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It is shown that  the  mass  matr ix  for Susskind fermions  on the lattice cannot  have more  than two distinct eigenvalues if 
cubic symmet ry  is enforced. If  the standard interaction is replaced by one proposed by Becher and Joos,  degeneracy-lifting 
mass  counte r te rms  are induced. The A-parameter  is calculated. 

Among the different ways of  putting fermions on a 
lattice, Susskind's method [1,2] is probably the most 
attractive one, at least from a theoretical point of  view. 
Unlike Wilson's method [3], it retains a "chiral" sym- 
metry. (see the discussion below). Unfortunately it also 
retains a part o f  the species "doubling" seen with naive 
fermions, and makes practical calculations somewhat in- 
volved. However, the recent discovery [4] that Susskind 
fermions have a deep geometrical f o u n d a t i o n -  they 
satisfy the natural lattice version of  the equation 
derived by K/ihler in his programme of  rewriting 
the Dirac equation in terms of  differential forms - has 
given a new boost to the method. 

The original Susskind description used one-compo- 
nent fermionic variables attached to the sites of  a lat- 
tice. It turns out that the free theory admits a more 
convenient formulation on the block lattice with spac- 
ing twice as large as the original one. One can use 
either cochains [4] or matrices [5] associated with the 
new sites, the two pictures being equivalent. A 4 × 4 
matrix is a transparent way of  representing the four 
four-component fermions arising in this (euclidean) 
description and will be used by us. 

Gauge interactions can be introduced in two inequiv- 
alent ways, both of  which lead to the desired classical 
continuum limit. One can stick to the original lattice 
and have gauge matrices sitting on its links. One can 
also work on the block lattice and have gauge matrices 
only on the bigger links. The former choice makes for 
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a bigger invariance group: one can have independent 
gauge transformations not only at the sites o f  the block 
lattice, but also at the sites of  the original lattice ex- 
cluded from the block lattice. This seems to us to be 
more in line with the principle of  extending a symme- 
try from a global one to a maximally local one, and 
was in fact the interaction originally considered [ 1,2]. 
The second way of  bringing in interactions [4] has the 
advantage of  being technically easier to handle. It has 
been argued that this is the more natural interaction 
because here one does not have different gauge trans- 
formations for different spinor and flavour compo- 
nents. However, when for nonzero lattice spacing all 
these components are spread out on different sites, dif- 
ferent transformations do not look all that unnatural. 
In any case, these are just questions of  aesthetics. The 
proof of  the pudding is in the eating. 

In this letter we are interested in masses - those put 
in by hand, as well as those generated by counterterms. 
Bare masses were considered in ref. [6]. We discuss this 
question here from the point of  view of  a rotational 
symmetry of  the theory. If  we insist on this symmetry 
on the lattice, then the degeneracy of  the fermions can 
be only partially lifted. 

As regards masses induced by quantum corrections, 
the one-loop investigations ofref.  [2] indicated that the 
full interaction introduced on the original lattice does 
not generate masses. We find that the interaction intro- 
duced on the block lattice does not share this nice fea- 
ture: a mass counterterm is indeed produced. We dis- 
cuss how this is compatible with the "chirar '  sym- 
metry. 
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A by-product of  our perturbative studies is the de- 
termination of  the A-parameter for the block-lattice 
interaction. The value differs significantly from that 
associated with the original interaction and is in fact 
close to the value for the pure gauge theory. 

We start with Gliozzi's form [5] of  the massless 
Susskind action on a four-dimensional, hypercubic, 
euclidean lattice of unit spacing: 

S = ~ tr "~'(x){3"uVu~k'(x) + 3"SAu~'(x)3"53"u}. (1) 
X 

Here ~' ,  ~'are 4 × 4 matrices defined on the sites x, 
the 3,-matrices are hermitian, and the derivatives are 
defined by 

v.~'(x)---~ ' + {ff (x eu) - ¢ ' (x  - ea)), 

t - -  1 
Au~k ( x ) -  7 {ff ' (x+eu) + ~ ' ( x - e , ) -  2qJ'(x)}. (2) 

The second term on the right-hand side of  (1) distin- 
guishes it from the naive action. It vanishes in the con- 
tinuum limit, as can be checked by.putting in the lat- 
tice spacing. On the lattice its presence is essential if 
the 16-fold degeneracy of  naive fermions is to be avoid- 
ed. Besides mixing the different columns of our ma- 
trices, this term also seems to break parity. That this 
is an illusion is best seen by going over to the new ma- 
trix variables 

= qJ Q + - 3 ' 5 ~ ' Q - ,  ~ = Q + ~ ' + Q _ t ~ ' 7 5 ,  (3) 

where 

_1 (1+3,5). Q_. - 7  - 

One can rewrite (1) as 

S = ~ tr ~(x){3'uVu~(x) + Au¢(x)3"u}, (4) 
X 

where the 3'5 has disappeared. This action is invariant 
under ";t-parity" (any ;t) 

~(x)-+v.¢(9 .x) ,  ~(x)-~ ~ ( ~ . x ) v . ,  (s) 

where 

( 3~uX)v = (_)*uv- 1 xu" (6) 

A mass term can be introduced in (4). It will have the 
form tr ~ ~0M with M an arbitrary hermitian 4 X 4 ma- 
trix. Such mass terms have been considered in ref. [6]. 
The term tr ~ ' ~ '  which corresponds to tr t ~ 7 5  in the 

redefined version arises naturally from the original 
Susskind formulation, but other mass terms can be in- 
troduced and correspond to particular non-nearest- 
neighbour couplings. M can be diagonalized and in the 
naive continuum limit one obtains four independent 
fermions. However, on the lattice the A a piece in the 
action couples these. It also reduces the rotational sym- 
metry of  the action, with the result, as we shall present. 
ly see, that a general mass matrix breaks this symmetry. 
For the rotation described by 

x ~ A - l x ,  ( A - l x ) a  = xv, (A - l x ) v  = - xu, 

rest unchanged, (7) 

the straightforward lattice analogue of  the transforma- 
tion of  continuum spinors is 

~(x)-* S(A) ¢(A-lx), 

with 

S(A ) = (1/ , f2)  (1 - Vu3"v). 

~ (x)-~ ~ (A-lx)S-I(A ), 
(8) 

(9) 

This leaves the first piece of  the action, as also all mass 
terms, invariant, but the so called irrelevant A u piece 
changes. The above transformation can be modified to 

~ (x) -~ S(A ) ~ ( A - l x )  R (A ), 

~(x) ~ R - I ( A )  t~ (A-  lx) S -  I(A), (10) 

with 

R(A)  = i75 (7 u -Tv) lX/~  (11) 

so that the full action (4) stays invariant, but then 
some mass matrices will break this invariance. In fact 
the most general mass matrix that is strictly invariant is 

' m' ~ 3'~o (12) M(1 ) = ml  +7  

Note that this does not include the original Susskind 
mass term tr ~ 3 ' 5 .  This mass term anticommutes 
rather than commutes wi thR(A) ,  which means that it 
changes sign under the rotation (7). This change of  sign 
can however be compensated by a "chiral" transfor- 
marion 

~0(x)~3's~(x)v s, ~(x)-,-vs~(X)Vs, (13) 

so that the action remains invariant under the joint ac- 
tion of  (13) and (10). A mass matrix of  the form 
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T5 Z~7~ also anticommutes with R(A) ,  but the result- 
ing change of  sign cannot be compensated by the 
"chiral" transformation. The general structure of  the 
mass matrix that keeps the action invariant under the 
above joint transformation is 

t t  1 m' ~ T~o. (14) M(2 ) = m 3'5 + 
~o 

The second piece, which we have met before, stays in- 
variant separately under the two transformations. 

The fact that one can have a mass term which is in- 
variant under (13) means incidentally that this is not 
a normal chiral transformation. In fact if we go to the 
naive continuum limit and redefine the fields in such 
a way that the m'  term becomes the usual mass term 
m'  tr ~"~" ,  one finds that in that basis the transfor- 
mation (13) is a pure rotation in the species ("flavour") 
space and has nothing to do with chirality. Consequent- 
ly it is not quite accurate to say that Susskind fermions 
have chiral invariance. 

It may be of  interest to look at the eigenvalues of  
the mass matrices. 114(1 ) has two double eigenvalues m 
-+ m' ,  and describes in the naive continuum limit two 
fermions of  mass m + m',  and two of  mass I m -  m'l. 
If m 4: m' ,  the degeneracy is partly lifted. On the 
other hand M(2 ) has the double eigenvalues + (m "2 
+ m'2) 1/2 and describes four degenerate fermions of  
mass (m "2 + m'2)  1/2 in the naive continuum limit. 

Of course, the insistence on these rotational sym- 
metries may be unreasonably restrictive. While it is 
believed that a cubic symmetry on the lattice is suffi- 
cient to guarantee continuous rotational invariance in 
the continuum, there is no argument saying that it is 
necessary. If  we give up these restrictions, an arbitrary 
mass matrix M can be introduced and one can have 
arbitrarily different masses for the fermions in the con- 
tinuum limit. We examined the effect of  mass terms 
on various diagrams to see if,the rotational symmetry 
is broken in the continuum limit but failed to find 
anything positive. 

So much for bare masses. Can any mass term be 
produced by quantum corrections? If either m" or m 
is zero, then it stays zero because of  invariance under 
(10) or under (13) together with (10). On the other 
hand the m'  term is invariant under both o f  these sym- 
metries and can in principle be generated even if all 
mass terms are zero to begin with. The question is, 
whether it is in fact generated. 

The answer depends in the way in which the inter- 
action is introduced. One-loop calculations with the 
original Susskind interaction [2] do not provide any 
evidence for the generation of  such counterterms. We 
however worked with a slightly different interaction 
[4] defined directly on the block lattice. The action is 
still given by (4), with (2) replaced by 

_1 7ut) ( x ) - 7  (u(x ,u)  t~(x +eu) 

- u - l ( x  - e u , u )  ¢ ( x  - e u ) } ,  

1 {u(x, u) 2x u t) ( x ) = -~ t~ ( x + e u ) 

+ u - l ( x - e u , u )  t p ( x - e u ) -  2tp(x)}. (15) 

To do weak coupling perturbations one sets u(x, / l )  
• 1 x i A i ( x )  ] and expands ing. Here½ X i de- = exp [lg ~- 

notes the ith generator of  the gauge group SU(N). 
We examined the one-loop contributions to the 

fermion self-energy and the vacuum polarization ten- 
sor. We worked in a covariant ~-gauge and obtained for 
the fermion self-energy 2(0)  at zero mass (M = 0) and 
zero momentum the ~-independent result 

2 ~ ( 0 ) - N 2 - 1  3g2 1 ® ~ T 
2N 16 T~ 

X / d41 1 

n (2704 ~t~ sin21 / 
(16) 

The first matrix, viz., 1 acts in spinor space while the 
other is in the species ("flavour") space. In our matrix 
notation, then, the counterterm has the expected struc. 
ture tr ~ ~N~,~.  This result means that the action (4) 
with the interaction given by (15) is not self-consistent 
and a mass term of  the above form has to be added. If  
the physical mass is to be zero, a fine tuning of  the co- 
efficient of  the term is necessary. This is precisely 
what happens with Wilson fermions 17], so that the 
real practical superiority of  Susskind fermions to 
Wilson fermions collapses when the interaction is intro- 
duced as in (15). 

We have also calculated the vacuum polarization 
tensor to one-loop level• To extract the A-parameter it 
is sufficient [8] to extract the terms quadratic in the 
momenta, keeping a mass parameter, e.g. m", non- 
zero at first. We obtain 
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q - q i d4p 
% ~ ( p )  _ ~ 4 g 2 ( p . p ~  _ p2~.~)  -,~ (2~r)4 

1 

I -- -$ cos l 1 cos l 2 _ + higher degree terms. 
X (m "2 + 42;~ sin 2 ½ l~o)~ 

(17) 

Comparing with previous work [8], we then obtain 
the ratio 

Amin 
= 12.51, f o r N =  3, 

A (Becher-Joos) 

= 7.77, f o r N =  2. (18) 

It is curious that these values are very close to those 
for the pure gauge theory,  

Amin 
A(pure gauge) - 10.85, f o r N  = 3, 

= 7.46, f o r N - -  2, (19) 

in contrast to the case of  the original Susskind interac- 
tion: 

Amin 
= 28.78, for N = 3, 

A(original Susskind) 

= 34.44, for N = 2. (2o) 

Of course, these numbers have no intrinsic meaning 
and must be coupled with nonperturbative calculations, 
e.g. o f  the Monte Carlo type,  including fermion loop 
effects. 
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