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First Monte Carlo results are reported for the two-dimensional 0(3) non-linear sigma model with an action perturbative- 
ly improved up to one-loop order. We find a markedly improved scaling behaviour of the correlation length and of the mag- 
netic susceptibility. The universal parts of the 13- and ,/-functions are approached fast by the numerically calculated functions. 

In massless renormalizable lattice theories (asymp- 
totically free, to be reasonably assured of  a non-trivial 
continuum limit) all physical quantities are, in the con- 
tinuum limit, proportional to the appropriate power 
of  the correlation length (inverse mass gap) ~ with uni- 
versal coefficients. For non-zero lattice spacing a v~ 0 
this "scaling" is violated by non-universal terms of  or- 
der O((a/~) 2 ln(~/a)') [1].  By including in the lattice 
action judiciously chosen "irrelevant" terms (next-to- 
nearest-neighbour couplings and other higher dimen- 
sional terms having, for dimensional reasons, an extra 
factor a2). these violations can be reduced to O((a/ 
~)4 ln(~/a)') [ 2 - 5 ] .  More explicitly, n-point Green- 
functions calculated on the lattice with "standard" ac- 
tion obey [6] 

[--a O/Oa + ~(g) O/Og + n'y(g)] Gn(Pl .... , Pn ;g, a) 

= O(a 2 in a ' ) .  (1) 

Improvement, as described, leads to O(a 4 In a ' )  on the 
right-hand side. The ~- and "y-functions have in the 
O(N) non-linear sigma model the universal parts [7] : 

t3univ(g ) = - [ ( N -  2)/27r] g2 [ ( N -  2)/47r 2] g3 , 
(2a) 
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7univ(g) = [ ( N -  1)/2~r] g .  (2b) 

In this model, the improved action has the following 
form [41: 

- g- la2 / ~  I(-- {~KO+ J~b) Sim p - 

+ a2j[c 1 (p((oKO) + c2K(P] + a2c3(Jc~)2 + a2c4 J2 

+ a2¢5(K(o)2 + a 2 ( -  ~ + c6) ~ (O~0~q~) 2 
/a 

+ aZc7(~K~) 2 + a2c8 ~ ( q ~ u 3 ~ )  2 

+a2c9 ~ ~. ~ q 5  (3) 
~v 

Here the O(N)-vectors ~ = 4~/on lattice sites ] are nor- 
malized to unity: {b 2 = 1, and the following notations 
are used: 

0#~bj=a- l (~b j+~-~ j ) ,  O++adp=a-l(q) J - # _ ~ . )  , 

with 

2 

K = - ~ 0u~ ~ . (4) 
/z=l 
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The Green-functions are obtained by differentiating 

Zim p = f[dq~] exp(Simp) with respect to the source 
vector J.  The irrelevant terms in (3) involving the 
source J are characteristic for models defined in terms 
of  constraints [8] * 1. The improvement coefficients 
ci(g , N) can be determined in perturbat ion theory,  in 
1/N expansion or, in principle, also by Monte Carlo 
checks of  scaling ("tr ial  and error").  In lowest (one 
loop)  order perturbat ion theory,  defining c i = cilg 
+ ci2g 2 + ..., one finds (for details see ref. [8] ): 

Cll  =~ --c31 --C71 , 

c21 = 23` (N-  1 ) - / 3 - ( 1  + liN)6 
+ (1 + 1/N)(c31 + c71) ,  

c41 = - ( N  - 1)3` - (1 + 1IN)c31 , 

c51 = 8 + 1 3 -  ( N -  1)3' - ( 1  + 1/N)c71 , 

c61 = o~ + (3 /N)(e  - ~ ) ,  

c81 = 3(6 -- e ) ,  c91 = --48 

with 

f(O41OK4)N(K1) 
a = a ~ = -0 .0061880  ... 

K 

['((a21~K2)N(K1) 1 ) 2 +o 
/3=~\ 4 ~  2K 4 16 .  4 

= -0 .017308 . . .  

(5) 

/ ( 4 [ JV~K 1 ) 2+.=0.0011994 
3' = )] 2 4 K  4 32 .~  "'" 

,5 =K \¢( (i)2/oKT)N(K1)'(O2/i)K2)N(K2)~2 12K4.)1 

2 + n  

9604 
- - -  -0 .0048591 ... (6) 

*1 The action proposed in ref. [3] does not improve the/> 4- 
point functions to one-loop order. 

=f([(~218K~N(K1)]2 1 )2+0 
e K \ 48[N(K)]  2 12K 4 9 6 ,  4 

= -0 .0019429  ... 

whereby 

, con 'd)  

N(Ku) = 2(1 - cos Ku) +-~(1 - cos Ku)2 , 

2 f DlfdK" N(K) = ~ N(K.),  = , 
**=1 K = 2 .  ' 

K 4 =-(K 2 +K2)2.  

The denominators in the one-loop integrals in (6) are 
"truncated SLAC-improved". For  the nine improve- 
ment  coefficients in (5) only seven relations are ob- 
tained due to two linear relations [4] between the 
nine irrelevant terms in (3). This follows from the 
Schwinger-Dyson equations derived from the unim- 
proved action. In the numerical computat ions we 
found the choice c 3 = c 7 = 0 most convenient. 

We have carried out a Monte Carlo investigation of  
the improved 0(3)  model. In this let ter  we concen- 
trate on the mass gap, the magnetic susceptibility and 
the numerical determinations of  the/3-function. Our 
results are obtained on a 502 lattice with periodic 
boundary conditions and we always compare with cor- 
responding results for the standard action on the same 
size lattice. (For  previous Monte Carlo calculations in 
the 0(3)  model  see refs. [ 9 - 1 4 ] .  A more detailed ac- 
count of  our Monte Carlo results will be published 
elsewhere [15] .) For the standard action we used the 
heat bath method,  whereas for the improved action 
we rely on the Metropolis method.  With four 
Metropolis trials for the updating of  a single spin our 
computer  program with the improved action is about 
5 times slower in the updating than the program with 
standard action. Measurements need in the present 
form about the same time for both  actions, therefore 
the final factor between the two actions was roughly 
2.5. 

The numerical results for the mass gap m (inverse 
correlations length ~) are summarized in fig. 1. For 
the improved action there is a "scaling window" for 

~> ( 1 . 5 - 2 ) a  (0.7 ~</3 - - g - 1  ~< 1.1). In contrast,  no 
real scaling is seen on our 502 lattice for the standard 
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Fig. 1. The mass gap in lattice units am for the standard action 
(full circles) and improved action (open squares). The full line 
is the scaling curve am = 100 fl exp(-27rtS) for the improved ac- 
tion. The dashed line is the scaling curve for the standard ac- 
tion am = 600 ¢t exp(-2nfl) obtained in ref. [15] on a 2002 
lattice. 

action. From refs. [12,14] we know, however, that 
on a large (200 2) lattice there is a small scaling win- 
dow for ~/> 6a (1.4 ~</3 ~< 1.6). Our points at fl = 1.3 
and 1.4 for the standard action are consistent with 
refs. [9,12,14].  

The "scaling defect" 8 m = const./34 exp(_41rfl)X m 
of the magnetic susceptibility Xm is shown in fig. 2 as 
a function of the correlation length. Here the differ- 
ence between the two actions is more striking: the 
large scale breaking observed previously [10,11 ] for 
the standard action disappears almost completely due 
to the improvement.  The standard action may do bet- 
ter for t3 ~> 1.4 [14] ,  but  then a much larger lattice is 

needed. 
Neglecting finite size effects, the lattice/3-function 

in (1) can be calculated from the mass gap m as 

~(g) = - [8 ln (am) /Sg]  -1 . (7) 

Alternatively, we may use, for instance, the two-point 
function 

S 2 = 62Z[J ] /6J16J2J j=  0 . (8) 
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Fig. 2. The scaling defect 6 m of magnetic susceptibility, as de- 
fined in the text, for the standard action (full circles) and im- 
proved action (open squares) as a function of the correlation 
length ~/a. 

In order to eliminate ~(g), we measure S 2 for different 
lattice momenta  ap = (27r /L)k  (L = periodicity length 
in lattice units, k ; 0, 1 ,2 ,  ...) and take the ratios R 2 
= S2 (ap ) /S2 (aP  = 0) .  (S2(a  p = 0) is the magnetic sus- 
ceptibili ty Xm .) Eq. (1) gives 

= 8R2  / 8 R 2  

~(g) O l n k /  0g " (9) 

Our numerical results for the expressions (7) and (9) 
are summarized in table 1. It is seen that the numeri- 
cally obtained lattice fl-function for the improved ac- 
t ion (3) is, within the statistical error of  about 5 - 1 0 % ,  

equal to the universal part  ~univ of  the H-function. For 
the standard action fl(g) is quite different,  although 
the mass and the two-point function give similar devia- 
tions from/~univ, especially for the larger values of/3 
= g - 1 .  For smaller j3 values fl(g) obtained from the 
two-point function and from the mass begin to devi- 
ate also from each other. Table 1 and fig. 2 together 
imply that  for the improved action also the wave func- 
tion renormalization ~7-function has, in the considered 
range, the universal value. 

In conclusion, in the 0(3)  model  the one-loop per- 
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Table 1 
The values of the lattice 3-function ~7,9 as obtained from eqs. (7), (9) compared to the universal part 3univ of the 3-function (2a) 
for the 0(3) model, k = apL/2n gives the values of lattice momenta in (9). 

,G = g-1 3univ ~7 ~9 

standard 1.0 -0.184 -0.34 -+ 0.01 (k = 10) - 0.38 -+ 0.01 (k = 16) - 0.37 _+ 0.01 
action 1.1 -0.151 -0.30 -+ 0.01 (k = 8) -- 0.31 -+ 0.01 (k = 12) - 0.30 -+ 0.01 

1.2 -0.125 -0.20 -+ 0.01 (k = 6) - 0.18 + 0.01 (k = 12) - 0.19 + 0.01 
1.3 -0.106 -0.15 -+ 0.02 (k = 6) - 0.14 + 0.01 (k = 12) - 0.14 + 0.01 

improved 0.9 -0.231 -0.24 + 0.01 (k = 6) - 0.25 + 0.01 (k = 8) - 0.24 + 0.01 
action 1.0 -0.184 -0.15 + 0.03 (k = 6) - 0.17 -+ 0.02 (k = 10) - 0.19 -+ 0.02 

turbat ive i m p r o v e m e n t  has y ie lded also improved  

Monte  Carlo results.  Moreover,  f rom the practical  

po in t  o f  view it seems be t t e r  to  use the improved  ac- 

t ion than  to  go to  larger lat t ices wi th  the s tandard  ac- 

t ion.  With more  c o m p u t e r  t ime available one should 

t ry  to  opt imize  the  cons tan t s  in the act ion (3).  In 

four  d imensional  lat t ice gauge theory  a similar pro-  

gram o f  improving the act ion can be a t t e m p t e d  [5] .  
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