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We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological inte- 
rest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We 
use these methods to calculate (5~) directly on presently used lattice sizes with different boundary conditions. As is to be 
expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained 
on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry 
breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions 
for fermions. 

Lattice regularised [l] quantum chromodynamics, 

together with the Monte Carlo method [2] for gener- 

ating the vacuum, invites a first principles calculation 

of the low energy properties of QCD. For such a cal- 
culation to be relevant for continuum physics at least 
the following criteria should be met: (i) an action 
with the correct (classical) continuum limit should 
be used; (ii) the action and boundary conditions 
should preserve positivity [3], so that calculations of 
correlation functions on finite lattices, at finite lattice 
spacing, should make sense; (iii) physical values of the 
bare quark masses should be used; (iv) the @~a,)~ - 
Ltat lattice should be large enough to accommodate 
the physics of interest, the lattice spacing should not 
be too coarse, and the temperature should not be too 
high. Calculations within the pure gauge theory, e.g. 

of the glueball mass spectrum [4], do indeed meet 
these standards. 

Calculations with fermions, on the other hand, 
have made little progress since the first attempts [5] 
at the hadron mass spectrum, and, like those first ef- 
forts, usually satisfy none of our above criteria. Spe- 
cifically: (i) fermions are not included dynamically 
in the action - the quenched approximation; (ii) fer- 
mions are usually given periodic rather than the cor- 
rect antiperiodic boundary conditions, which are nec- 
essary for positivity ; (iii) calculations for light quarks 
have not been performed for physically realistic val- 
ues of the masses - convergence problems with the 
Gauss-Seidel and hopping parameter methods mean 
that the actual calculations are made for quark masses 
of hundreds of MeV, and then light quark physics is 
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obtained by means of extrapolations of unknown 
reliability; (iv) typically the lattice is smaller than the 
hadron whose mass is being calculated. 

In this paper we report on the first results of a pro- 
gram to remedy these defects. Specifically, we shall 
describe and apply methods for calculating directly 
with light quark masses. This will enable us to see 
what is reaZZy predicted by QCD, on the lattice we 
work with, without the biases imposed by the extra- 
polation procedures in the quark mass. We shall also 
employ the correct boundary conditions for positivity. 
The impact of not doing so will become apparent. In 
addition the methods we use enable us to go beyond 
the quenched approximation because they calculate 
the fermion determinant for us. In the calculation of 
this paper we shall, however, not pursue this last 
point beyond some remarks. 

The specific problem we address in this paper is 
the spontaneous breakdown of chiral symmetry. We 
shall calculate the condensate ($ $) down to zero bare 
quark mass in an attempt to elucidate whether lattice 
QCD indicates such a spontaneous breakdown or not. 
Since a finite lattice, being a system with a finite 
number of degrees of freedom, is not expected to 
manifest strict spontaneous symmetry breakdown, 
what one must do is to calculate for different lattice 
sizes so as to obtain an indication of the infinite 
volume limit. 

77ze lattice. We work with SU(3) gauge field con- 
figurations on 43 * 8 and 63 - 8 lattices at fl= 5.7 (0~ 6/g2). 
Using a string tension of (400 MeV)2 (one gets a simi- 
lar scale by measuring *r bsF,+vFpy~ and comparing 
to the value expected from QCD sum rules 181) the 
parameters of our lattices are shown in table 1. The 
value of fl has been chosen with the experience of the 
glueball spectrum calculations [4] in mind: at this p 

*’ For recent calculations in SU(3) see ref. [6] and SU(2) 

see ref. [7]. 

Table 1 
Parameters of the lattices used. 

Lattice 

;z:; 

Lattice 

spacing 

(fm) 

0.275 

0.275 

Spatial 
lattice size 

Km) 

1.10 

1.65 

Lattice 
temperature 

(MeV) 

91 

91 

434 

the glueball is about 2a across so that the lattice 
spacing should be small enough to carry the character- 
istic nonperturbative fluctuations of the gluon field. 
Since we expect hadrons with quarks to be about 1 
fm across, the physics of such hadrons should, in 
most respects, be reproducible with such a lattice 
spacing. The volume of these lattices is less satisfactory; 
they are large enough for the typical physics of the 
pure gauge theory, but are smaller than the two pion 
Compton wavelengths across that is presumably a 
minimal size for good pion physics. The temperature 
is adequately low, although it will modify any physics 

on a scale 50 (100 MeV). We shall use the correct 
boundary conditions for positivity - antiperiodic for 
fermions, periodic for the gauge field - except when 
stated. 

77ze action. The euclidean lattice QCD action S 
may be written in terms of gluonic and fermionic 
pieces as 

s=s, +s, ) (1) 

where 

SF = -F [M(U) t 2ma] $ 

S, is the standard Wilson action [l] . The fermion 
action we use is the Kogut-Susskind type [9]. This has 
the explicit advantage of being chirally symmetric in 
the massless case which makes it appropriate for our 
purposes. Here m is the bare quark mass. The matrix 
M is an N X N sparse complex matrix where N = 
12 LZL,. For the purposes of doing fermion physics 
the basic technical problem is to calculate the inverse 
matrix [M(w + 2ma]-1 and (if one wants to do bet- 
ter than the quenched approximation) the determi- 
nant det(M(q + 2ma). The huge size of such a matrix 
leads to problems with memory storage and rounding 
errors that is a major difficulty with large lattices. 

($$J). The condensate <$ r/j) is the quark propagator 
at zero spacing (averaged over gauge fields) 
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($ G(m)) = (3/N) (tr(M + 2~2~)) l) . (4) 

The statement of spontaneous chiral symmetry break- 
ing is (the order of limits is important) 

lim lim 
m-0 volume +- 

($ $(m)) = constant # 0 . (5) 

We can decompose the antihermitean matrix A4 into 

M = I m l‘f ) (6) 

where r is a unitary block diagonal matrix containing 
all the y factors [IO]. Clearly tr(M) = 4 tr(%). Let Xi, 

i= 1 , . . . . N/4 be the eigenvalues of the (reduced) 
matrix i W. These eigenvalues come in pairs of equal 
and opposite sign (because y5M = -My5), so we can 
write 

Gw4~ = g4 &? :;ka)2) 
I 

+CC 

------A3 (i‘ dX 2maO) 
volume+- em ) A22(2?@2 ’ 

for a normalised spectral density p(h), and hence 

lim lim 
m -0 volume+m 

($ G(m)> = 3np(O) . 03) 

Hence it is the volume dependence of the eigenvalues 
of M close to zero that determines whether chiral 
symmetry breaks spontaneously or not. These are the 
long distance fluctuations of the fermion fields. Hence 
it will not be important for us to take account of lat- 
tice weak coupling subtraction to ($ $) in this particu- 
lar calculation. 

We now describe three methods that will calculate 
the eigenvalue spectrum, determinant, and inverse. 

Details of their practical application, including some 
indispensable tricks for suppressing accumulating 
round-off errors and for speeding up convergence (in 
the third method) will be published elsewhere [ 111. 

Lanczos method(12] *’ . The Lanczos method will 
reduce a hermitian matrix, H, to tridiagonal form. 
One can then diagonalise with a standard library rou- 
tine for diagonalising tridiagonal matrices. Having 
done this once for the zero quark mass case, we can 
then use (7) to obtain (J/$(m)) for all m. The actual 

*’ 1701 nuclear physics applications see ref. [ 131. For con- 

densed matter applications see ref. [ 141. 

algorithm proceeds by constructing for an N X N 
matrix N orthonormal vectors {vi}as follows: 

ui+l =(bi+l)-‘[(H-ai)ui-biui_,] , 

ai=UTHVi, 

bi+l = I(H - ai)ui - biUi_ 11 . (9) 

It is clear from the first relation that applying the uni- 
tary matrix V = (u 0, . . . . UN_ I) to H Will produce a 
matrix T = VHVt which is tridiagonal with diagonal 
elements a o, . . . . UN_ 1 and off-diagonal elements 
bl, . . . . bN_ 1. Moreover, T and H have the same eigen- 
values because the transformation relating them is 
unitary. 

The product of the eigenvalues gives us the deter- 
minant, which, used as a weighting factor on the gauge 
field configurations, will incorporate the vacuum 
fermion dynamics neglected in the quenched approxi- 
mation. It is also obvious that one can reverse the 
above procedure so as to go from the inverted diagonal 
matrix to H-l. 

Exact inverse (simplex method(lS/). Let A be a 
square matrix and let 6A be a matrix with just one 
column non-zero: 

GAq = aidi, . 

Then 

(10) 

(A t&A)-1 =(l tAP16A)-1AP1 ETA-’ , 

Tij=6ij-6ir(A-la)i[1 +(A-la)r]-l. (11) 

So we can start with the unit matrix and gradually 
fill in column by column to obtain the inverse of an 
arbitrary matrix,ilri. It will not work, however, ifM 
has any zeroes on the diagonal. This means that the 
quark mass must be non-zero. Since the method works 
well down to very small masses this is not a serious 
restriction. The advantage of this particular inversion 
method is its numerical stability (resistance to round- 
off errors). The main defect is that it requires the in- 
verse to be stored at every state, which is not a prob- 
lem on a 43 - 8 lattice but becomes prohibitive for 
much larger lattices. 

Conjugate gradient method (16/. This method 
will solve 

Ax=6 (12) 
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for a given N X N matrix A and vector B . The solution 
proceeds iteratively and is guaranteed (barring 
round-off errors) to give the exact solution within N 
steps. To obtain the inverse we solve the N such equa- 
tions where the b are the columns of the unit matrix. 
The method requires A to be positive definite. Since 
our fermion matrix is not, we present the more gen- 
eral version of the algorithm which solves 

AtAx =Atb . (13) 

To solve (13) we obtain a sequence of vectors xi 
which converge to x. The algorithm proceeds as fol- 
lows. Choose some initial vector x0. Then 

xi+1 =xi + o&Jj 3 

where 

(14) 

PO =A+,, , ro=b-Ax,, 

pi+1 =Atri+, +Pipi a ri+l =ri - q&i > 

C+ = IAtri12/&i12 , pi = IAtr,,, 12/jA’frf12 . (15) 

We have found this method to be far more efficient 

for small quark masses than the Gauss-Seidel or 
Neumann iterative schemes. By comparing with the 
exact inverse (previous section) on a 43 - 8 lattice we 
see that even with 5 MeV quarks the method is well 
converged for all elements within E 100 iterations. 
Unlike the exact inverse, however, this method is 
practical for larger lattices [ 111. 

Relevance of the quenched approximation. We will 
work in the quenched approximation because it makes 
the calculation more tractable. What will our results 
have to do with the full dynamical theory? It is some- 
times argued that the success of the simplest quark 
spectroscopy for hadrons implies that the quenched 
approximation must be good. This argument is, how- 
ever, spurious: it might just imply that gauge fields 
fall mainly into two classes, one of which suppresses 
fermion loops, while the other is suppressed by fermion 
loops. If one neglects fermion loops altogether, this 
latter class of gauge fields will be suppressed no longer 
and could easily alter the physics. One can make up 
examples of this involving (continuum) configura- 
tions with instantons. 

The constructive remark we wish to make comes 
from the following observation: a small eigenvalue of 
the fermion matrix will, in the quenched approxima- 
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tion, lead to a large contribution to <$$, [as is clear 
from (7)], while in the full theory this effect will be 
reduced by the presence of the same small eigenvalue 
in the numerator from the determinant. This suggests 
that spontaneous symmetry breakdown occurs more 
readily in the quenched than in the full theory: 

I($ $4 quenched 2 I(?$)]QcD . (16) 
So if QCD breaks chiral symmetry spontaneously, this 
will be visible in the quenched approximation, We now 
turn to our results on (\i/ $). 

ResuEts, Our results are based on measurements 
performed upon two 43 - 8 lattice gauge field contigu- 
rations and one 63 - 8 configuration. Since we calcu- 
late $$J at every site of each lattice, we have in fact 
made thousands of measurements of this quantity, 
and our statistical errors are very small. We are able to 
obtain reliable results on very few lattice configura- 
tions because one finds that the fermion physics 
varies very little for different gauge field configura- 
tions (see below). We remark that the two 43 - 8 con- 
figurations are completely independent. They were 
generated from independent starting configurations 
and were then iterated through some 4000 configu- 
rations using the SU(3) heat bath algorithm. 

Using the Lanczos algorithm we have calculated 
the complete eigenvalue spectrum p(h) of each 43 - 8 
configuration. The similarity of the two spectra is re- 
markable. Is this perhaps just an effect of the quench- 
ed approximation? To answer this we have calculated 
the ratio of the determinants for the two configura- 
tions as a function of the bare quark mass which 
turns out to be of O(1). So we conclude that the 
similarity will persist even if we include fermion 
vacuum fluctuations. 

In fig. la we plot (3$(m)), averaged over the two 
43 * 8 configurations, as obtained from the above 
eigenvalue spectrum (Lanczos), the exact inverse 
method and the conjugate gradient method. Note 
that in all three cases we get identical results which 

prove the accuracy of our methods. For comparison 
reasons we also have plotted the results of the more 
popular pseudo-fermion Monte Carlo method [17] of 
inverting matrices, for which we have written a heat 
bath algorithm [ 1 l] It is apparent that this last 
method is less efficient than the others (while it needs 

the same amount of computer time). The two indi- 
vidual configurations showed only tiny differences at 
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Fig. 1. (a) (+ $) on 43* S’for antiperiodic boundary condi- 

tions averaged over configurations 1 and 2. (b) (T$J) on 
43 - S’, periodic versus antiperiodic boundary conditions. 
(c) (Fe) for free theory, periodic versus antiperiodic boundary 

conditions and volume dependence. 

small masses (25%) which underlines that the fermion 
physics indeed varies very little for different gauge 
field configurations. 

We observe that, as expected for a finite lattice, 

ww,,, + 0. More to the point, we can see no 
obvious break in the curve that might mark the onset, 
at lower masses, of finite size effects (and which might 
motivate an infinite volume extrapolation). The lesson 
is that the physics of a single small lattice provides no 
unprejudiced guidance as to the infinite volume limit 
of ($$) at zero mass. The only reliable approach is to 
obtain the volume dependence directly by working on 
lattices of differing sizes. 

Before proceeding to that, it is interesting to redo 
the above calculations with the (incorrect) periodic 
fermion boundary conditions which have been ex- 

tensively used in the recent literature. In fig. lb we 
compare (F$(m)) for the two types of boundary con- 
dition. The change is drastic. It is clear that imposing 
periodicity on the fermion fields increases the num- 

ber of small eigenvalues. In particular, the smallest 
eigenvalue is a factor of ten smaller than in the anti- 
periodic case (~min = 0.007 versus hmin = 0.07) SO 

that although ($J $J) does tend to zero at zero quark 
mass it does so at such small masses that the turn- 
over is not visible on the scale of the figure. 

To understand what is happening we repeat these 
calculations for the free fermion theory (all link ele- 
ments are unit matrices). In fig. lc we plot ($$(m)) 
for both boundary conditions. The relative behaviour 
of the two curves is similar to that of the interacting 
case but even more pronounced. Here, however, it is 
easy to understand the difference. The minimum mo- 
mentum on a periodic lattice is zero, but is non-zero 
on an antiperiodic lattice: 

(p,Jmin = 0 periodic , 

= n/L,a antiperiodic , 

and this translates, via (7), into 

lim C&+(m)> = m periodic , 
m-+0 

= 0 antiperiodic . 

(17) 

(18) 

In ($$> this zero eigenvalue contributes with a coef- 
ficient of 0(1/N,), where N, is the number of sites 
in the lattice. Hence the difference between the two 
sets of boundary conditions disappears in the large 
volume limit (compare the 43 * 8 and 104 lattice 
curves in fig. 1 c) and 

lim lim <F$(m)> = 0 , (19) 
m-+0 N,-+- 
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so that (fortunately) chiral symmetry is not sponta- 
neously broken in the free field theory. 

It is very plausible that it is the same effect, smear- 
ed out by the presence of interactions, that produces 
the difference between the curves in fig. lb. So we 
expect that 

($$)periodic z+_ ‘$$)antiperiodic ’ (20) 

which indeed is consistent with our later results. 
The correct way to proceed at this point is to per- 

form the calculation for several lattices of increasing 
volume, and to see if an envelope develops for the 
(q+(m)) curves which naturally extrapolates to a 
non-zero value at zero mass. One then repeats the 
calculation at several values of /.I to check for renor- 
malisation group behaviour. 

To take the first step in this program we have re- 
peated our measurements on a 63 * 8 lattice, which 
has a volume of e3.5 times that of the 43 * 8 lattice. 
In fig. 2a we plot (F$(m)) for a single 63 - 8 gauge 
field configuration, together with the average for 
the two 43 l 8 configurations. The difference is in a 
direction consistent with eventual spontaneous sym- 
metry breaking. In fig. 2b we compare the small 
eigenvalue spectrum of the 43 - 8 and 63 * 8 configu- 
rations. We observe that the 63 * 8 density extends 
to lower eigenvalues, while scaling roughly for larger 
eigenvalues. This is of course precisely the trend re- 
quired for eventual spontaneous chiral symmetry 
breaking. 
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Let us now return to (20). We have repeated our 
calculation on the 63 * 8 lattice for periodic boundary 
conditions. The result is plotted in fig. 2c which 
shows that in the interacting theory as well the dif- 
ference between the two sets of boundary condi- 
tions gradually disappears in the large volume limit, 
though it might take quite a big lattice until the 
two curves meet for physical quark masses. The prac- 
tical observation here is that the case with periodic 
fermion boundary conditions shows much stronger 
finite size effects and hence, for this reason also, is 
dangerous to use. 

0 01 02 03 OL 05 
ma 

Fig. 2. (a) ($I$) for antiperiodic boundary conditions, 6 3 - 8 
versus 43 - 8. (b) Eigenvalue spectrum at small h for anti- 

periodic boundary conditions, 66 - 8 versus 4j - 8. cc) CT@) 

on 63 - 8, beriodic versus antiperiodic boundary conditions 
and volume dependence. 

FinaI remarks. We observe that presently used mental p/rr ratio. For the small lattices used, this 
small lattices do not reproduce the desired chiral sym- forces the calculation into an unphysical region of 
metry - and hence pion - properties of QCD. Calcu- mass parameters and may very well destabilise the cal- 
lations with Wilson fermions, which do not contain culated spectrum. We prefer to use an action where 
the quark mass explicitly, use that value of the the quark mass is a variable, and to be realistic about 
hopping parameter, K, which reproduces the experi- how well we can deal with the pion. 
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In a forthcoming paper we complement the pres- 
ent discussion with a similarly realistic calculation of 
the hadron spectrum on a large lattice, using the 
methods described herein. We shall also use our mea- 
surements of the determinant to go beyond the 
quenched approximation. 

We have presented the algorithms for our methods 
of calculating at physically realistic quark mass in suf- 

ficient detail so as to make them useful for the reader 
who wishes to perform lattice QCD calculations with- 
out ad hoc extrapolations. 
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