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Corrections to continuum theory results stemming from flmte lathce spacing can be di- 
minished systematacally by use of lattice actions that also include suitable xrrelevant terms We 
describe m detml the pnnc~ples of such construchons for the example of the q~4 theory 

1. Introduction 

The inadequacy of perturbative calculations m field theories of the strong interac- 
tions has led to extensive computer simulation of euchdean lattice field theories. For 
defimteness, we thank of a simple-hypercubic latnce, with periodic boundary condt- 
nons and equal lattice spacing a and box length L = Na in all D ( =  2 or = 4) 
directions. Disregarding, in all of the following, stansncal errors, rmmickmg the 
infinite continuum reqmres a << ~ << L, where ~ is the correlanon length, 1.e. the 

physical scale. Vlolanon of these inequalities leads to systematic errors, of which we 
shall analyze only those due to the fimteness of the lattice spacing. We shall show 
how to decrease them in the regime where a/~ can be treated as a small expansion 
parameter. 

For simphclty, we consider a (m D dimensions) renormahzable massless theory 
with one couphng constant gB" "Physical quantines" P(gB, L, a) computed on the 
lattice then obey [1] 

(-a[O/Oa] +~(gB)[O/Og,]}P(gB, L, a) = O((a/,~)21n(~/a)). (1.1) 

If the r.h.s, were zero, (1.1) would express that P ( . . . )  depends only on the 
correlanon length 

rather than on a and gB separately, and on L. Neglecting this latter dependence, x.e. 
choosing L sufficiently large, P(gB, ", a)  would thus "scale". Scaling is violated by 
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188 K Symanztk / lmproved actton m latttce theories ( I )  

the r.h.s, m (1.1), which leads to 

P(g . ,  ", a)  = ~-dlm%onstp[1 + O((a/~)21n(~/a))]. (1.3) 

Here const e is universal but the correction is not and depends, not only on a/~ and 
on P, but also on the precise lattice action used. 

Choosing ~ large relatwe to a diminishes these correcuons, but this is apt to lead 
to v~olat~on of ~ << L, i.e. to finite-size effects that have been found to be a major 
source of difficulties in practice [2]. They can be made less severe if a/~ is allowed to 
be not very small, winch is more acceptable if the correction in (1.3) is reduced to 
O((a/~)41n(~/a)). This can be achieved by employing an improved lattice action [3] 
that incorporates a finite number of judxctously chosen terms that compensate for 

the infinite number of (a/~)21n(~/a) corrections. 
That this reduction is possible for the lattice ~44 theory we shall prove m this first 

paper of the senes, since this is the simplest and most transparent renormalizable 
model. What this improvement, in the sense described, effects here ~s, e.g. the 
following. Define a normalization-mvariant renormalized coupling constant gre,, 
which is a "physical quantity" for this model. In the massless (and L = ~ )  theory, 
gr~, is defined by a prescription that must involve an arbitrary mass scale #, playing 
the r61e of L in (1.1). If we define (with an arbitrary lower limit of integraUon) 

O(gB) =fg"dg'B(g')-', (1.4) 

then 

g~e=fo[# ,(#(gB)+in(a~))] + ~ 2s (a.) f: (g.,In(a#)), 
y=l  

(1.5) 

where the function fo(Z) = z +f02 z2 +f03 z3 + . . .  and the funcnons f :(gB,ln(a~))  
are computable as a power series. (They depend on the defining prescription for gren 
and on the precise lattice action.) Improvement of the lattice action results here m 
f l (gB, ln (a /~ ) ) -0 ,  besides uninteresting changes of the coefficients f02, f03 " '"  and 
b,, k >/2, m the fo respectively/~ function. Using/3(gB) = bog~ + big 3 + " ' "  with 
b o = 3/(16rr2), as a "x 0 the argument of fo(..) m (1.5) is 

( + ) - 1  ( + ) - 2 1 (  ( ~ ) - 2 )  
z =  boln - b t b o  1 b 0 1 n  l n l n - ~ + O  In (1.6) 

Tins shows that (1.5) is compatible with the almost rigorously [4] proven vamshing 
of the renormalized coupling constant, as a ",~ 0, in the (for proof-technical reasons) 
massive ~4 theory on the lattice with nearest-neighbor interactions. 
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Technically, the improvement  procedure can be described as an extension of 
renormalizatlon, by oversubtraction in the sense of Z lmmermann [5] of, however, a 
peculiar type. As a ",~ 0, the diverging parts of (merely) superficially divergent 
one-particle-irreducible Feynman graphs are the lowest coefficients in the Taylor 
expansion in momenta  a n d / o r  bare masses since the Taylor formula remainder is 
more convergent due to the differentiation w.r.t, these variables. In renormallzanon, 
these lowest Taylor expansion coefficients are replaced by  numbers as prescribed by 

the renormahzation convention In the improvement, additional Taylor expansion 
coefficients are replaced by the ones (obtained here with the help of analytical 
continuation from a higher space-dimension) of the corresponding continuum-theory 
functions. Hereby, the approach to the continuum theory as a ",~ 0 is speeded up. The 
terms inserted into the lattice action to perform that replacement are "irrelevant" 
ones of higher operator-dimension and involve also next-to-nearest neighbour cou- 
plings. For the usual purpose of computing e.g. mass ratios on the lattice, the 
"cont inuum theory" can be defined in such a way that the ordinary renormalizatlon 
subtractions are unnecessary. In sect. 4 of this paper  we show that the program 
sketched here can be carried out. 

In sect. 2, we recall the important  concept of the local effective lagrangian (LEL) 
[6] for lattice theories. The existence of a LEL furnishes the reason for the possibility 
of improvement,  in principle to arbitrarily high order I n  a 2. An fllustranve compu- 

tation of small-a dependence is made in appendix A, and dimensional regularlzatlon 
of lattice theories, as a proof-technical tool, is commented upon in appendix B. Sect. 
3 treats subtraction of the lattice action, first in a simple case related to renormahza- 

tlon (with some formulae relegated to appendix C). This prepares for the improve- 
ment process described in sect. 4. Sect. 5 contains concluding remarks. 

2. Cutoff dependence and local effective lagrangian 

2 1 LATTICE ACTION AND SMALL-a EXPANSION 

The lattice action, for later purposes written in 4 + e rather than in 4 dimensions, 
of ~4 theory (we choose, for simplicity, L = ~ and return to L < ~ only later) is 

Here 

A0 -- a4+~ E 
tlE,~ 4+e 

[ -  ½dp,(K~p),, - ~ 4 , _2 -2  ~AmB¢o~] " (2 l) 24gB~n -- 2 r r l B O g n  - -  I 2 2 

K = -  E a r e ; ,  (2.2) 
>=1 

(a.:).= (a;/).= (L-Io-:)/., 

with (n __+/2), = n, + 3~,,. m~0 = a - a f f g B a  ~, e) is the bare mass squared which, if 
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Am 2 = 0, leads to an infinite correlation length, i.e. zero physical mass. f ( gBa  ~, e) 
can be calculated in perturbation theory for e not negative-rational, and can be 
measured for integer e. Am~ >1 0 then characterizes the one-phase region, the only 
one we will consider. The more general case, however, can be treated similarly (cf. 
[7]). 

Physical quantities can be extracted from Green functions. For our purposes, 
more convenient are the vertex functions (VFs), i.e. the one-particle-irreducible (full 
propagator)  amputated parts of connected Green functions. Their Fourier trans- 
forms (with overal l-momentum conserving delta function times (2~) 4+~ taken out) 
possess (for e = 0) to all orders in perturbation theory the asymptotic small-a 
expansion (momenta  fixed in the first Brlllouin zone) 

F ( p l . . . p z , ; g B ,  AmZ, a) = ~'~ ~ a2J( lna)k f f j k (p t . . .p2 , ;gB,  Am2B), (2.3) 
j ~ 0  k = 0  

whereby graphs with ~ loops contribute only with k ~< E. The evidence for (2.3) will 
be discussed in sect. 5. In appendix A we verify the expansion (2.3) for one-loop 

graphs. 

2 2 LOCAL E F F E C T I V E  L A G R A N G I A N  

The expansion (2.3) can be obtained directly from an LEL [8]. However, writing 
down a local lagrangtan requires the adoption of a convention regarding its 

interpretation. An effective lagrangian of the type introduced by ZImmermann [5] 
could be employed. It is, however, defined only m perturbation theory, and in that 
frame we have available dimensional regularlzatlon [9], which is much more conve- 
nient for our purposes. It is then natural also to treat A 0 In 4 + e dimensions (as it is 
wntten in (2.1)), and questions regarding this point are dealt with in appendix B Eq 
(2.3) is then replaced by 

F(p,. .pa,;gB, am~,e,a)= ~ ~ a 2j "~F~k(p,...p2,,gB, am2,e), (2.4) 
j = 0  k = 0  

whereby E-loop graphs contnbute  only with k ~ E. In 4 + ~ dimensions we can write 

down the LEL naively [3]: 

I 2 2 A o ~ ½Z3~[] 4, - ~ Z  I gB~ 4 -- 5Z 2 A mB~ 

+a21½Za~_~dPO4dP + ½ Z s ~ R 2 ~ b  q--16 Z6gB~3[~d? 

' 7  _2~6 ½ZsAm2epDdO _ !  4 2] O(a 4 ) + 7~-0 ~7,g B"P + - -23~Z9Am2gBdp4 2ZloAmB~ + 

= L o + a2L1 + a4L2 + - . .  , (2.5) 

where [] = S'4 + e .q 2 ,.,~= lV,. L s consists of all (engineering) dimension 4 + 2 j  + e local mono- 
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mlals of  ~ and its derivatives having lattice symmet ry  and linear independence at 

zero m o m e n t u m .  The  dimensionless  coefficients have the form 

--e k~ 
z .  (gBa = 2 .  ) , (2 6) 

where ~ denotes  the n u m b e r  of loops of the graphs entering the computa t ion  (see 

below). Hereby  In (2.5) Zlo(e )= 1 for 1 = 1,2,3. = ~ for 1 = 4, = 0 for 1 = 5 . 10 
The  ~ sign in (2.5) signifies equali ty of  the (Fourier  t ransforms of the) VFs, in the 
sense of the expansion (2.4), computed  with the lattice action on the left and with 
the LEL on the r ight-hand side, up to the error (neglected terms) quoted in each 

c a s e .  

Eq. (2.5) is the most  compac t  descript ion of the expansion (2.4) since all 
a -dependence  s tems only f rom the exphclt  one in the coefficients. An LEL similar to 
(2.5) also applies to lattices with unequal  spacings in different directions (e.g., a 

con t inuum in one direction) but  then with more  terms due to correspondingly  
reduced symmetry .  The  evidence for (2.5) is discussed m sect. 5, and a sample  
compu ta t ion  is included in appendix  B. 

2 3 D E T E R M I N A T I O N  A N D  P R O P E R T I E S  O F  T H E  Z C O E F F I C I E N T S  

Oran ted  the adequacy  of the LEL (2 5), the coefficients Zj can be obta ined [5] by 
comput ing  the VFs at zero m o m e n t a  or, in the case of  terms with derlvatwes,  
suitably different ia ted at zero m o m e n t a  and, moreover ,  in the case of  terms w~th 
powers  of Am 2 having also the corresponding number  of  a rguments  ½q~2, these can 

be compu ted  at zero momenta ,  always in the massless (Am 2 = 0) lattice theory. 

Namely ,  

Z,  = - g B  ~F(0000,,  g , ,  0, e, a ) ,  Re e > 0, (2.7a) 

Z2=F(OO,O;gB,O,e,a), R e e >  0, (2.7b) 

Z 3 = - ½ ( 3 / 3 p 2 ) F ( p ( - p ) ;  g,,O, e, a)]p= 0, R e e  > 0,  (2.7c) 

and for instance 

Z v = gB2F(000000,  ; gB,0,  e, a ) ,  R e t  > 2, (2.7d) 

where the n u m b e r  of  zeros behind the first c o m m a  denotes the n u m b e r  of  ~ 2  
a rguments  The expressions for the other  Z I m (2.5) are given in ref. [5]. In (2.7), 

Z~,2 3 requires the evaluat ion of the r.h.s, for Re e > 0, and Z 7 requires Re e > 2. 
General ly,  Z factors in L s require for de terminat ion in the way indicated Re e > 2 j ,  
and are to be analyt ical ly cont inued f rom there (see appendix  B). The  reason for the 
validity of  formulae  (2.7) is that  in the evaluat ion of the r.h.s., with the help of  the 
con t inuum lagranglan (2.5), due to Arn~ = 0 and familiar  rules of  dimensional  
integrat ion only the corresponding Born terms contr ibute ,  since all ~ >i- 1 graphs  give 
vanlstung contr ibut ions  for dimensional  reasons in the prescr ibed dimension range. 
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Since the LEL (2.5) yields by its definition finite VFs, its coefficients Z~,2, 3 have 
the ' t  Hoof t  form [ 10]: the corresponding z .~ (e) in (2.6) are meromorpinc,  with poles 

e -  L. .  e -e  but  also with increasing powers of e in their Laurent  expansion at e = 0. 

Thus,  they are not  minimal in the sense of  ref. [10]. Likewise, the coefficients 

Z4 . . .  Z 7 have the proper ty  that L l, with Am 2 = 0, is the sum of four linearly 
independent  renormalized operators of dimension 6 m the sense of ref. [10] since 

they yield, upon  insertion under  dimensional integration rule, finite results (cf. (2.3)) 

as e ~ 0. (Z8,9,10 do not  lead to linearly independent  addit ional operators and can be 

expressed m terms of the usual parametr ic  functions (C.2a-c)) .  The finiteness 

properties of the terms in L 1 can be exploited, slmdarly as in the a ° part  m (1.5), 

(1.6), to "par t ia l ly  sum the logari thms" with j = 1 in (2.3), as was discussed for gren 

of  the massive theory in ref. [6], and as can be done m all theories that are 

"asymptot ica l ly  infrared free" as the q,4 theory is. Similar considerations apply to L 2 

etc. terms m (2.5). 

An  LEL of the type (2.5) also holds if " i r relevant"  terms are added to the action 
(2.1), winch are the lattice analogs of the terms m a2L~, a4L2 etc.  Count ing the 

number  of available parameters  then suggests that modifying A 0 to A o + a2A~ will 

allow us to acineve L~ -- 0 in the corresponding LEL. Before we prove this in sect. 4, 

we treat a simpler case in sect 3. 

3. Subtraction of the lattice action 

3 1 DESCRIPTION AND EFFECTS OF SUBTRACTION 

We compute  VF graphs recurslvely order by order, starting with A 0 of (2.1), in 

4 + e dimensions with Re e > 0, in the following way. F rom an Gloop graph, which 
for 2n external momenta  is of order gB e+n l, its Taylor  expansion in the (indepen- 

dent) external momenta  and Arn~ (counted double) at zero momenta  and A m  2 = 0 

of order 4 - 2 n  is subtracted. The mononuals  m q~ and its derivatives and A m  2 

effectlng this subtract ion for the sum of all such graphs have a factor a -~¢ and are 

added to the action, and used when going to (E + 1)-loop graphs. If  tins procedure  is 

followed f rom E = 1 on, no infrared dwergences arise. Namely,  what  is generated in 
this way are the VFs of the theory with lagranDan (2.1) calculated by the rules of  

dimensional  integration, m the (4 + e)-dlmensional cont inuum rather than on the 
lattice, up to an error O(a2-~e ) .  Indeed, the outlined procedure leads, in the a "-~ 0 
lirmt, for Re e < 2 / E  to UV convergent  expressions, since power count ing yields 

0 = 4 - 2n + E Re e as the degree of UV divergence for the Gloop graphs, such that 
the subtract ion described is the minimal one giving UV convergence in the no-cutoff  

hmlt. Calling the action including all subtracting terms A o + A A o ,  the terms in A A  o 

must  have IR  finite coefficients since otherwise they would not lead to fimte VFs in 
the order in which these coefficients first contribute. That  the VFs computed  with 
act ion A o + A A  o have the proper ty  stated follows f rom the vanishing of  the corre- 
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sponding subtracnons in the dimensionally integrated continuum theory, for the 
reason mentioned in sect. 2 m connection with (2.7). That  the error term is O(a 2- '~)  
follows from the insufficiency of the subtracUon to yield finite VFs in the a ",~ 0 limit 

if Ree  > 2~ -1. 
Our result can be stated as 

A o + ,~A o ~ Loo + O(a2-E¢) ,  (3.1) 

where L0o has the terms of A o in (2.1) (disregarding the m20 one) but in the 
continuum. As to derivanves, we note: the terms of the same form to be added to 
-½q}K~ on the lattice stem from differentiation of latnce-computed self-energy 
parts O / a p 2 H ( p ) l p = o  . The negative latnce laplacian K of (2.2) simulates p2 with 
a 2 E p  4 error. This error means to bring in lmphc~tly an unneeded dimensxon-6 term. 
It affects contributions outside the error hmtt stated in (3.1) only when it appears as 

the vertex in a graph with loops and thus m h~gher order. Then, however, the 
subtracnon procedure described above absorbs all its effects, again up to the error 

stated in (3.1). 
The subtractxon procedure leading to (3.1) can also be described as follows: upon 

modifying A o -~ A 0 + AA 0 to Gloop order, one computes the LEL to this lattice 
acnon by the prescription outlined in connection with (2.7a)-(2.7c). This LEL 

deviates from Loo only in (E + 1)-loop (and higher) order (cf. the beginning of this 
section). The lattice form of that continuum term, w~th change of sign, ~s the 

(~ + 1)-loop-order part  of AA o. 

3 2 ANALYTIC CONTINUATION OF COEFFICIENTS 

The ~ > 0 lattice VFs differentiated as described at zero momenta  and Arn~ = 0 
yield, m each order, integral representations for the coefficients m AA 0. These 
coefficients are, therefore, meromorph~c in e and regular for Re e > 0 but have IR 
singularities at e = 0 and e = - 2 / l  with 1 ~ l ~ E. The integral representanons for 

the analytic continuation to Re e < 0 is obtained by subtracting from the lattice VF 
mentioned above, the same VF computed but, however, with Loo in (3.1) m the 
continuum and combining the momentum space lntegrands "under  the integral 
s~gn". The simplest one-loop graph shows what ~s meant here (BZ = Brillouin zone): 

f B z d 4 + e g ( g 2 - 1 a 2 E g 4 +  . . . )  2 

[I )2 
fB d4+tK K 2 -  I - 2 K " ~  r 7 4  l~a Z.,-~, + . . . .  ( K  2) 2 _ d4+~K(K2) -2  

Z p. 4+~-BZ 

= d K ~a K ~ ( K  ) -3  . .  - a - ~ [ 2 ~ r 2 / ( - e ) + c o n s t + O ( e ) ] ,  (3.2) 
z 
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whereby  the BZ integral becomes  I R  divergent as Re e '~  - 2  and the R 4 + ~ -  BZ 

integral  U V  divergent as Re  e ,z 0. 
The  integral representat ions  for the coefficients at Re e < 0 mean  that  in every 

order,  the Taylor  expansion of the lattice graph ~s replaced by  the Taylor  expansion 
of the con t inuum graph by  virtue of  the subtract ion (i.e. its analytical  continuation).  

This  explains the equivalence expressed in (3.1) also for Re e < 0. 

3 3 REPARAMETRIZATION AND RENORMALIZATION 

Since A o in (3.1) comprises  terms of precisely the same form as m A o, we can write 

Ao+zSAo=an+~E[_½7~3eP,(Kep) _ , 4 ,.-2 ~2_~  2 2 n Td~ lgB~n -- 2mBOtt~n Y~2 AmBqbn] , 

(3.3) 

where the ~(gBa  ~, e) have again the form (2.6) with z - O ( e ) =  1, and rh2B,,= 
a-2 f (gBa  -~, e) Is a new funct ion defined as a power  series. Due to the IR  (or UV) 
singularities of  the % at e = 0 the acUon (3.3) does not gwe finite results there as the 

r.h.s, of (3.1) shows. Now we define 

-2  
gB = gB~l (  gB a-~, e)~3(  gBa ~' e) , (3.4a) 

Am2B = Am2~2(  gB a-~, e)~£3(gBa ~, e ) - '  , (3.4b) 

and,  upon  solving (3.4a), the three power  series (l = 1, 2, 3) 

Z,(gB a-~, e) = ~ , (gB a-~, e) 1 (3.4c) 

Then,  setting 

(3.1) takes the form 

~ =  q~3(gBa_~, e)l /2 ,  

A 0 = L  0 + O ( a  2 ~e), 

(3 4d) 

- -  - -  - - 2  

where A 0 is as xn (2.1) and L 0 as in (2.5), with dp, gB, Am2 replaced by  q~, gB,AmB in 
each case. This verifies the validity of  (2.5) to order  a ° The use of (3.5) for 

renormal lza t lon  is summar ized  in appendix  C. 
If the subtract ion procedure  that  led to (3.1) is carried out in the 3 m ~  > 0 theory 

using Taylor  expansions in the m o m e n t a  at zero m o m e n t a  only, ra ther  than in Am 2 
and m o m e n t a  at e = 0, no I R  divergences arise. Setting then also a = 0 would mean  

(3 5) 
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computing with A 0 treated as an effecuve (continuum) action in the sense of 

Zlmmermann [5]. Since no regularization is involved then, the result cannot be 

written in terms of a " true" lagrangian with Z factors. While the procedure we 

followed offers no particular advantage in ordinary renormalization, ItS extension to 

O(a 2) terms leads directly to improvement. 

4. Improvement of the lattice action 

4 1 DESCRIPTION AND EFFECTS OF HIGHER SUBTRACTION 

Again we compute VF graphs, starting with d o as described m sect. 3, but 

perform, with Re e > 2~ ~ rather than merely > 0, the Taylor expansion subtrac- 

Uons at zero momenta and A m  2 = 0 to order 6 - 2n for a 2n-point funcuon. The 

coefficients of field monomials effectlng the ad&tional subtraction have factors 

a 2-F•, and will turn out to be IR finite for e as stated provided that already the ~ = 0 

two-point VF, the negative reverse bare propagator, is subjected to the last subtrac- 

tion' 

4 + e  

- 4 a - 2  E s 'nZlp,  a = _ p 2  + ,~a2y~p4 . . . .  
, t t - - I  la 

-- 4a-  2 E [sln2½ptza + ~ sln4½p~a] 
jz 

= _ p 2 + ~ a 4 E p 6  . . . .  (4 1) 
/x 

The lattice term effecting this is a next-to-nearest-neighbor couphng term, and the 
zeroth-order kineUc part becomes, in the notation (2.2), 

-I~)n(K~I)n - -  24a2f~n (o~G)  ~ - - k ¢ , . ( g ~ ) . .  
n 

(4.2) 

This improved negauve lattice laplacian k must also be used m effecting, as part of 

the lattice action, the higher-order subtractions of this O/Op2H(p)[p=O type for 

2n = 2 graphs. (We can say that the p2 in the propagator, and in effectmg the 

self-energy subtracuon, must be represented on the latuce "truncated SLAC im- 
proved".) No similar precaution ~s necessary for the other derivatives that appear. 

The procedure described here leads to an action that can be written A o + A A '  o + 
a2Ai. Here AA" o is as in (3.1) or, more explicitly, (3 3) but with new coefficients 
~'e(gB a-~, e)--  1, l =  1 . . .  3. A~ consists of the lattice analogs of the terms in the 
square bracket representing L I m (2.5). The terms of the form - ~ q s ( k - K ) q S ,  
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yleldmg the improved bare propagator  and the corrected self-energy subtractions 
ment ioned after (4.2) are part  of the first term in A~ as just  described. 

The analog of (3.1) is 

A o+AA'  o+a2Al=Loo+O(a 4 ~ ) ,  (4.3) 

because the con t inuum hmit  a ",~ 0 now leads to UV finite results for Re e < 4[~ -2. 

For  a reason analogous to that given in sect. 3, the coefficients in A~ are meromor-  
phlc in e and IR  finite for Re e > 2E- t .  At  e = 2 £ - i  they are IR  singular. Their 

analytic cont inuat ion to - 2 ~  ~ < Re e < 2E ~ is again obtained by subtracting the 

corresponding cont inuum graph " u n d e r  the integral sign" (cf. (4.5) below), e = 0 is a 

singular point,  however, due to the e = 0 singularities in AA' o in (4.3) or also the form 

of the r.h.s. 

The consistency of the subtract ion prescription rests on the following. The final 
subtraction as described in an £-loop graph at 2£ t < Re e < 4~ -  ~ is, in the a ",~ 0 

limit, a mimmal  one in the sense of Z lmmermann  [5]. The subtraction of an £ ' - loop 

subdiagram is then not  minimal if ~ '  < 2(Re e)-  ~. However,  it is not  an oversubtrac- 

tion [5] (such a one would here be IR  dwergent)  but the replacement of the highest 

Taylor  expansmn coefficient on the latnce by the one in the cont inuum, as 

demanded  for L0o in (4.3), by virtue of an analytic con t lnuanon  as m (3 2) (see (4.5) 
below.) The difference is proport ional  to a 2 ,c', i.e. has a convergence factor that 

makes minimal subtract ion of the ~-loop graph sufficient for the existence of the 

a "-~ 0 limit. 

4 2 REPARAMETRIZATION OF THE RESULT 

Since A o + AA' o in (4.3) is of the form (3.3) with merely ~ ~ ~ ' ,  the t ransforma- 
t ion (3.4) can again be performed with new parameters  gj~ and Am 2'. Then (4.3) 

becomes 

A o+a2A]=L'  o+O(a  4 ~e). (4.4) 

Here L~ has (replacing gh by gB and ~--~2' by Am 2) singular coefficients Z'l(gBa ~, e) 
of the form (2.6), with singularities again of the type to yield finite results at e = 0, 
al though different f rom the ones in (2.5) or (3.5) due to the addinonal  term on the 
1.h.s. in (4.4). The coefficients in A'~ are meromorphic  in e and finite at e = 0 The 

proof  is recursive: the e = 0 singular coefficient in a2A'l of lowest order would be 
incompatible  with (4 4) in the order in which it first contributes, since on the r.h.s, of 
(4.4) terms with coefficients a2 eE are never generated and a lattice action with finite 
coefficients (of lower order) cannot,  in perturbat ion theory, yield an infinite result 

for a n  a 2 - e ~  coefficient at e = 0. The analytic cont inuat ion of the A'~ coefficients to 
Re e < 2~ -  ~ is again obtained by subtracting the corresponding cont inuum expres- 
sion, which here have such extra factors as appear  in L~), " u n d e r  the integral sign". 
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This explains the equivalence expressed by (4.4). The stmplest 

pertaining to (2.7d) illustrates this (cf. (3.2)): 

fB d 4 + e g ( K 2  , _4v,  r.6 ) 3 - -  ~ 6 u  / . . ~ x ~  + . . -  
z tl 

~ = 1  

197 

example 

fB d 4 + e K  K 2 -  I -4~-"~ T'~6 --~ 9o a Z"~x~ + . . . .  ( g 2 )  3 
z 

_ fR4+~ Bzd4+eK(K2) 3 

= fBzd4+~K[ 310a4( K 2 ) - 4 ~ K 6  + . .. ] - a  ~ [ c o n s t + O ( e ) ]  

(4.5) 

Hereby the BZ integral becomes 1R divergent at R e e ' , ~ - 2  and the R 4+~-  BZ 
integral UV divergent at Re e ,7 2. 

The 1.h.s. in (4.4) at e = 0 is the improved action. The values of its coefficients 

C(gBa -~, e) at e = 0, C(g B, 0), can be obtained recursively by subtracting from the 
lattice VFs computed with the help of lower-order coefficients the part  proportional 
to a 2. That part is polynomial in momenta  and Am 2 of order 6 - 2n for 2n-point 

VFs and finite (i.e. there is no term e.g. with factor a21n a)  since otherwise (4.4) 
could not hold. The analytic continuation in this dimension we needed only for our 

proof  

5. Concluding remarks 

5 1 EXTENSION OF PROCEDURE 

It is obvious that the process described in sect. 4 can be continued to arbitrarily 
high order in a 2, to yield instead of (4.4) 

Ao+aZA~k)+a4A~k)+ ."-[-a2kA(k)..w-L(k)-{-O(a2k+2-e¢-). (5.1) 

Hereby the improvement coefficients and the r.h.s, all depend, as indicated, on the 
order to which one carries out the improvement.  From (5.1), (2.5) does not follow 
directly. An LEL can be deduced, however, if Pauli-Villars regularlzatlon rather than 
regularizatlon by a lattice had been used, since the momentum integration range is 
then the same as in the continuum. This was used in the proof of the LEL existence 
for that case in ref. [8]. Since the calculations in appendix A and B do not show any 
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deviation from the results of the corresponding ones with Pauh-Vlllars regularlzatlon 
in spite of the Bnllouln zone limitation, we expect that the LEL (2.5) is correct to 

any order in gB and a 2, with coefficients definable by formulae as explained m 
context with (2.7). 

5 2 NON-PERTURBATIVE DETERMINATION OF IMPROVEMENT COEFFICIENTS 

We have not found any useful PDEs obeyed by the improvement coefficients m 
(5.1), not even for AI 1). The reason is that these coefficients are expressions of lattice 
effects and are themselves, upon inclusion of the factor a2, of the order of the error 
in the usual PDEs, cf. (C. 1). This contrasts with the propemes  of the coefficients in 
the LEL (2.5), as explained there, since in that c a s e  a 2 can be factored off. 

Approximating the improvement coefficients by some orders of perturbation 
theory is possibly of value only if in the continuum limit, gB ",a 0, i.e. the theory is 
asymptotically free, as is the non-hnear sigma model [1 1-1 3] and non-abehan gauge 
theory [14]. For improvement  in the sense of sect. 1, however, the CI(gB, 0) must be 
determined by Monte Carlo computations themselves. To this end, one would use 
the fact that these coefficients are also the same on a finite lattice since they 
compensate for the effect of space-time dtscretization and thus depend on local, 

rather than global, properties of the lattice. On the finite lattice, the simplest 
quantities that obey (1.1) and ought, upon correct improvement of the action, to 
obey it with a decreased r.h.s, are "generalized susceptibihtles". These are Green 
functions with all momenta  zero, or some momenta  at the lowest discrete values 

available on the lamce with periodic boundary conditions. (For the q544 theory; m 
perturbation theory the zero mode would be annoying but it is harmless m 

non-perturbative treatments.) 

5 3 ALTERNATIVE FORMS OF IMPROVED ACTION 

The improved action (4.4) is by construction unique. It can be modified by 
admitting into the action terms that involve the source function J differently than m 

the t e r m  a4+eY~nJndPn----fJdp. The reason is that, by virtue of the Schwlnger-Dyson 
(SD) equations denved from A 0 (winch suffice for manipulations on the a 2 level) not 
all the terms in A 1 are linearly independent, provided one corrects this by admitting 
the contact terms that make the difference between classical field equations and SD 
equations. With m20 + Am 2 - m 2, the SD equations from A 0 in (2.1) are 

Kff + ~gB~ 3 + m~q~- J = 0. (5.2) 

Here q~ is to be interpreted as 8/8J (i.e. q~, as  a - 4  ~O/OJn) acting on the generating 
functional of Green functions that has in the action also the source term described 
before. Multiplying (5.2) from the left in turn by Kq~, q~3, and J yields the three 
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identities 

(Kdp) 2 + ~gBdp3Kd? + m~dpKdp -JKd? + 4a -6 ~ = 0, (5.3a) 

cb3Kdp + 61 gBqb6 + m2~b 4 _ j~3 _ 3a 4 - e ~ 2  = 0, (5.3b) 

JK~ + ~g~jq~3 + m~J~ - j2 = O .  (5.3c) 

The vamshlng is meant m the sense 

f @ep[(5.3a) or (5.3b) or (5.3c)]exp[Ao + f Jq~] =O. (5.4) 

An easy recursive argument shows that (5.4) suffices to eliminate three terms, e.g. ,¢,6 
q53Kq,, and jq,3 from A~ provided all the other terms of (engineering) dimension 6 + e 
that appear in (5.3a-c) are allowed to appear m A~ with certain coefficients. These 
would have to be determined (e.g. in perturbation theory) by checking the improve- 
ment of a sufficient number of VFs or "physical quantities", since they are not 
obtained in an easy way from the coefficients computed when deriving (4.4). The 
advantage of ehminatlng terms not containing J in favour of those that do would be 

that contact term contributions need be evaluated only when making "measure-  
ments" while terms not containing J need be used in each Monte Carlo upgrading. 
In view of the limited interest of q4 theory we shall not pursue this matter here since 
it will reappear in the non-linear sigma model [13]. 

5 4 OTHER MODELS 

The improvement  technique expounded here for q,4 theory is directly applicable to 
all lattice theories the perturbation expansions of which proceed in terms of 
propagators and vertices. For non-abelian gauge theory, such a form is proposed in 
ref. [15]. If fermions are also present, in (2.3), (2.4), (2.5) and correspondingly some 
other formulae also, odd powers of a and field monomlals of odd dimension appear. 
The degeneracy problem [16] being one related to the corners of the Brlllouln zone 
while improvement  concerns the center, it could be dealt with by Wllson's method 
[16]. Complications may arise if the starting lattice action A 0 involves non-linear 
constraints. They are easily resolved in the case of the non-linear sigma model 

[11,131. 
Improvement  is possible also m superrenormahzable lattice models. E.g. ~4+~ 

theory becomes for e = - 3  the anharmonic oscillator on a " t ime"  lattice. In this 
case of the improvement coefficients Cl(g~a ~, e) only a small number  of expansion 
terms is needed. 

5 5 SCOPE OF IMPROVEMENT 

While the improved action does improve not only Green functions but also all 
other quantities that possess perturbatwe expansions, this ~s not assured for the 
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other quantities, hke spontaneous masses and the string tension in Yang-Mills 
theory. Since the determination of the improvement coefficients, subsect. 5.2, does 
not have to rely on perturbation theory, it appears a safe speculation that non-per- 
turbative quantities like those mentioned are also improved in the sense of sect. 1 
provided possible non-perturbative effects (cf. the discussion in ref. [15]) vanish 
faster than O(a 2) in the continuum lin'nt. If they do not, they could not be removed 
by using local terms only in an improved lattice action. 

The author is indebted to M. Luscher for useful discussions, and to T.T. Wu for 
stimulating questions and cooperation m an early stage of this work. 

Appendix A 

SMALL-a EXPANSION OF ONE-LOOP GRAPHS 

The two-propagators ("bubble") graph on the four-dimensional lattice at 
momentum p = (p  i P2 P3104) requires to evaluate 

4 1 
F(p;AmB'a)= aa4(2'n')-4 I-I ( ~/adk~){ ~[1 - cos(ak~)] + ½a2Am 2 ) 

- 1  

X { E [ 1 -- cos(a (k/, -[- p~t))] ~- la2 Am 2 } (All) 

Bringing the denommators into the exponent, carrying out the momentum integra- 
tions and using [17] 

I0((a 2 - b 2 )  ' / 2 ) = ( 2 r r t ) - i f ~ d t F ( - t ) ( ½ a  'b2)tlt(a), 

where the integration path is parallel to the imaginary axis with positive real part but 
encircles the origin at the left; and using as well the Mellin representation of the 
exponential function, yields 

F( p; Am 2, a ) =  ¼ (2~r t ) - ' fd  dw F ( -  w)(½a 2 am2) w 

×f(w, titzGt4), (A.2) 



K Symanztk / Improved actton m latttce theortes (I)  201 

where 

4 

f(Wltlt2t3t4) = fo ~ due -4"uz+w+z'" FI It.(u). (A.3)  
/z=l  

In  (A.2), the w and t integrat ion paths  are parallel  to the imaginary  axis, with 

- 1 < Re w < 0 and - ¼ < Re t ,  < 0. 
Split t ing in (A.3) the integral at 1 and using in 0 . . .  1 e.g. the power  series, in 

1 . . .  m the Hanke l  asympto t ic  series for the modif ied Bessel funct ions yields 

f (w,  t , . . .  t4) as a meromorph lc  funcnon  of ItS variables, the only singularlnes being 
for Re(w + ~2t,) > - 1 simple poles at 0, 1 ,2 . . .  in the variable w + Etu. Usmg,  wRh 

n = 0 , 1 , 2 . . .  

('")-'S~dwr(-w)r" ~ [S d'?(-',.isJ " 

×~(I  + Z , . ,1  + Z , . ) ( . -  w -  Z , . ) - '  

= fo 1 d x  ( -  1 ) ' ( / ! )  '[r+(1-x)Es.]'(n-l) 
l = 0  
/=~ tl 

+ ( -  1)"( . , ) -  ~[r + ~(1 - ~) Zs . ] "  

× [ l n ( r  + x ( l -  x ) ~ ] s , ) -  q~(1 + n ) ] } ,  (A.4) 

for r = ½a 2A m 2, s~ = 2 sin2(½p, a);  and the derivatives of (A.4) with respect  to the s, ,  
one finds in the small-a  expansion of F(p; Arn~, a) terms propor t iona l  to a 21 and 
a2~ln a, 1 = 0, 1,2 .. with factors that are polynomial  in Am 2 and p ,  for both  types 

of  terms, with for the first ones in addit ion non-po lynomia l  contr ibut ions  f rom the 
logar i thm in (A.4). This calculat ion can easily be extended to the general one- loop 
graph,  with an analogous result. 

If  instead of lattice regularlzatlon a sha rp -momen tum-cu to f f  o n e  (i.e. factors 
O(A 2 - k 2) to the propagators )  is used, in the large-A expansion also odd powers  of 
A ' appea r  [18], precluding the existence of an LEL to describe large-A behavlour.  
This effect is an " I R "  one s temming f rom the sharpness  of  this cutoff  [19]. 
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Appendix B 

REMARKS ON DIMENSIONAL INTEGRATION ON THE HYPERCUBIC LATTICE 

Dtmenstonal integratton of Feynman graphs in the continuum can be treated 
rigorously by keeping the Lorentz-invariant scalar products of momenta fixed, since 
the Gram determinant condition plays no r61e. On the hypercublc lattice m 
(4 + e)-dlmensional space, n momentum vectors p l . . . p ,  give rise to an infinite 

number of variables invanant under the lattice-symmetry operations, e.g. ( ~ + l )  2 / 

polynomials E~p,~p:l,, ( n :  3 ) polynommls E~,P,,PJ~,P~,Po, etc. A rigorous discussion 
would thus require the consideration of functions of an infimte number of variables, 
which we shall not attempt here. The reason ~s that what will be needed m sects. 3 
and 4 are only VFs with all momenta zero, or differentiated at all momenta zero, 
and these expressions are unambiguous (in perturbaUon theory) once the manner of 
d~mensional extrapolaUon from the integers ~s fixed by the usual convenUon. 
Namely, upon using for the propagators 

I 4+e ]-1 
2a-22 (1-cos(k.a))+Z~m~ =-'a2r°°dtexp[-t(1 +½a2~m~)] 

,tt=l 2 Jo 

4+e 
× H exp[tcos(k,a)],  (B.1) 

~=l 

the mtegrand of the proper-time mtegraUons factorizes, e.g. it is a (4 + e)th power m 
the case of all external momenta zero. As an example, consider the "bubble"  graph 
analyzed m appendix A, but m 4 + e d~menslons at momentum zero. It yields 

F(0;  AmaB, e, a ) =  !a-~[mduuexp[  - (4 + e  + ½a2Am2)u]Io(u) 4+~ 
Jo 

= Am~(co(e ) + aZ, ArnZc,(e) + . . .  ) 

+a-~(do(e)+a 2 Am~d,(e)+ . . . ) ,  (B.2) 

again, e.g. by splitting the integration region, in confornuty with (2.4). 
Alternatively, one may take the e extra dimensions m the continuum instead of on 

the lattice. This g~ves httle conceptual relief at momenta non-zero, and at momenta 
zero (or differentiated there) gives shght numerical modlficauon of the coefficients, 
e.g. (B.2) changes to 

F ( 0 ; A m  2, e, a) = ±a ~ [ ~ d u u e x p [ -  (4 + ~a 2Am~)u] Io (u )4 (2wu)  -~/2 
4 Jo 

with an expansion as m (B.2) but with changed coeffmlents. Using this picture would 
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reqmre that we list more terms m e.g. (2.5) because of the different symmetry. For 
this reason we used the earlier symmetric picture. The final result, in the form of the 
1.h.s. in (4.4) or (5.1) at e =  0, is the same, as is immediately verified e.g. in the 
example (4.5). 

Appendix C 

PDEs AND RENORMALIZATION 

Changing in (2.5) the ~ normahzation, g~a -~, a, and zam 2 in such a way that L 0 
remains unchanged leads to the Zinn-Justin PDE [1] 

0 0 , 9 
--a~a+ fi(gBa-' , t)  O(gBa_~ ) t-q(gBa-',e)amg aaw2 

XF(pl. . .pz,;  g,,-4mZ, e,a)=O(a 2 ~), 

- 2ny(gBa-~,e)] 

(c l) 

with (abbreviating gBa -~ = ~,) 

/ ~ ( g , e ) = e [ g - ' + 0 / O ~ o l n ( Z , ( g , e ) Z 3 ( ~ , e ) - : ) ]  ', (C.2a) 

"7(g, e) = ½/3¢g, e) O/Ogln Z3(g, e), (C.2b) 

~(g, E)= --/~(,~, E)a/agln(Z2(~r, E)Z3(g, 8) I) (C.2c) 

These parametric funct ions have ~ = 0 l imits since the VFs in (C. l )  have. Integrat ing 
(C. I )  at t = 0 y~elds 

g,.f),O,.) 

= Fren( P , ' "  "P2n; g, m2, f )  + O( a21n a) ,  (C.3) 

where, with iS(g) from (1.4), 

gB(g, aft) = f i - ' ( f i (g) - In  i f )  = £ (l ')-l[--ln(af)fl(g)O/Og]lg, 
l=0 

(C 4a) 
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Z3(g, al~)=exp[-2fg ;B( )dg' f i (g ' ) - t~(g ' )] ,  ( C . 4 b )  

Am~ ( rn2, g, al~ ) = rn2expl fgg "( ) d g' fi ( g')- ' Cl ( g') ] . (C .4c )  

Eq .  (C.3)  w i t h  ( C . 4 a - c )  desc r ibes  " m a s s - i n d e p e n d e n t "  r e n o r m a l i z a t l o n  in the  sense  

o f  ' t  H o o f t  [10] and  W e i n b e r g  [20] t h o u g h  in Z i n n - J u s t i n  c o n v e n t i o n  [1], w h i c h  

yields ,  in t e rms  of  the  f u n c t i o n s  m (2.3), 

k - -  Fren(Pt...p2,;g, rn2,tL) = ~ (-In~) Fok(P,...p2,;g, m2). 
k=0 

(c.5) 
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