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ON THE LATTICE

M. GOCKELER
Deutsches Elektronen-Synchrotron DESY, Hamburg, West Germany

Received 28 February 1983

The axial-vector current of Dirac-Kéhler fermions on the lattice is studied. We consider a
U(1) gauge theory in two dimensions as well as an SU(N) gauge theory in four dimensions. Using
a short-distance expansion of the fermion propagator in an external gauge field, we show that the
correct anomaly is reproduced in the continuum limit.

1. Introduction

The incorporation of fermions into the scheme of lattice gauge theories encoun-
ters the well-known degeneracy problem: the naively discretized Dirac action
describes more than one species of fermions in the continuum limit, Several methods
have been proposed to cope with this unwanted ““doubling”, e.g. by Wilson [1],
Susskind [2] and Drell et al. [3]. A somewhat different approach due to Becher
and Joos [4] (see also [S]) starts from the Dirac-Kiahler equation. It has the
advantage that there exists a straightforward correspondence between the con-
tinuum and the lattice description and that the degeneracy is no lattice artifact [6].

An important question concerning fermions on the lattice is the following. Does
the lattice description reproduce the correct anomaly of the axial-vector current
[7, 8] in the continuum limit? Karsten and Smit [9] have shown that the anomaly
vanishes in the continuum limit, if one uses the naive action and the most obvious
definition of the current on the lattice. This result originates from the fact that the
contributions of the different species to the would-be anomaly cancel. On the other
hand, applying Wilson’s degeneracy regularization they found the correct anomaly
in weak-coupling perturbation theory at the one-loop level. That Wilson’s action
reproduces the continuum anomaly was also proved by Kerler [10] in a non-
perturbative analysis. Defining an axial current different from that used by Karsten
and Smit, Sharatchandra et al. [11] derived the correct anomaly for Susskind
fermions as well as in the naive formulation.

In this paper we study the axial anomaly in the Dirac-Kahler framework. The
close connection between lattice and continuum, which exists in this approach
because of its geometrical interpretation, leads immediately to the definition of an
axial-vector current on the lattice. This current is conserved in the free case. We
want to show that the corresponding gauge invariant current of the interacting

508



M. Géckeler /| Dirac~-Kdhler fermions 509

theory has the correct anomaly in the continuum limit. The plan of the paper is as
follows: in sect. 2 we set up our notation and given the necessary preliminaries;
sect. 3 contains the calculation of the anomaly.

2. Preliminaries

In the Dirac-Kahler formalism the Dirac field is described by a general differential
form

@ ="p(x)+ Z @u(x)dx* + Z @ (x)dx* adx” +- (2.1)
u =1 nv=1
w<v

(For details about this formalism see [4].) We take @& to be complex and work in
n =2 or 4 euclidean dimensions. Using a multi-index notation we write

=Y ox, Hdx", (2.2)
H

where the sum extends over all ordered sets of indices H= {1, w2, ..., un} with
Ilspu<p,<--<up<nand
dxM=dx* adx*2a- - adx*. (2.3)

The action for a free Dirac-Kihler field reads

S. *;J’deqo (x, H)Y(d -6 + m)®)(x, H)

I Z &' ()_ Vuda +m) o) (2.4)

Here d is the exterior derivative, 8 is the co-derivative, and the connection between
the components ¢ (x, H), ¢(x, H) and the Dirac spinors ¢, ¢ is given by

elx, H) = i DY )ba s

ab=1

G H) = T G0 e (2.5)

ab-=1

For the euclidean y-matrices we use the following conventions:

{Yur v.} = 26,0, (2.6)
‘YH=YM.|‘Y“2”"Y;L;" fOI' Hs{“l)#Z)""#h}s
Mi<po<:- <pp, Yo=1. (2.7)

Eq. (2.4) shows that the Dirac-Kéhler field @ represents n ‘‘flavours’ of Dirac
fermions in n = 2 or 4 dimensions.
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We can define the 1-form

Y i (x)dx® 2.8)
w=1
of an axial-vector current:
_1 n/2 ) _
jA=( n) eZWl/nﬁ 1(¢,€ V¢)1
__1 n/2 ) _
DT i a1y B, ),
n
=Y {i bZ. J‘b’(X)Yuvsw‘b’(x)} dx*, (2.9)
" =
where
e=dx'adx>a---adx", (2.10)
Ys=—iv1v2, forn=2, (2.11)
Y5=Y1Y2Y3Y4 forn=4. (2.12)

The definitions of the Hodge star operator i, the Clifford product v and the
expressions ( , Yo (p=0,1,...,n) may be found in [4]. We have chosen the
phase factors in (2.9) such that the conventional axial-vector current emerges when
we rewrite j” in terms of Dirac spinors by using (2.5). If @ and & are solutions
of the Dirac-Kidhler equation and its adjoint, respectively,

d-6+m)d=0, (2.13)
(d-8-m)d=0, (2.14)
we have
6jA='2—le_2"‘/"mﬁﬁ'_l(<5,e vad), (2.15)
i.e.
Yo jhx)=0, form=0. (2.16)
"

Now we introduce a hypercubic lattice with lattice spacing a. Let e, be a vector
of length a in the p direction. Then the cells of our lattice are:

lattice points x=(x,J),
links (x,x+e.)=(x,{u}),
plaquettes (x,xte,x+e)=(x{u, v}, wn<v,
etc. A general cochain @ (the lattice analogue of a differential form) is written as

& =Y olx, Hd"", (2.17)
x,H
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where H has the same meaning as above and the elementary cochains d*" act on
the cells (x’, H') according to

d*H(x', H) =a"6. 8uir . (2.18)

Here and in the following 4 is equal to the number of elements in H. Using the
prescriptions of [4], we get for the free action on the lattice:

n

So= “7 Y $lx H)(dL~8u+m)@)(x, H) (2.19)

where d; and &, are the lattice versions of d and §, respectively.
In order to define an axial-vector current on the lattice we write down the lattice
analogues of (2.9) according to the rules in {4]. We have now

P Z dx‘{1_2‘....n} , (220)

and one realizes that the two expressions

(_- 1 )"/2 2mwi/n

e % (D, e vd),, (2.21)
(‘1)"/2 2mi/n , —1 =
e % Yevd, @), (2.22)

which are equal in the continuum, do not coincide on the lattice. Nevertheless,
each of them represents a conserved current (for m = 0) in the sense that
-0 1=
SL(Q—eZ"'/ % D, e vd>)1)
n
_1 n/2 B )
=6L(( ) e 2mi/n
n

% (e vq5,¢>1)=0, (2.23)

if @ and @ are solutions of the free lattice Dirac-K#hler equation and its adjoint,
respectively. So it seems reasonable to take

—1y? ) I L _
= 2’)1 (ez’"/"i?r D, evd)y+e 2™ "% Yevd, (D)l)
1 +ha
= XZ ?4;, (=1 Pur{u},CH
-I"MEH

x{e*™" (- 1)*@ (x +e,, H\{u Do (x + ers, CH) + @ (x, H)o (x +en, CH U {u})]
+e 2T [(=1)*@(x +en, CHp(x +e,, H\{u})
+@(x +ey, CHu{u Do (x, H)J} d**!, (2.24)

as the axial-vector current on the lattice. Here }.,; , .,y means: sum over all ordered
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index sets H which contain u. The complement CH of an ordered index set H, the
difference H\{u} etc. are again taken to be naturally ordered. The sign function
puk is defined for index sets H, K with HANK = J. It is equal to (—1)*, where v
is the number of pairs (i, j) such thati €e H,j e K and i > . Furthermore, pg = pu.g =
1. Note the particular point splitting in (2.24) and that the term with coefficient
e >™" looks like a “hermitian conjugate” of the term with coefficient e2™/",

A lattice gauge field is introduced as usual. On each link (x,{u}) we have a
variable U (x, 1) which takes its values in the gauge group ¥ = U(1) or SU(N). The
Dirac-Kahler field carries an additional colour index (for ¥ =SU(N)) and trans-
forms according to some unitary representation of 4. The local gauge transforma-

tions are given by
¢ x, H)—gx)e(x, H),
@(x, Hy—>@(x, Hig(x) ",

Ulx, u)—gx +e,)U(x, u)g(x) ! (2.25)
with g(x)e 9 For H= {1, p2,..., mn} (1 <m2< - - <u,) we define
eu= ). e, (2.26)
ueH

and
U, H)=Ulx +e,, teu,+ +eu, nun) - Ulx+e,, u)Ulx, ). (2.27)
Then products of the form
&(x, KU (x, H)g (x + ey, K'),
¢(x +ey, K)YU(x, H)g(x, K') (2.28)
are gauge invariant. When taking the continuum limit we shall write
Ux, p)=e* 4 (2.29)

Here g denotes the gauge coupling and A, (x) is a smooth continuum gauge field.
The gauge invariant action reads

§=5,U]- >:H¢>(x, H)G "'(x, Hly, K)o (y,K), (2.30)

y.K

where S [U] is the action of the pure gauge field and

i n 1
G "\(x, Hiy, K) = & [): CulH, K) = (U5 =€, )80, = By.)
"

) 1 .
+LCLH,K) (8, ~U (x,u)ay_m“)—ms,_,aﬂ,x}. (2.31)
"

In this formula colour indices have been suppressed, and the 2" x 2"-matrices
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C.(H, K) (H =row index, K = column index) are given by

w=12...,n.
The matrices C,, Cc? satisfy the anticommutation relations
{c..cy={CLcly=0, {C.Cl}=6..., (2.33)

and are analogous to the matrices A7, A; of [12]. As a gauge-invariant version
of the axial-vector current (2.24) we take

=Y M) d (2.34)
with

1 - M+h+
n 'Z{, =D o on

ek
x{e*™" [(=1)*¢ (x + ey H{u DU (x +e,., H{uhe (x + ey, CH)
+@(x, HU " (x, H) (x + ey, CHU {u )]

+e (1)@ (x +ew, CH)U (x +e,, H\{u Do (x +e,, H\{u})

+@(x +en, CHU{uhU (x, He(x, H)}} . (2.35)

In the following we shall need the propagator G of the Dirac-Kéhler field in an
arbitrary external gauge field. We define

A p) =

Zo = J D® Db e®, (2.36)

where jD(P D@ is the usual integration over the Grassmann variables ¢{x, H),
¢ (x, H), and get

G(x,Hly,K); = Zg J D®Dde '5«3,-(}', K)eilx, H), i, j = colour indices .
2.37)

In order to find a series expansion for G we split the Dirac-Kahler operator G
into a free part and an interaction part:

G—l(xy HIYs K); =-a"[G, ! (x, Hly, K)é; + V(x, Hly, K)il, (2.38)
with

. 1
G()‘(X, ij, K) = EZ [Cu(H’ K)((Sy.x ‘ay.x--eu)

m
+Cy (H,K)By xve, —8,.)]+ —BeyBuk, (2.39)
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1
v(xy H'y, K)u = n_a‘ X [Cu(H’ K)ay.x—e“ (aii - Uii(yv /J'))
f's

+Cu(H,K)8, e (U (x, 1) — 8], (2.40)

and consider G_'(x, Hly, K)ii, Vix, Hly, K),; etc. as matrices with row index (i, x, H)
and column index (, y, K). The free propagator —a ~ "G has the usual representation
as a Fourier integral:

Golx, Hly, K); = Gol(x, Hly, K)8;;, (2.41)
Go=aA+a’M, (2.42)
A, Hly, K) =L (CuH,K)f (x —y)~CLH,K)fu(y ~x)),  (2.43)
“
M (x,Hly, K) =méuxfix —y), (2.44)
fulx) = —— I d"g go(q) e (e M ~1), (2.45)
Qm)"J .
flx)= =" j d"q golq) € /7, (2.46)
QRm)" ) .
-1
golq) = (4 ¥ sin’(3q,.) +a2m2) i (2.47)
m
Now we can expand G in a series:
G=-a "Go ¥ (1) (VG,). (2.48)
r=1()
Applying (2.29) we have for a » 0:
O™, ifr<n-1,
Go(VGo)Y ={0@" Ina), ifr=n-1, (2.49)
O(a"), ifr>n—1.

Eq. (2.48) is essentially a short-distance expansion of G. Since the axial anomaly
is a quantum effect induced by the singularities of the propagator, only the first
few terms of (2.48) will contribute to the final result.

Later on it will be useful to write

V=V"+aV'+0(a? (2.50)
with

Vo(x,Hly,K)= —f}: [Cu(H, K)8yx e, A, (y) + C L (H,K)8, (e A (x)], (2.51)

2
Vix,Hly,K)= g—n YIC.(H, K)8y s, Au(y)’ = CL(H,K)8y 0 v, A, (x)7].
Fis
(2.52)
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Note the following symmetry properties:
AxHly,K)=-Ay, Kl H),  V°x,Hly, K);=V(y,K
M (x, Hly, K) = M(y, K|x, H), Vi, Hly, K); =-V'(y,

X, H)i,',
KX,H),','. (253)

3. Calculation of the anomaly of the axial-vector current

We start from the equations of motion on the lattice, which follow from the
action (2.30):

. 1 +
LH Plut i) (U (x, we(x +e,, H{u}) —e(x, H\{u}))

1
+ L Piurn (e, Ho{uh - Ulx —e,, n)ex —e,, Hu{u})

uncC
+me(x, H} =0, 3.1)
1
L P o (@0 +ew HuDU (x, 1) =6 (x, Hu})
pmekl
. 1 ) )
t Y Pl (@ Huluh -6k e How)U (x —ey, )
—-mg(x,H)=0. (3.2)
Using (3.1) and (3.2) one gets for the lattice divergence of the axial current:
Y2 (A ) =N e )
~a (X, €

_1 nl/2 . n
=m =D Y (—1)*pennle’™ "¢ (x +en, CH)U (x, H)e (x, H)

n H
e >""¢(x, HYU " (x, D)o (x + ey, CH)]+ B(x) . (3.3)

We shall show that the vacuum expectation value of B(x) will give the anomaly in
the continuum limit. The explicit expression for this B-term reads

(1)

B(X):_Eza—g % (_1)(?““/’}{\{#)&‘!{

weH
) e (- 1)@ (x + ey, HuhWilx, u, Hlg (x +en, CH)
+(=1)*@¢(x, H{u h Walx, u, H)p (x + ey, CH)

—@(x +ecu, H)Wslx, u, He (x, CHU {u})

—@(x +ecu, H)Walx, u, Hp (x —e,, CHU{u})]
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+e”™"[(-1)"¢ (x + ey, CHYWT (x, u, Hp(x +e,., H\{})
+(=1)*@(x + ey, CHYW] (x, u, H)p (x, H\{n})
—¢(x, CHu{uD W3 (x, u, H)o (x +ecu, H)
—¢(x —e,, CHU{uh Wi (x, u, Ho(x +ecu, H)]}, (3.4)
with
Wilx, u, H)=U"(x +e,, H{u}) - U (x, w)U " (x, H),
Walx, i, H)=U"(x, H) = U "(x, H\{p DU " (x + epnup )
Wix,u, H)=U(x, CH) - U (x +eci, u)U (x, CHu{u}),
Walx, p, H) = Ux —e,, CHulp ) - U(x, CHYU (x —e,, ) . (3.5)

Three points should be mentioned at this place. First, because

. 1o , e
sL( Y jlx,u)d "“’) ==~ L (i 0)=jx — e p) 47, (3.6)
X X,

the expression
1 .
=Y () —jlx —en, p)) (3.7)
a .

is the natural (from the geometrical point of view) lattice analogue of the divergence
of a current in the continuum. Secondly, in the classical continuum limit

(__ 1)n/2
n

m ¥ (—1)Ppenule’™ "¢ (x +en, CHYU (x, Hye (x, H)
H

2mi/n -

—e @lx, H)U "(x, H)p (x +ey, CH)]

S2mi § P x)yse ). (3.8)
b1

Thirdly, in the free theory we have U(x, u)=1 and consequently B(x)=0. If in
addition m =0, eq. (3.3) shows that our axial-vector current is conserved on the
lattice.

If one replaces the products of fermion fields in the B-term by the propagator
in the external gauge field, the resulting expression should tend to the anomaly as
a - 0. Therefore we study

Z3 J D¢ D® e *B(x)

(_l)n/2

= 2na ) E =D rurcn
fra

meH

x{(=1)* tr.[e”*™"Wi(x, u, H)G (x +en, CH|x +e,, H\{u})
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+e?™"W 1 (x, u, H)G (x +e,, H\{u}}x +e5;, CH)]

+(=1)* tr [e 72" Wilx, u, HIG x +en, CHlx, H\{u})

+e2""W3 (x, w, H)G (x, H\{u }}x + e, CH)]

—tre[e7* ™" Ws(x, w, H)G (x, CHU{u}x +ecu, H)

+¢*™"W3 (x, u, HIG (x +ecu, Hlx, CHu{u )]

—tre[e 77" Walx, , HIG (x ~ g CH U {ufx +ecun, H)

+e’™" Wi (x, u, HIG(x +ecn, Hlx —e,, CHU {u D]} (3.9)

for a = 0. Here tr. means trace over colour indices. Because

Wilx, u, H) = —iga® ¥ F,.(x)+O0(a”),
S

Wax, u, H)=—iga® ¥ F, +0(a’),
ii’,i

Wilx, u, H) = —iga® ¥ F.(x)+0l(a),
AeCH
Ap

Walx, u, H) = ~iga® %, Fa(x)+0(@’), (3.10)
)‘,\CE:

with
Foa(x)=38,A,(x)—0A,.(x)—ig[A,(x), Ax(x)], (3.11)

we need G up to terms of order a !

Consequently, in the case n =2 with gauge group U(1) only the first term of
(2.48) contributes to the anomaly. So we can replace G in (3.9) by —a 'A.
(M (x, Hly, K)=0 for the combinations (H, K) occurring in (3.9).) Inserting the
explicit expression (2.43) we find:

Zs J D® D® e *B(x)=ig(file)) +file12))Fi2(x)+O0(alna). (3.12)
The integral fi(e,) + fi(e12) can be calculated in the limit a >0 (see [11]):

) 2 (" )
lim (fi(e1) + filer2)) = lim 77[ d’q go(q) sin® (3q.) cos’ (3q)

5 72 .2 2 2
__EI d2 w=—~ (3.13)
7 a2 YuSin" g, T
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So we obtain the result

lim Z ' j D® D& e *B(x) =f Y e, F(x), (3.14)
[TR%

a—0

(e12 = 1), which is the correct anomaly for our model with two flavours.

Evaluating the vacuum expectation value of the B-term in n =4 dimensions we
have to take into account the terms with r =0, 1, 2 in the expansion (2.48) for G.
A typical contribution in (3.9) is of the form

1 +
—tr. (WG, Hly, K)— W*G(y, K|x, H)), (3.15)

where W is a matrix in colour space, which is of order a’ and antihermitian in this
order. It is easy to see that

C.(H,K)=CL(H,K)=8,x=0 (3.16)

for all combinations (H, K) which occur in (3.9). So G, does not contribute.
Therefore one can write by means of (2.53):

1
peC (WG (x, Hly, K)— W™ G{y, K|x, H))
=a "W -W")(AV§A)x, Hly, K)
[N}
+aW; L [(AVGAVLA)(x, Hly, K)
k

~(AV3AVLA)x H

y, K)Y]}+O(alna), (3.17)

for all (H, K) which appear in (3.9). With (3.17) we get the following contributions
to the a - 0 limit of the vacuum expectation value of the B-term:

Z;ljD¢ Dde *B(x)=B,(x)+Bx)+O0(alna). (3.18)
Here

i hy+
Bix)=-—=5Y X (-1)? hPH\(u).CH
8a w b

umweH

x T A(-1)* ' Wix, o H)i (A VEA)(x +en, CH|x +e,, H\{r})
8]

+(=1)* T Walx, p, H)i(AV5A) (x +en, CHlx, H\{u D)
+ Wsx, w, H)i(AVSA)(x +ecn, Hix, CHu{n})
+ Walx, w, H)i(AViA)x +ecn, Hlx —e,., CHu{u )}, (3.19)
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i ~ )+ ~ +
g7 2 CD  puen X AU Walx, w, H),
13 [
ucH

o)

=

>
I

X(AVGAVGA-AVIAVLA)(x +ey, CHlx +e,, H\{r))

+ (=" " Walx, u, H)s

X(AVG4AVIA—AVIAVLA)(x +ey, CH|x, H\{))

+ Wilx, u, Hi (AVEAVRA - AVIAVYA)(x +ecy, Hlx, CHU{u))

+ Walx, u, HJi(AVIGAVEA —AVEAVLA)(x + ey, Hlx —e,, CHU{u )
(3.20)

and

Wolx, u H) = Walx, i, H) - W, (, u, H),  a=1,2,3,4. (3.21)
So we have to calculate products of A and V°. We find:

(AV°A)(x, Hly,K)= ¥ A(x, H|z, L)V, Liz', LYA(z', L'y, K)

L1

ig /e 4 ip-(x+y)/2 e
:26"8 y dpe > A.(p)

X {e T PSPIRE (b e e, —x + yNC,C.CH(H, K)

+e TP PIRK (ple, e, —e. —x +v)(C,C,CTH, K)

+e “PTPIK (pe,—e,—x +y)C,CTC.)(H, K)

+e TR (e, e, — e —x +y)C,CICTV(H, K)

+e “""?K, (p. e, ~x +y)CIC.C.)(H, K)

+e PTPIIK (D, e, —e, —x +yNCIC,CTI(H, K)

+e K, (p,—e,~x +y(CICIC.)H,K)

+e PTPIRK  (p, —e, ~e, —x +y)CICTCTY(H, K)}.
(3.22)

Here we have introduced the Fourier transform of A, (x):
Ap)=a‘Ye " A, (x). (3.23)

Furthermore, we have used:

w/a

. 1 . i s
ZAV(Z)f(,(Z+x)fT(z+y)=WJ’ d*pA.(p)e ™™ "K, (p,x—y), (3.24)

-mw/a
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with

Korp, x)= J d*q go(q —3ap)gulq +31ap) € M (1 —e P21 T2
(3.25)

By means of (2.32) the products of the matrices C,, and CI are evaluated, and the
resulting expression for AV°A is inserted in (3.19). Next we expand the exponen-
tials and the functions K, up to first order in a, keeping p fixed and taking into
account that |e,| =a. All terms that might give contributions of order a "in B,
cancel, and we see that Wa (x, u, H) is needed only in the lowest order. So we use
(3.10) and get finally (g1734 = 1):

2

B](X):_I‘g7(11_312+313_14) Z Euvar trc(arAu(x)_avA'r(x))Fuo'(x)

277 oo,
g2
—I?(11—212+13) Z Euvar trc (a‘r\Av(x))(Fur(x)+Fuv(x))

®ova.T

+0O(alna) (3.26)

with

"/2 1 2 1 2 . . 1 2 .
1,=j gogAn i 927 S 4 i_q2,3,4. (3.27)
-m/2 (Z“Sln q.)

The evaluation of B, proceeds along similar lines. With the help of the anticommuta-
tion relations (2.33) and eq. (3.16) we find for the combinations (H, K) actually
occurring in B:

T(A VLAVXA - AVIAVGA)(x, Hly, K)

2
=2 ¥ [A.(0), A0y

4m* 3

X{N,(x -y — e, —ex)(C:C.C(H, K) + N, (x —y — e, +ex(C.C.C )(H, K)
+N(x -y +e, —eA)(GC.CLH, K) +N.(x —y +e, +ex(C,CLC)(H, K)
+N,(x —y+e,—e, —e ) (C,CACT)(H, K)

+N,(x —y+e, —e, +ex)(C.CiCT)(H, K)

+N,(x —y +e, +e, e, (CLCTC L )(H, K)

+N,(x—y+e,+e, +e,)(CLCACT)H,K)}+O(a Ina), (3.28)

where
-2

N.(x)= J" dq (4 T sin? (ilq“)) e /e (e — 1) | (3.29)
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Using again (3.10) we obtain
3

Bax) =25 T e tro[AL(x), A, (x)]

277 "o, T
}{(I[, =31+ 31— I)F,,(x)+ ([, -2+ [;)(F,.(x)+ F,,(x))}+Ola Ina) .
(3.30)

Combining (3.26) and (3.30) one gets
Ze I Do DP e *B(x)= —1—(11 30,+31,—14)

X Y faver tre Fu (x)F,,(x)+O0l(alna). (3.31)

®"VoT
Because
w/2 2 2 2 2
. (0 COS
Q2m) “(1,—312+313—14)=(2w)"J dig 3N 108 d:99% 935 44 (33
w2 (X,sin"q,)

is equal to the integral C,, which was shown by Sharatchandra et al. [11] to have
the value (3272)"", we arrive at the final result for the vacuum expectation value
of the B-term in the continuum limit:

2

nn%zg,‘J’qu DBe Bx)=—its ¥ eportre Fun(x)Eorix). (3.33)

2
47T ®oV0.T

This is the correct anomaly of the axial-vector current for four flavours.

We want to make some remarks. First, we have checked that the anomaly in the
continuum limit does not depend on the ordering of the indices ;€ H in (2.27).
Instead of the natural order, which we have chosen in (2.27) for all H, one could
have taken an arbitrary order for each index set H separately without affecting the
result. Secondly, the series (2.48) might, of course, diverge. But actually we need
only the first few terms explicitly, and with respect to the rest it suffices to know
certain regularity properties. It should be possible to establish these without relying
on an expansion like (2.48).

We close with remarking that there exists an alternative method for the calculation
of the axial anomaly due to Sharatchandra et al. [11] (see also [10]). Applying this
procedure one performs an infinitesimal local chiral transformation of the fermion
field in the integral

I D& Dde O, (3.34)
where @ is an arbitrary observable. In this way one obtains a kind of anomalous

Ward-Takahashi identity on the lattice. As a >0, one should recover from this
identity the divergence of the axial-vector current in the continuum including the
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anomaly. So one has to find a suitable chiral transformation. In the continuum
—e e v = —e P T (- 1) ey e (x, CH) dx” (3.35)
H

2mi/n (b)

corresponds to iysdz“’)(x), and ¢ eva is equivalent to i:/7 (x)vs, if one uses

the correspondence (2.5). Since on the lattice

evd =Y (-1 pepue(x +en, CH)d™", (3.36)
x,H
one takes as an infinitesimal local chiral transformation that preserves gauge
invariance:

8 =—e 27" ZH (=12 2p U " (x, Ho (x + ey, CH) d*" 8 (x) ,
sb=e""" ¥ (~1)?""peyné(x +en, CH)U (x, H d*""' 8a(x).  (3.37)
xH

One should notice the characteristic point splitting in (3.37). Now it is easy to
derive the above mentioned Ward-Takahashi identity. But it turns out that it
requires much more work to evaluate the anomaly by taking the continuum limit
of this identity than to perform the calculations outlined in the main part of this
section. Therefore we have used this second method only for the U(1) theory in
two dimensions. In that case we found the correct continuum anomaly as above.

It is a pleasure to thank Professor H. Joos for useful advice and Dr. P. Weisz
for a critical reading of the manuscript.
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