any such mass is 
~<400MeV= T, then it is not clear if it is to be 
regarded as a genuine mass gap. In fact the T 
400 MeV data is consistent with arising from the 
simplest parametrisation of a continuum cut with 
threshold at zero mass. In Fig. 23a the solid curve is 
the result of using in (108) a continuum mass spectrum 

~(m) ~ O(m)e - 0.s,,,~, (122) 
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Fig. 25. The local slope of the 2 + correlation function below and 
above the deconfining transition 

and the curve in Fig. 23b comes from a mass spectrum 

e(m) ,,~ O (m)e -~ 7s"'~. (123) 

The high temperature correlation functions provided 
a contrast against the claim that our previous cor- 
relation functions display a non-trival mass gap. They 
also provide a different and interesting way to see the 
unconfined character of the high temperature S U(2) 
gauge theory. 

III. Discussion 

In our calculation of the S U(2) glueball spectrum [7] 
we have obtained mass estimates for the lowest lying 
0 +, 2 +, 0 -  and 2-  states (and mass upper bounds for 
the 1% 1-  and 3 + states). We have tested for the 
reliability of these numbers in various ways: finite size 
effects, renormalization group behaviour [9], recal- 
culating in the "Hamil tonian limit", calculating con- 
t inuum contributions, calculating for comparison in 
the high temperature deconfining phase, etc. We have 
found that our results survive all these tests, and we 
conclude that they most probably are representative of 
the continuum theory. 

If  one wishes to average all our results, see Figs. 
20, 21, one will obtain 

rn(2+) - 1.94 + 0.15 
m(O + ) - 0.10' 

re(o-) 
- - =  1.80+0.18. 
m(O +) 

(124) 

(125) 

These numbers are mass ratios and hence independent 
of any arguments about  setting the overall scale in 
physical units. Of  course, the reader may not wish to 
perform such an average, since he may regard some 
of the numbers as being better than others. 

The more physically interesting glueball masses are 
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of course the S U(3) ones, which will appear in the 
companion paper (II). Our results will be based on 
spatially small lattices (43), but we will not have the 
computer time to perform the kind of checks we have 
performed here. Since we expect systematic errors not 
to differ greatly between S U(2) and SU(3), the analysis 
of this paper will also serve to substantiate the 
reliability of our S U(3) results. 

We now comment on related work by other groups. 
The only other attempt to calculate the S U(2) spec- 
trum (as opposed to just the 0 § mass) was by Falcioni 
et al. [15] using a systematic variational calculation 
[28] with Manton's action. The only number they quote 
is for the 0 + mass, and that agrees with our estimate. 
Their lattice spacing is ~ 1.5a(fl = 2.3), so they are 
somewhat further from the continuum. They give no 
estimate of other masses except that within errors they 
are consistent with the 0 + mass. Such a statement is 
not necessarily inconsistent with our results if their 
errors are large enough. In any case it is reassuring 
that a completely different action (albeit one without 
the desirable positivity properties) should reproduce 
the same 0 + mass (see also [21]). Another calculation, 
using the same variational technique, comes from Berg 
et al. [16]. They calculate only the 0 + mass but do it 
over a range of ft. For fl ~> 2.25 their mass estimate 
increases to larger values, confirming our expectation 
that a dedicated variational calculation becomes 
rapidly very difficult as fl increases. Their mass es- 
timate, for their scaling region of/~ <2.25 on a 43.16 
lattice, agrees with our value. Mfitter and Schilling 
[21] estimate the 0 § mass from the correlation of 
interior plaquettes to changes in boundary conditions. 
They find scaling behaviour up to/~ _~ 2.4, and their 0 § 
mass agrees with ours. So does that of Michael and 
Teasdale [19], and that of Engels et al. [18] looking at 
the finite temperature specific heat curve, and Falcioni 
et al. [20] using the Langevin equation. 

The original [12] lattice glueball estimates were with 
strong coupling expansions in the Hamiltonian for- 
malism. More recently there have been calculations 
[13] on the Euclidean lattice also. A typical prediction 
of these calculations is that m(2+)/m(O +) ~ 1 against 
our value of ~ 2. This is a serious problem for strong 
coupling extrapolations. Irrespective of whether our 
results characterize the continuum limit, we certainly 
claim that they characterize the region/~ _~ 2.3, and 
this region lies between the strong coupling and deep 
continuum limits: a strong coupling extrapolation 
must reproduce our results on the way to the con- 
tinuum. 

Phenomenological bag model estimates [22] display 
discrepancies with our results. 

The calculations described in this paper represent 
a first step in understanding the low-energy dynamics 
of non-abelian gauge theories and QCD. The apparent 
early onset of scaling enables us to do calculations in 
regions of fl, where the glueball is not much larger 
than the lattice spacing, so that it is not difficult to 
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find reasonably good wave-functionals. To bring a 
qualitative improvement, the next step must be either 
a calculation sufficiently deep in the continuum limit 
so as to give us a truly fine grained picture of the 
theory's dynamics, or it has to be a calculation with 
fermion loops. Either direction requires a qualitative 
increase in the sophistication of one's techniques. 
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