
Volume 128B, number 5 PHYSICS LETTERS 1 September 1983 

ON THE TOPOLOGICAL STRUCTURE OF THE VACUUM 

IN SU(2) AND SU(3) LATTICE GAUGE THEORIES 

K. ISHIKAWA 
City College, CUNY, New York, NY, USA 

G. SCHIERHOLZ 
1I. Institut J~r Theoretische Physik der Universitiit Hamburg, Fed. Rep. Germany 

H. SCHNEIDER 
Deutsches Elektronen-Synchrotron DESY, Hamburg, Fed. Rep. Germany 

and 

M. TEPER 
LAPP, A nnecy-le- Vieux, France 

Received 26 January 1983 

We present Monte Carlo measurements of the net topological charge of the vacuum in SU (2) and SU (3) lattice gauge 
theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of O (100) 
smaller than expectations based on analyses of the U (1) problem. Moreover we find a strong sensitivity to the lattice size 
and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish 
criteria for the reliable performance of such calculations, and remark on the poss~ly detrimental impact of these findings 
on the calculation of hadrori spectra. 

The topological charge density, Fff(x) ,  of  
SU(N ~> 2) non-abelian gauge theories receives its 
name because in the semiclassical limit (/~ ~ 0) it mea- 
sures the presence of  instantons and anti-instantons 
[1] ,1. Because of  asymptotic freedom (and because 
the only place the coupling, g2, appears is in the prod- 
uct ~g2) one can argue that (anti)-instantons are the 
dominant non-perturbative field fluctuations in the 
region of  sizes between the very small, where only per- 
turbative fluctuations are to be found, and the moder- 
ately large, ~1 fm, where complex and not well-un- 
derstood non-perturbative fluctuations must dominate. 
Instantons may thus affect the detailed structure of  
hadrons [3]. Moreover instantons may be part of  the 

,1 For pedagogical reviews see ref. [2]. 

mechanism causing chiral symmetry breaking [3]: 
indeed there are some numerical indications that chi- 
ral symmetry breaking occurs on smaller size scales 
than hadron formation [4] (which would help to 
clarify the current and constituent roles that quark 
masses play ,z and the important non-perturbative 
fluctuations on these smaller size scales are, presum- 
ably, instantons. 

The topological charge density has also had a crucial 
role to play in resolving the U(1) problem [6]. The 
qualitative resolution of  this problem was originally 
given in terms of  instantons [6]. More recently how- 
ever more quantitative attacks on this problem have 
involved considerations [7] of  the large N limit [8] of  

,2 For a recent summary see ref. [5]. 
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the gauge theory, and effective low-energy lagrangians 
[9] embodying this large N physics. These latter ap- 
proaches require that the fluctuations of the inte- 
grated topological charge should have a certain size: 

(( g2 ] , (1) 

where VT is the volume of space-time and g / ~ i s  
the usual coupling in the SU(N) gauge theory. The 
normalisation is such that one instanton contributes 

g2 "d4x F`i(x) = 1 (2) 
~ J  

so that (1) could be interpreted as saying that on 
average a volume of (euclidean) space-time of 1 fm 4 
will contain roughly 1 net instanton or anti-instanton. 
There is however no obvious connection between the 
arguments leading to (1) and instantons: indeed the 
usual [7] (although only partially correct ,a) preju- 
dice is that the exp (-87r2N/g 2) factor in the density 
of instantons (coming from their non-trivial classical 
action) will ensure that they do not contribute to any 
finite order in the 1/N expansion. One should there- 
fore treat (1) and the instanton content of F`i as sep- 
arate expectations; although we note that (1) is not an 
unreasonable value in the context of a typical ,4 dilute 
gas of (anti-)instantons. Note finally that (1) is derived 
for full QCD with fermions; the expectation value is 
however to be evaluated in the pure gauge theory with- 
out quarks. 

To test whether the theory does indeed give (1), 
Di Vecchia et al. [12] evaluated the left hand side of 
(1) for the SU(2) lattice regularised gauge theory [13], 
using the Monte Carlo technique [14] on a small 44 
lattice with periodic boundary conditions. The result 
was ('~50 MeV) 4 in place of the (180 MeV) 4 in (1) - a 
dramatic discrepancy by a factor of over 100. 

In this paper we shall pursue this problem consider- 

, 3  A careful calculation is needed because the  number  o f  
ways  o f  embedding an ins tan ton  gives a factor growing ex- 
ponent ial ly  in N. It  turns  ou t  tha t  the pure dilute gas o f  
(anti) ins tantons  does indeed vanish a s N  ~ **; however this 
behaviour is so marginal tha t  the  inclusion o f  first order 
interacUons (~ la ref. [3]) reverses this  conclusion. It  is 
therefore qui te  poss~ le  that  ins tantons  survive the N ~ ~* 
limit. For  the  calculation, see ref. [10]. 

, a  For  the  folmula~ !Z~ such est imates  see for example ref. 
[111. 

ably further. As a by-product of our lattice Monte 
Carlo calculations of the glueball mass spectrum [15] 
and glueball internal structure [16] in SU(2) and 
SU(3) gauge theories, we have obtained measure- 
ments of two F`i operators (essentially those used in 
ref. [12]) for both SU(2) and SU(3). Moreover, in 
addition to extracting the value of the left hand side 
o f ( l )  (as was done for SU(2) in ref. [12]), we also 
consider it interesting to investigate the distribution 
of values of f FF(x) d4x to see if there is any sign of 
the lattice containing instantons. We shall in fact find 
both no evidence of instantons and a dramatic discre- 
pancy with (1), for both SU(2) and SU(3). But there 
will be more to it than just that. 

To begin with we summarize briefly what was done 
in ref. [12]. The authors used two lattice definitions 
of F`i(x): 

+4 

F`iA(n) = 24 1 ~ ~ -- .32rr 20~,v,p,o)=±l etwP° 

X tr (Un, u Un+m u Un+u+u, o Un+u+v+o,a 

+ + + + 
x Un+,,+p+o,u U;,+,~+o,~U;,+~,,o U;,,~,), 

+4 

F~B(n) = i 4 1_.__ ~ ~ 
- "32n 2 ( # , v , p , o ) = + l  e tmP°  

(3) 

× tr(U.,.vU.,pa), (4) 

where e~pa is an extension [12] of the usual euvpa 
tensor such that ~l~po = -~ - lvpa  etc., the Un,~, are 
link variables out of the site n in the/1 direction (posi- 
tive or negative), and Un,av represents the plaquette in 
the tw plane at site n. The calculations were performed 
in SU(2) on a 44 lattice for a range of couplings, 
/3(--4/g 2) ~ 0.5 to 4.5. These operators receive pertur- 
bative lattice contributions and to obtain the desired 
non-perturbative piec e of ((ZF`I)2), these must be sub- 
tracted. This was done by calculating the leading 
piece, and fitting the data for/3 ~> 2.8 to obtain the 
non-leading (but large) perturbative contributions. 
The resulting non-perturbative piece is found to have 
the desired renormalisation group behaviour for 2.2 
/3 ~ 2.4;but is a factor of O(100) too small to fit (1). 

In our SU(2) calculations we use F`IB. In our 
SU(3) calculations we use FFA but confined to the 
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Fig. I. A schematic view of the total topological charge on a 
lattice in the presence of instantons. 

piece of  the sum with/a  = 4. From now on we refer to 
these simply as F/~. 

Our calculations will be as follows. For  SU(3)  we 
have results on a 43 • 8 lattice at/3 = 5.7 [for SU(3), 
fl = 6/g2]. For  SU(2)  we have results for an 84 lattice 
at fl = 2.3. In both  cases we use the standard Wilson 
action [13] and periodic boundary conditions. We also 
have results on a 44 lattice with periodic boundary  
conditions at fl = 2.3 and this enables us to cross-check 
with ref. [12]. At/3 = 2.3 the ratio of  our value of  
((I~F/~) 2) (based on 900 sweeps) to that  of  ref. [12] is 
0.97 --- 0.085, which reassures us that  we are doing the 
same kind of  calculation. 

In fig. 1 we show the kind of  curve we might ex- 
pect  when we measure F, nFF(n); the peaks about 
integers are the signatures of  instantons on the lattice, 
and the fact that  we have finite widths peaks rather 
than S-functions is due to the perturbative contribu- 
tions. 

In fig. 2 we show the measured distr ibution for our 
SU(3)  data on a 43 • 8 lattice at/3 = 5.7. We see no 
instantons. 

In fig. 3 we show our SU(2)  data taken on an 84 
lattice at/3 = 2.3. Again no instantons. 

We now worry whether using ~eriodic boundary 
conditions biases us towards F, FF = 0. The worry is 
based on the following argument [made for SU(2)] .  
The variables which are periodic are the link matrices, 
Uu, which may be expressed as 

U .  = exp( iaA~) ,  (5) 

where the matrix-valued field variable .4 .  can be 
writ ten 

A .  = A ~ o  a = A.Oao a , (6) 
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Fig. 2. The total SU (3) topological charge (modulus) on a 
4 3. 8 lattice with periodic boundary conditions at fl = 5.7. 
(The horizontal scale is in units of winding number). 
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Fig. 3. The total SU (2) topological charge (modulus) on an 8 4 
lattice with periodic boundary conditions at fl : 2.3. The 
scale is as in fig. 2. 
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where t is the direction in SU(2) space of .~  u. Period- 
icity may be generically expressed as 

Uu(R, O) = uu(n ,  O + ~) , (7) 

which becomes in terms of  (5) and (6) 

,4u(n,  o) = Au(R,  O + rr) + (2rrn/a) tao  a (8) 

(where m and t can depend on/.t). In the continuum 
limit, keeping R fixed at any desired Value, continuity 
in the A will demand dropping the 1/a term in (8). 
Hence we obtain periodic boundary conditions in the 
gauge potential Au, and the net topological charge 
must vanish (because in the continuum it can be ex- 
pressed as a surface integral). Of  course the above is 
only one way to approach the continuum limit. None- 
theless to the extent that we are indeed close to the 
continuum limit we expect the periodic boundary 
conditions to bias us to ~F/~ ~ 0 (in this context we 
fred the comments in ref. [12] to be overoptimistic). 

To eliminate the effects of  boundary conditions 
we took a 44 sublattice of  our 84 lattice and measured 
]~n Fff  on this sublattice alone. This sublattice now is 
immersed within a "heat ba th"  provided by the larger 
lattice. Since the correlation length at/3 = 2.3 is about 
one lattice spacing, the 44 sublattice will have little 
dynamical contact with the boundaries of  the 84 host 
lattice. Such an arrangement mimics closely the de- 
sired situation where we would make measurements 
on a piece of  an infinite volume of  space- t ime;  and so 
provides the "best possible" boundary conditions ,s  
The results for this 44 sublattice are plotted in fig. 4. 
There are no instantons to be seen. 

Using the usual string tension values [15,17] the 
4 volume of  our SU(3) 4 • 8 lattice is ~4  fm , of  our 

SU(2) 84 lattice is ~ I  1 fm 4, and of the SU(2) 44 sub- 
lattice is "-0.7 fm 4. So our lattices are certainly big 
enough to have instantons - which was obvious any- 
way since all (except the last) were used to calculate 
the gluebaU mass spectrum. 

, s  One might think of  trying boundary conditions such as 
Au(R,  0) = -.zTu(R, # + ~r) under which surface integrals no 
longer vanish. We did. The effects o f  these boundary condi- 
tions on such quantities as the average action per plaquette 
are felt two or three sites inwards from the boundaries be- 
cause, unlike periodic boundary conditions, they break 
translation invariance - the boundaries are a special place; 
so one must  work on very large lattices with such boundary 
conditions. 
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Fig. 4. The total SU(2) topological charge (modulus) on a 4 4 
lattice embedded in a larger 84 lattice at/3 = 2.3. The scale is 
as in fig. 2. 

Having found no evidence for instantons on our 
lattice, let us ask how our data compares with (1). As 
we remarked earlier (1) is equivalent to requiring 
about 1 net (anti) instanton per fm 4. I f  we examine 
figs. 2 - 4  normalised by the volumes of  the previous 
paragraph we see that the discrepancy between our 
measured values of  the left hand side of  (1) and the 
right hand side is again 0 (100)  - both for SU(2) and 
for SU(3). 

We emphasize that this conclusion does not  depend 
on the details of  the perturbative subtraction: in this 
range of  coupling, if the non-perturbative piece of  

2 ((ZF/~) ) were as large as suggested by (1) it would be 
a factor ~50  larger than the perturbatively calculated 
piece. The only reason it was necessary to be careful 
about the perturbative subtraction in ref. [12], was 
because in fact the non-perturbative piece is so much 
smaller than expected. 

Unlike our earlier qualitative search for instanton 
effects, the testing of  (1) requires us to set an overall 
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scale in physical units in our lattice calculations, and 
this is done using the string tension. One might ques- 
tion how reliable is this procedure. There are various 
reasons to believe that it is certainly correct to within 
+50%. For example the value of  the non-perturbative 
(otsFu~,Fuv) as measured on the lattice [16] agrees 
with the expectations of  the QCD sum rules [ 18] ,6 _ 
a change of  the mass scale by a factor of  ~ 3 - 4  [as 
required if we want to satisfy (1)] would be unaccept- 
able. The diameter of  the glueballs [ 15,16] would 
shrink to ~0.15 fm under such a rescaling - and their 
masses would become hopelessly large; as would the 
masses of  mesons and baryons (albeit according to 
preliminary calculations in the quenched approxima- 
tion * 7). 

The serious violation of  (1) and the lack of  topo- 
logical structure suggests that the topological charge 
density may approach the continuum limit more 
slowly than the string tension or glueball spectrum. It 
is interesting then to compare quantitatively our 
results for the 84 lattice with those of  ref. [12] on a 
44 lattice. To do so requires a subtraction of  the per- 
turbative piece of  ((ZFff')2), and for this purpose we 
shall use the results of  ref. [12]. To facilitate com- 
parisons we introduce the quantity 

1 / [  g2 i, d4xFfi(x))2 ) 
A = V'T \~ 16~--~N g ' (9) 

and the combination 

1 = lr4 218a4A , (10) 

as used in ref. [12]. The perturbative piece, liT, for a 
4 4 lattice is (for F/~B) [12] 

IpTI44 --~ 702 .  (11) 

,6 The most recent analysis following the method of ref. [ 18] 
is given in ref. [ 19 ] and leads to ((as/Tr) FgvF#v) ~- (275 
MeV) 4. A more recent analysis involving the ~F~v) piece 
[20] and potential model arguments [21] agree on a value 
closer to ((~s/~r) F#vFlaz,~ ~ (390 MeV) 4. In a lattice cal- 
culation [16] in SU(2), using the same scale as in the pres- 
ent paper we find ~(as/~r)F#vF~v) = (325 ± 5 MeV) 4, 
which suggests that our scale is good to about ±25%. We 
thank S. Narison for making us aware of the current status 
of the work in QCD sum rules, and for emphasizing the reli- 
ability of ~asFtsuFg~,~ as a means of setting the scale on the 
lattice in physical units. 

~7 For a recent review see ref. [22]. 

To obtain the value for an 84 lattice we extrapolate 
using the data in ref. [12] for the lattice size depen- 
dence of  the calculated piece of  the FFA operator. 
The size dependence is in fact very small and we esti- 
mate 

IpT[84 ~ 735 - 5 .  (12) 

Subtracting this from our data for I, we can compare 
the non-perturbative pieces, INIT, for our 84 lattice 
with that of  ref. [12] for a 44 lattice: 

INIT184]INPTI44 = i .97 + 0 .21 .  (13) 

We see strong Finite size effects. [The error in (13) is 
mainly statistical; we emphasize that the uncertainty 
in extrapolating the perturbative piece from a 44 to an 
84 lattice is negligible on the scale of  the number in 
(13).] 

We now compare our 44 lattice embedded in the 84 
lattice with the 44 lattice with periodic boundary con- 
ditions [12]. We take the perturbative piece to be 

IpT[44E84 = 702 + 35 , (14) 

where we have tak6n a large enough uncertainty to 
cover any possible change in IpT when we change 
boundary conditions (we know that IPTI44E84 
IpT[84 ). We find 

INITI44~84]INPTI44 -- 2.11 -+ 0 .23 .  (15) 

Hence ((ZF/~) 2) not only possesses strong finite size 
effects, but  also depends strongly on boundary condi- 
tions. 

Our above results indicate that for/3 ~ 2.3 [/$ ~ 5.7 
for SU(3)] the topological charge density is still dis- 
tant from its continuum limit. This is reassuring since 
it leaves open the possibility that the theory may even- 
tually display a topological structure and may satisfy 
(1). One may wonder how this fits in with the appar- 
ent renormalisation group behaviour found in ref. [12] 
in the region 2.2 <~/~ <~ 2.4 which straddles our cou- 
pling. The errors of  the data in ref. [12] are perhaps 
large enough that it is not too improbable for this 
behaviour to be accidental. 

Can we understand our negative findings? First let 
us specify the requirements a lattice should satisfy if 
it is to embody accurately some non-perturbative 
physics characterized by a length ~. Let the lattice 
have a spatial extent of  Lsa and a temporal extent of  
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Lt  a. In order for the lattice to be large enough to con- 
tain the fluctuations of interest, and in order for it to 
be fine-grained enough not to distort the physics of 
interest, we require 

min(~Ls a, ~Lt a) >> ~ >> a ,  (16) 

where the factor of ~ comes because of the periodic 
boundary conditions. In order for the physical tempe- 
rature of the lattice to be below the deconfining phase 
transition [23] we also require 

Temperature = 1/Lta "~ 200 MeV. (17) 

A further useful input is the diameter, l G, of the typi- 
cal low-lying glueball, which is [16] 

l G ~. (1 .5-2)  a(fl = 2.3).  (18) 

Consider now eq. (1) in the light of (16), (17). We 
may take l G to represent the size of typical non-per- 
turbative fluctuations relevant to hadronic structure, 

~ l G. Then even with weak rather than strong 
inequalities in (16), (17), we see that a 44 lattice can 
only hope to represent physics in a narrow window 
around/3 ~ 2.2 - by/3 ~ 2.3 it is already at a tempera- 
ture of ~230 MeV. This shows that it is dangerous to 
use a 44 lattice for an analysis of eq. (1). An 84 lattice 
on the other hand has a "window of physics" that is 
reasonably large: 2.2 ~/3 5 2.5. The same size window 
will, of  course, hold for a 44 lattice embedded in the 
84 lattice. So we mi~ht have hoped to obtain a reason- 
able value on our 8", or embedded 44 lattices. That we 
have not may have to with the fact that the character- 
istic mass in the F/~ channel, the lowest lying 0-glue- 
ball, is heavier than the 0 + giueball: 

1/rn (0- )  ~ l /m(0 +) ~ a(fl = 2.3). (19) 

This perhaps indicates that ~ ~ a rather than 2a, in 
which case we would have to go to/3 ~> 2.5 to truly 
test (1), and a lattice larger than 84 would be desirable. 

Let us now turn to the observed absence of instan- 
tons. This is easier to understand. Instantons, being 
semiclassical constructs, are only "reliably" expected 
to appear on size scales smaller than IG (which charac- 
terizes the size scale of complex and not well under- 
stood non-perturbative fluctuations). On the other 
hand we note that instantons are not topologically 
stable on a coarse lattice: the region of non-trivial 
energy density, which in the continuum limit is forced 
onto us by continuity, can, on a lattice, slip through 

in between lattice sites, partially or wholly. For a 
small enough lattice spacing instantons should appear 
on the lattice for the same reason they do in the con- 
tinuum theory: the entropy wins over the action. For 
this to happen the lattice must be sufficiently fine- 
grained that the number of states for which a typical 
instanton slips significantly between lattice" sites is 
overwhelmed by the number of states in which the 
instanton is trapped on the links. This requires 

tC >~ p >> a , (20) 

where P is a typical instanton size. Since small instan- 
tons are suppressed as exp [-8rr2/g2(p)] the interest- 
ing range of p will be close to IG. We may thus hope 
to see a signal of the topological structure, if we go to, 
say,/3 >~ 2.6. This is a conclusion similar to that of the 
previous paragraph. This may be no accident: for 
SU(2) and SU(3) ((~F/~) 2) may indeed be dominated 
by instanton contributions. 

We can understand now why our search for topo- 
logical structure at/3 = 2.3 [or/3 = 5.7 in SU(3)] was 
too optimistic. We have also shed some understanding 
on the apparent failure of eq. (1). Our analysis suggests 
that the best strategy in resolving these questions is to 
use a sublattice of a lattice large enough to be useful 
for/3 2 2.6. On the question of instantons SU(2)is as 
good as SU(3), because instantons are SU(2) objects 
and they arise in SU(3) through various embeddings 
of SU(2) in SU(3). 

Beyond the above basically kinematic, observations 
one may, more fundamentally, question the appropri- 
ateness of the F/~ operators used herein. It turns out 
[24] that there are some subtle difficulties. These 
questions, and measurements deeper in the continuum 
limit, will appear elsewhere [24]. 

In summary: We have calculated ((~FF) 2) in both 
SU(2) and SU(3). Our SU(2) calculations were on a 
large 84 lattice and on a 44 sublattice embedded in this 
84 lattice (thus freeing us from the periodic boundary 
condition constraint). Our numerical results were as 
dismally small (roughly) as those of ref. [12] for SU(2) 

4 on a small 4 lattice. At a more detailed level we fred 
that working on a 84 lattice, or on the embedded 44 
lattice, doubles the "non.perturbative" piece of 
((~F/~)2). This certainly indicates a lack of scaling - 
and possibly a problem with periodic boundary con- 
ditions. We establish criteria for where scaling might 
set in. We also search for instantons (the first such cal- 
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culation we are aware of). We fred ni signal in either 
SU(2)  or SU(3),  on any of  our lattices. We clarify why 
this is so and establish criteria for how to do better .  
Work is in progress on these and related questions [24]. 

A belated scaling of  physics involving the topologi- 
cal charge density would have obvious and important  
consequences for the calculation o f  the spectrum of  
mesons and baryons:  bo th  in the U(1) sector of  me- 
sons, and also more generally if  instantons play an im- 
por tant  role in chiral symmetry  breaking. 

We thank P. Weisz for useful discussions. One of  us 
(M.T.) wishes to thank T. Walsh for the frequent hos- 
pi tal i ty of  the DESY Theory Group;  and one of  us 
(K.I.) has been supported in part  by  NSF grant PHYS- 
78-2488 and in part  by  a CUNY FRAP Award. 
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