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Corrections to continuum theory results stemming from finite lattice spacing can be di-
minished systematically by use of lattice actions that also include suitable irrelevant terms We
descnibe 1n detail the principles of such constructions for the example of the ¢* theory

1. Introduction

The inadequacy of perturbative calculations 1n field theories of the strong interac-
tions has led to extensive computer simulation of euclidean lattice field theories. For
defimiteness, we think of a simple-hypercubic lattice, with periodic boundary condi-
tions and equal lattice spacing a and box length L = Na in all D(=2 or =4)
directions. Disregarding, in all of the following, staustical errors, mimicking the
infinite continuum requires a < § < L, where £ 1s the correlation length, 1.e. the
physical scale. Violation of these inequalities leads to systematic errors, of which we
shall analyze only those due to the finiteness of the lattice spacing. We shall show
how to decrease them in the regime where a/¢ can be treated as a small expansion
parameter.

For simphcity, we consider a (in D dimensions) renormalizable massless theory
with one coupling constant gy. “Physical quantities” P(gp, L, a) computed on the
lattice then obey [1]

{~ald/da]+ B (gs)[0/3gs]}P(gs. L.a)=O((a/E)’In(/a)). (1.1)

If the rhs. were zero, (1.1) would express that P(...) depends only on the
correlation length

s=aexp[ [ /B (). (12)
£

rather than on a and gy separately, and on L. Neglecting this latter dependence, 1.e.
choosing L sufficiently large, P(gy, -, a) would thus “scale”. Scaling 1s violated by
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the r.h.s. 1n (1.1), which leads to

P(gp, -, a) =" Tconst [ 1+ O((a/£) In(¢/a))]. (1.3)

Here const , is universal but the correction is not and depends, not only on a/§ and
on P, but also on the precise lattice action used.

Choosing ¢ large relative to a diminishes these corrections, but this 1s apt to lead
to violation of £ < L, i.e. to finite-size effects that have been found to be a major
source of difficulties in practice [2]. They can be made less severe if a/£ is allowed to
be not very small, which is more acceptable 1f the correction 1n (1.3) is reduced to
O((a/¢)*In(¢/a)). This can be achieved by employing an improved lattice action [3]
that incorporates a finite number of judiciously chosen terms that compensate for
the infinite number of (a/¢)*In(¢/a) corrections.

That this reduction is possible for the lattice ¢ theory we shall prove m thus first
paper of the series, since this is the simplest and most transparent renormalizable
model. What this improvement, in the sense described, effects here 1s, e.g. the
following. Define a normalization-invariant renormalized coupling constant g,
which is a “physical quantity” for this model. In the massless (and L = o0) theory,
g,.n is defined by a prescription that must involve an arbitrary mass scale ., playing
the role of L in (1.1). If we define (with an arbitrary lower himit of integration)

pgs)=["dg'B(2)7", (14)
then

8ren = o[ (P (gp) +In(ap))] + é (a,)f (gp.In(ap)), (1.5)

where the function fy(z) =z + fo,z2 + f3z> + - -+ and the functions f,(gg, In(ap))
are computable as a power series. (They depend on the defining prescription for g,
and on the precise lattice action.) Improvement of the lattice action results here in
f1(gp,In(ap)) =0, besides uninteresting changes of the coefficients fo,, fo3 = - and
b, k> 2, n the f, respectively B function. Using B(gg)= bogs + b g+ - -+ with
b, =3/(167%), as a \y 0 the argument of f,(..) m (1.5) is

-2

1)°! o 1 1 1\7?
z—(bolna—”) —b,b; (bolna“) lnlna‘u+0((lna”) ) (1.6)

This shows that (1.5) 1s compatible with the almost rigorously [4] proven vanishing
of the renormalized coupling constant, as a \y 0, in the (for proof-technical reasons)
massive ¢; theory on the lattice with nearest-neighbor interactions.
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Technically, the improvement procedure can be described as an extension of
renormalization, by oversubtraction in the sense of Zimmermann [5] of, however, a
peculiar type. As a0, the diverging parts of (merely) superficially divergent
one-particle-irreducible Feynman graphs are the lowest coefficients in the Taylor
expansion 1 momenta and/or bare masses since the Taylor formula remainder s
more convergent due to the differentiation w.r.t. these variables. In renormalization,
these lowest Taylor expansion coefficients are replaced by numbers as prescribed by
the renormalization convention In the improvement, additional Taylor expansion
coefficients are replaced by the ones (obtained here with the help of analytical
continuation from a higher space-dimension) of the corresponding continuum-theory
functions. Hereby, the approach to the continuum theory as a \y 0 1s speeded up. The
terms mserted into the lattice action to perform that replacement are “irrelevant”
ones of higher operator-dimension and involve also next-to-nearest neighbour cou-
plings. For the usual purpose of computing e.g. mass ratios on the lattice, the
“continuum theory” can be defined in such a way that the ordinary renormalization
subtractions are unnecessary. In sect. 4 of this paper we show that the program
sketched here can be carried out.

In sect. 2, we recall the important concept of the local effective lagrangian (LEL)
[6] for lattice theories. The existence of a LEL furnishes the reason for the possibility
of improvement, in principle to arbatrarily high order in a?. An illustrative compu-
tation of small-a dependence 1s made 1n appendix A, and dimensional regularization
of lattice theories, as a proof-technical tool, 1s commented upon 1n appendix B. Sect.
3 treats subtraction of the lattice action, first in a simple case related to renormaliza-
tion (with some formulae relegated to appendix C). This prepares for the improve-
ment process described in sect. 4. Sect. 5 contains concluding remarks.

2. Cutoff dependence and local effective lagrangian
21 LATTICE ACTION AND SMALL-a EXPANSION

The lattice action, for later purposes written in 4 + ¢ rather than in 4 dimensions,
of ¢* theory (we choose, for ssmplicity, L = oo and return to L < oo only later) 1s

Ag=a*"* ¥ [—16,(Ke), — higpe! — Imyed? — 1am3e?]. 21

nez*te

Here

4+

K=- 34,09, (2.2)
=1

(8,1),=(fova~t)/a,  (97F) =(f,~f_z)/a.

with (n+ f),=n,138,,. m%o =a f(gga *, ¢€) is the bare mass squared which, if
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Amg =0, leads to an mnfinite correlation length, i.e. zero physical mass. f(gpa ¢, €)
can be calculated in perturbation theory for ¢ not negative-rational, and can be
measured for integer e. Am3 > 0 then characterizes the one-phase region, the only
one we will consider. The more general case, however, can be treated similarly (cf.
(7).

Physical quantities can be extracted from Green functions. For our purposes,
more conventent are the vertex functions (VFs), i.e. the one-particle-irreducibie (full
propagator) amputated parts of connected Green functions. Their Fourier trans-
forms (with overall-momentum conserving delta function times (27)*** taken out)
possess (for e =0) to all orders in perturbation theory the asymptotic small-a
expansion (momenta fixed in the first Brillouin zone)

o0 0
‘=
I(py...pani 8p. Amy.a)= 3. ¥ a*(Ina) F,(p,...p,;: 8s. dmi), (2.3)
=0 k=0
whereby graphs with £ loops contribute only with k& < £. The evidence for (2.3) will
be discussed in sect. 5. In appendix A we verify the expansion (2.3) for one-loop
graphs.

22 LOCAL EFFECTIVE LAGRANGIAN

The expansion (2.3) can be obtained directly from an LEL [8]. However, writing
down a local lagrangian requires the adoption of a convention regarding its
interpretation. An effective lagrangian of the type introduced by Zimmermann [5]
could be employed. It 1s, however, defined only in perturbation theory, and in that
frame we have available dimensional regulanzation [9], which is much more conve-
nient for our purposes. It 1s then natural also to treat 4, 1n 4 + ¢ dimensions (as 1t 1s
written in (2.1)), and questions regarding this point are dealt with in appendix B Eg
(2.3) is then replaced by

oC o0
I(py. -Pans gu. Amb,e,a)=3, Y. a* *F,(p,...p,,. gs. Amp.€), (2.4)
J=0 k=0

whereby £-loop graphs contribute only with k < £. In 4 + ¢ dimensions we can write
down the LEL naively [3]:

Ay=1Z,00¢ — 57, gg0* — 37, Amie’
+a?|3Z,3 $050 + 3 Z;00° + § Z,gpe’ 0
s
+ A Z820° + $ Z Amip0¢ — 5 ZgAmyged® — 3 Z,,Amie* | + O(a*)

=Ly+a’L,+a’Ly+ -, (2.5)

where O = ﬁiiai. L, consists of all (engineering) dimension 4 + 2 ; + ¢ local mono-
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muals of ¢ and its derivatives having lattice symmetry and linear independence at
zero momentum. The dimensionless coefficients have the form

oc
Z-(gga ‘ 6)= zz'u(f)(gBarS)Ls (26)
£=0
where 2 denotes the number of loops of the graphs entering the computation (see
below). Hereby 1n (2.5) z,o(e)=1for 1 =1,2,3.=F for 1 =4, =0for 1=5 .10
The = sign in (2.5) signifies equality of the (Fourter transforms of the) VFs, in the
sense of the expansion (2.4), computed with the lattice action on the left and with
the LEL on the night-hand side, up to the error (neglected terms) quoted in each
case.

Eq. (2.5) 1s the most compact description of the expansion (2.4) since all
a-dependence stems only from the explcit one in the coefficients. An LEL similar to
(2.5) also applies to lattices with unequal spacings in different directions (e.g., a
continuum 1n one direction) but then with more terms due to correspondingly
reduced symmetry. The evidence for (2.5) is discussed in sect. 5, and a sample
computation 1s included in appendix B.

23 DETERMINATION AND PROPERTIES OF THE Z COEFFICIENTS

Granted the adequacy of the LEL (2 5), the coefficients Z, can be obtained [5] by
computing the VFs at zero momenta or, in the case of terms with derivatives,
suitably differentiated at zero momenta and, moreover, in the case of terms with
powers of Am? having also the corresponding number of arguments 1¢’, these can
be computed at zero momenta, always in the massless (Amg = 0) lattice theory.
Namely,

Z, = —gy'T(0000,, gg,0,¢,a), Ree> 0, (2.7a)
Z,=1(00,0; g5,0,¢,a), Ree> 0, (2.7b)
Zy=-3(9/0p*)T(p(—p)igp.0.€.a)l,o.  Ree>0.  (2.7¢)

and for instance
Z,= g5 >T"(000000,; g5.,0, ¢, a), Ree>2, (2.7d)

where the number of zeros behind the first comma denotes the number of {¢?
arguments The expressions for the other Z, 1n (2.5) are given in ref. [5]. In (2.7),
Z, ,, requires the evaluation of the r.h.s. for Ree >0, and Z, requires Ree > 2.
Generally, Z factors 1n L, require for determination in the way indicated Ree> 2,
and are to be analytically continued from there (see appendix B). The reason for the
validity of formulae (2.7) 1s that in the evaluation of the r.h.s., with the help of the
continuum lagrangian (2.5), due to Am3 =0 and famibhar rules of dimensional
integration only the corresponding Born terms contribute, since all £ > 1 graphs give
vanishing contributions for dimensional reasons in the prescribed dimension range.
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Since the LEL (2.5) yields by its definition finite VFs, 1ts coefficients Z, , ; have
the 't Hooft form [10]: the corresponding z -z (&) in (2.6) are meromorphic, with poles
e~ '... e~ % but also with increasing powers of ¢ in their Laurent expansion at & = 0.
Thus, they are not minimal in the sense of ref. [10]. Likewise, the coefficients
Z,...Z; have the property that L,, with Am3 =0, is the sum of four linearly
independent renormalized operators of dimension 6 1n the sense of ref. [10] since
they yield, upon insertion under dimensional integration rule, finite results (cf. (2.3))
as & = 0. (Zg 4 | do not lead to linearly independent additional operators and can be
expressed in terms of the usual parametric functions (C.2a—c)). The finiteness
properties of the terms in L, can be exploited, similarly as in the a° part in (1.5),
(1.6), to “partially sum the logarithms” with ;= 1 in (2.3), as was discussed for g .,
of the massive theory in ref. [6], and as can be done in all theories that are
“asymptotically infrared free” as the ¢; theory is. Similar considerations apply to L,
etc. terms 1n (2.5).

An LEL of the type (2.5) also holds if “irrelevant” terms are added to the action
(2.1), which are the lattice analogs of the terms in a’L,, a*L, etc. Counting the
number of available parameters then suggests that modifying 4, to 4, + a’4, will
allow us to achieve L, = 0 1n the corresponding LEL. Before we prove this 1n sect. 4,
we treat a simpler case in sect 3.

3. Subtraction of the lattice action

31 DESCRIPTION AND EFFECTS OF SUBTRACTION

We compute VF graphs recursively order by order, starting with A, of (2.1), in
4 + ¢ dimensions with Re & > 0, in the following way. From an £-loop graph, which
for 2n external momenta is of order g5*" !, its Taylor expansion 1n the (indepen-
dent) external momenta and Am3% (counted double) at zero momenta and Amg =0
of order 4 — 2n 1s subtracted. The monomals 1n ¢ and its derivatives and Amj
effecting this subtraction for the sum of all such graphs have a factor @~ and are
added to the action, and used when going to (£ + 1)-loop graphs. If this procedure is
followed from £ =1 on, no infrared divergences arise. Namely, what is generated in
this way are the VFs of the theory with lagrangian (2.1) calculated by the rules of
dimensional integration, in the (4 + ¢)-dimensional continuum rather than on the
lattice, up to an error O(a®~*%). Indeed, the outlined procedure leads, 1n the a \, 0
limut, for Ree <2/£ to UV convergent expressions, since power counting yields
9 =4—2n+ £ Ree as the degree of UV divergence for the £-loop graphs, such that
the subtraction described 1s the minimal one giving UV convergence in the no-cutoff
limat. Calling the action including all subtracting terms A, + A A4, the terms in A4,
must have IR finite coefficients since otherwise they would not lead to finite VFs in
the order in which these coefficients first contribute. That the VFs computed with
action Ay + AA, have the property stated follows from the vanishing of the corre-
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sponding subtractions in the dimensionally integrated continuum theory, for the
reason mentioned 1 sect. 2 1n connection with (2.7). That the error term is O(a®~ %)
follows from the insufficiency of the subtraction to yield finite VFs in the a \, 0 limit
if Ree> 201,

Our result can be stated as

Ayg+AAy= Ly + O(a> ), (3.1)

where Ly, has the terms of A, in (2.1) (disregarding the m%, one) but in the
continuum. As to derivatives, we note: the terms of the same form to be added to
—~ 1Ko on the lattice stem from differentiation of lattice-computed self-energy
parts 8/3p>I1( p)|,o- The negative lattice laplacian K of (2.2) simulates p? with
a’y p: error. This error means to bring in implicitly an unneeded dimension-6 term.
It affects contributions outside the error limit stated in (3.1) only when 1t appears as
the vertex in a graph with loops and thus in higher order. Then, however, the
subtraction procedure described above absorbs all its effects, again up to the error
stated in (3.1).

The subtraction procedure leading to (3.1) can also be described as follows: upon
modifying A, = A, + A A4, to £-loop order, one computes the LEL to this lattice
action by the prescription outlined in connection with (2.7a)-(2.7c). This LEL
deviates from L, only in (£+ 1)-loop (and higher) order (cf. the beginning of this
section). The lattice form of that continuum term, with change of sign, 1s the
(£ + D-loop-order part of A A,,.

32 ANALYTIC CONTINUATION OF COEFFICIENTS

The ¢ > 0 lattice VFs differentiated as described at zero momenta and Amj =0
yield, in each order, integral representations for the coefficients in AA4,. These
coefficients are, therefore, meromorphic in ¢ and regular for Re e > 0 but have IR
singularities at e = 0 and e = —2// with 1 < /< £. The ntegral representations for
the analytic continuation to Re ¢ < 0 is obtained by subtracting from the lattice VF
mentioned above, the same VF computed but, however, with Ly, in (3.1) in the
continuum and combmning the momentum space integrands “under the integral
sign”. The simplest one-loop graph shows what 1s meant here (BZ = Brillouin zone):

-2

/ d4+5K<K2__1_12a22K:+ ...)
BZ n

_,]l;zd“fK{(Kz—,Lzaz%K;Jr ) —(Kz)z}—/}; d* K (K?) 72

4+E*BZ

=f d4+fK[ga22K;(K2)'3+--~ —a~*[27?/(~¢) +const + O(e)], (3.2)
BZ u
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whereby the BZ integral becomes IR divergent as Ree\ —2 and the R***— BZ
integral UV divergent as Ree 7 0.

The integral representations for the coefficients at Re e <0 mean that in every
order, the Taylor expansion of the lattice graph 1s replaced by the Taylor expansion
of the continuum graph by virtue of the subtraction (i.e. its analytical continuation).
This explains the equivalence expressed in (3.1) also for Ree <0.

33 REPARAMETRIZATION AND RENORMALIZATION
Since A4, in (3.1) comprises terms of precisely the same form as in 4,, we can write

Ag+A44,= aHEZ [— %%3(#"(1(‘#)" - ﬁgzlg}s‘i’: - %’ﬁxzaoﬁ - %%24’"23(1)3] >

n

(3.3)

where the Z(gga ° €) have agan the form (2.6) with z-O(e)=1, and rﬁ%o =
a *f(gga*, ) 1s a new function defined as a power series. Due to the IR (or UV)
singularities of the £ at ¢ = 0 the action (3.3) does not give finite results there as the
r.h.s. of (3.1) shows. Now we define

g3=83%1(8}30-€’ 5)%3(83076, 8)' > (3-43)
En_i=Am%?ZZ(gBa“, e)Z,(gpa ", 8)*1, (3.4b)

and, upon solving (3.4a), the three power senes (1 = 1,2, 3)

Z,(gga ", e)=2,(gBa_£,s)7l. (3.4c)
Then, setting
¢=0%,(gpa"5 )", (3 4d)
(3.1) takes the form
Ay = Ly+O(a?™%), (35)

where A, 1s as 1n (2.1) and Ly as in (2.5), with ¢, g, Am, replaced by ¢, Zg.Am in
each case. This verifies the validity of (2.5) to order a® The use of (3.5) for
renormalization 1s summarized in appendix C.

If the subtraction procedure that led to (3.1) 1s carried out in the Am3 > 0 theory
using Taylor expansions in the momenta at zero momenta only, rather than in Am}
and momenta at ¢ = 0, no IR divergences arise. Setting then also @ = 0 would mean
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computing with A, treated as an effective (continuum) action in the sense of
Zimmermann [5]. Since no regularization 1s involved then, the result cannot be
written in terms of a “true” lagrangian with Z factors. While the procedure we
followed offers no particular advantage 1n ordinary renormalization, its extension to
O(a?) terms leads directly to improvement.

4. Improvement of the lattice action

41 DESCRIPTION AND EFFECTS OF HIGHER SUBTRACTION

Again we compute VF graphs, starting with 4, as described 1n sect. 3, but
perform, with Ree > 2£~ ! rather than merely > 0, the Taylor expansion subtrac-
tions at zero momenta and Amg = 0 to order 6 — 2n for a 2n-point function. The
coefficients of field monomials effecting the additional subtraction have factors
@* *%, and will turn out to be IR finite for ¢ as stated provided that already the £ = 0
two-point VF, the negative inverse bare propagator, is subjected to the last subtrac-
tion’

4+

—4a7 %y, si’ip,a= —p2+1'7a22p:—
=1 B

- —4a 2y, [smzép#a + j{sm‘%p#a]
"

=-prHwa‘lp— . (4 1)

n

The lattice term effecting this is a next-to-nearest-neighbor coupling term, and the
zeroth-order kinetic part becomes, in the notation (2.2),

~1¢,(K9), — itazqs,,(Z(aﬁ:)%) = —1¢,(K¢),. (4.2)

s n

This improved negative lattice laplacian K must also be used i effecting, as part of
the lattice action, the higher-order subtractions of this 3/3p>II( p)| »=o type for
2n =2 graphs. (We can say that the p? in the propagator, and in effecting the
self-energy subtraction, must be represented on the lattice “truncated SLAC 1m-
proved”.) No similar precaution 1s necessary for the other derivatives that appear.

The procedure described here leads to an action that can be written A; + A4, +
a’4,. Here AAj is as i (3.1) or, more explicitly, (3 3) but with new coefficients
Z(gga f,e)—1, I=1...3. A, consists of the lattice analogs of the terms in the
square bracket representing L, in (2.5). The terms of the form —1¢(K— K)o,
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yielding the improved bare propagator and the corrected self-energy subtractions
mentioned after (4.2) are part of the first term in A4, as just described.
The analog of (3.1) 1s

Ay + AAy+ a’A, = Ly + O(a% ), (4.3)

because the continuum limit @ \y 0 now leads to UV finite results for Ree < 4£72,
For a reason analogous to that given 1n sect. 3, the coefficients in A, are meromor-
phic in & and IR finite for Ree>2R"'. At e=20"" they are IR singular. Their
analytic continuation to —2£~ ' <Ree < 2L ' 1s again obtamned by subtracting the
corresponding continuum graph “ under the integral sign” (cf. (4.5) below). e =015 a
singular point, however, due to the ¢ = 0 singularities in A A} 1n (4.3) or also the form
of the r.h.s.

The consistency of the subtraction prescription rests on the following. The final
subtraction as described 1 an £-loop graph at 267 ' <Ree<4£7 ' is, in the a \, 0
limit, a mimmal one in the sense of Zimmermann [5]. The subtraction of an ’-loop
subdiagram is then not minimal 1f £’ < 2(Re €)~ '. However, 1t 1s not an oversubtrac-
tion [5] (such a one would here be IR divergent) but the replacement of the highest
Taylor expansion coefficient on the lattice by the one i the continuum, as
demanded for L, in (4.3), by virtue of an analytic continuation as mn (3 2) (see (4.5)
below.) The difference 1s proportional to a>~ %, 1.e. has a convergence factor that
makes minimal subtraction of the £-loop graph sufficient for the existence of the
a0 limit.

42 REPARAMETRIZATION OF THE RESULT

Since 4, + AAj in (4.3) is of the form (3.3) with merely £ —» 2, the transforma-
tion (3.4) can agamn be performed with new parameters g and mg. Then (4.3)
becomes

Ay +a*d, = Ly+ O(a* ). (4.4)

Here L} has (replacing g; by gy and Amj, by Am3) singular coefficients Zj(ggza™ ", €)
of the form (2.6), with singularities again of the type to yield finite results at ¢ = 0,
although different from the ones in (2.5) or (3.5) due to the additional term on the
Lh.s. in (4.4). The coefficients in 4] are meromorphic in ¢ and finite at e=0 The
proof is recursive: the e =0 singular coefficient in a?4} of lowest order would be
mcompatible with (4 4) in the order in which it first contributes, since on the r.h.s. of
(4.4) terms with coefficients a>~** are never generated and a lattice action with finite
coefficients (of lower order) cannot, in perturbation theory, yield an infinite result
for an a®~*® coefficient at ¢ = 0. The analytic continuation of the 4/ coefficients to
Ree <2£7! is again obtained by subtracting the corresponding continuum expres-

r <

sion, which here have such extra factors as appear in Lj, “under the integral sign”.
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This explains the equivalence expressed by (4.4). The simplest £=1 example
pertaining to (2.7d) illustrates this (cf. (3.2)):

-3
f d4+sK(K2_9_lOa4ZK:+...)
BZ o

- [ @tk
BZ

-3
-3
(K2— wa' Ko+ ) —(K?)
n

_f d4+EK(K2)73
R***-BZ

=f d“*EK[i)a4(K2)k4ZKS+ -+« | —a* *[const + O(e)]
BZ p

(4.5)

Hereby the BZ integral becomes IR divergent at Ree —2 and the R***— BZ
integral UV divergent at Ree 7 2.

The Lh.s. in (4.4) at ¢ =0 1s the improved action. The values of 1ts coefficients
C(gga™f ¢) at e=0, C(gp,0), can be obtained recursively by subtracting from the
lattice VFs computed with the help of lower-order coefficients the part proportional
to a*. That part 1s polynomial in momenta and Am3 of order 6 — 2n for 2n-point
VFs and finite (1. there 1s no term e.g. with factor a’In a) since otherwise (4.4)
could not hold. The analytic continuation 1n this dimension we needed only for our
proof

5. Concluding remarks

51 EXTENSION OF PROCEDURE

It is obvious that the process described 1n sect. 4 can be continued to arbitranly
high order in a?, to yield instead of (4.4)

Ag+ @AP +aAP + - + a2 AR = LG + O(ak 2 (5.1)

Hereby the improvement coefficients and the r.h.s. all depend, as indicated, on the
order to which one carries out the improvement. From (5.1), (2.5) does not follow
directly. An LEL can be deduced, however, if Pauli-Villars regularization rather than
regularization by a lattice had been used, since the momentum integration range is
then the same as 1n the continuum. This was used 1n the proof of the LEL existence
for that case 1n ref. [8]. Since the calculations in appendix A and B do not show any
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deviation from the results of the corresponding ones with Pauli-Villars regulanization
in spite of the Brillouin zone limitation, we expect that the LEL (2.5) 1s correct to
any order in gy and a?, with coefficients definable by formulae as explained in
context with (2.7).

52 NON-PERTURBATIVE DETERMINATION OF IMPROVEMENT COEFFICIENTS

We have not found any useful PDEs obeyed by the improvement coefficients in
(5.1), not even for A{V. The reason is that these coefficients are expressions of lattice
effects and are themselves, upon inclusion of the factor a2, of the order of the error
1in the usual PDEs, cf. (C.1). This contrasts with the properties of the coefficients in
the LEL (2.5), as explained there, since 1n that case a? can be factored off.

Approximating the improvement coefficients by some orders of perturbation
theory is possibly of value only 1f 1n the continuum limit, gz \, 0, 1.e. the theory is
asymptotically free, as is the non-linear sigma model [11-13] and non-abelian gauge
theory [14]. For improvement in the sense of sect. 1, however, the C,(gg,0) must be
determined by Monte Carlo computations themselves. To this end, one would use
the fact that these coefficients are also the same on a fimite lattice since they
compensate for the effect of space-time discretization and thus depend on local,
rather than global, properties of the lattice. On the finite lattice, the simplest
quantities that obey (1.1) and ought, upon correct improvement of the action, to
obey it with a decreased r.h.s. are “generalized susceptibilities”. These are Green
functions with all momenta zero, or some momenta at the lowest discrete values
available on the lattice with periodic boundary conditions. (For the ¢; theory; in
perturbation theory the zero mode would be annoying but 1t 1s harmless 1n
non-perturbative treatments.)

53 ALTERNATIVE FORMS OF IMPROVED ACTION

The improved action (4.4) 1s by construction unique. It can be modified by
admutting 1nto the action terms that involve the source function J differently than 1n
the term a**¢¥, J.¢, = [Jo. The reason is that, by virtue of the Schwinger-Dyson
(SD) equations derived from A, (which suffice for manipulations on the a? level) not
all the terms 1n A, are linearly independent, provided one corrects this by admutting
the contact terms that make the difference between classical field equations and SD
equations. With m}, + Am3 = m3, the SD equations from A, in (2.1) are

Ko+ tgpd’ + map—J=0. (5.2)
Here ¢ 1s to be interpreted as 8 /8J (1e. ¢, as a * ¢d/dJ,) acting on the generating

functional of Green functions that has in the action also the source term described
before. Multiplying (5.2) from the left in turn by K¢, ¢, and J yields the three
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1dentities
(K)' + Lgy’Ko + mipKo — JKp+4a™ 5 =0, (5.3a)
O'Ko + ¢gp¢° + mig* —J' — 347 9" =0, (5.3b)
JKo + LggJ¢® + miJop—J2=0. (5.3c)

The vanishing 1s meant 1n the sense

J@4[(5.3a) or (5.3b) or (5.30)]exp[A0 + fj¢] -0. (5.4)

An easy recursive argument shows that (5.4) suffices to eliminate three terms, e.g. ¢°,
#K ¢, and J¢' from A4, provided all the other terms of (engineering) dimension 6 + ¢
that appear 1n (5.3a—c) are allowed to appear in 4, with certain coefficients. These
would have to be determined (e.g. in perturbation theory) by checking the improve-
ment of a sufficitent number of VFs or “physical quantities”, since they are not
obtained 1n an easy way from the coefficients computed when deriving (4.4). The
advantage of eliminating terms not containing J 1n favour of those that do would be
that contact term contributions need be evaluated only when making “measure-
ments” while terms not containing J need be used in each Monte Carlo upgrading.
In view of the limited interest of ¢* theory we shall not pursue this matter here since
1t will reappear 1n the non-linear sigma model [13].

54 OTHER MODELS

The improvement technmique expounded here for ¢* theory is directly applicable to
all lattice theories the perturbation expansions of which proceed in terms of
propagators and vertices. For non-abelian gauge theory, such a form 1s proposed in
ref. [15]. If fermions are also present, in (2.3), (2.4), (2.5) and correspondingly some
other formulae also, odd powers of ¢ and field monomuals of odd dimension appear.
The degeneracy problem [16] being one related to the corners of the Brillouin zone
while improvement concerns the center, it could be dealt with by Wilson’s method
[16]. Complications may arise if the starting lattice action 4, involves non-hnear
constraints. They are easily resolved in the case of the non-linear sigma model
[11,13].

Improvement is possible also in superrenormahzable lattice models. E.g. ¢3,,
theory becomes for ¢ = —3 the anharmonic oscillator on a “time” lattice. In this
case of the improvement coefficients C,(gga *, &) only a small number of expansion
terms is needed.

55 SCOPE OF IMPROVEMENT

While the improved action does improve not only Green functions but also all
other quantities that possess perturbative expansions, this 1s not assured for the
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other quantities, hke spontanecous masses and the string tension i Yang-Mills
theory. Since the determination of the improvement coefficients, subsect. 5.2, does
not have to rely on perturbation theory, it appears a safe speculation that non-per-
turbative quantities like those mentioned are also improved in the sense of sect. 1
provided possible non-perturbative effects (cf. the discussion in ref. [15]) vamsh
faster than O(a?) in the continuum limat. If they do not, they could not be removed
by using local terms only in an improved lattice action.

The author 1s indebted to M. Luscher for useful discussions, and to T.T. Wu for

stimulating questions and cooperation 1n an early stage of this work.

Appendix A

SMALL-a EXPANSION OF ONE-LOOP GRAPHS

The two-propagators (“bubble”) graph on the four-dimensional lattice at
momentum p = ( p, p, P, P,) Tequires to evaluate

F(p;Am},a)=}a*(2n) " ﬁ ([ﬂ/a dku){ 2[1 — cos(ak,‘)] + %azAm%} o

p=1 ~7w/a "

><{Z[l—cos(a(k#+pﬁ))]+%a2Am§}‘l. (A.1)

Bringing the denominators into the exponent, carrying out the momentum integra-
tions and using [17]

Io((a>=5?)"?) = (zm)"fc? dr I(=1)(la 'p?)'I(a),

where the integration path is parallel to the imaginary axis with positive real part but
encircles the origin at the left; and using as well the Mellin representation of the
exponential function, yields

F(p;Am3,a)= %(27”)45‘[4 dwI'(—w)(ia?Am})"

* F‘li[l [f4dtur(_tﬂ)(zSinz(%pﬂa))I“ B(l + Ztu’l + Ztu)

Xfw, tt,5,), (A2)
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where
” 4
flwtt,t52,) = f due*“u' "+ [T, (u). (A.3)
] p=1

In (A.2), the w and ¢ integration paths are parallel to the imagmary axis, with
—1<Rew<0and — 7 <Ret, <0.

Splitting in (A.3) the integral at 1 and using in 0...1 e.g. the power series, 1n
1...00 the Hankel asymptotic series for the modified Bessel functions yields
f(w,t,...t,) as a meromorphic function of 1ts vanables, the only singularities being
for Re(w + DIL) > —1 simple poles at 0,1,2... in the variable w + Ztu. Using, with
n=0,12...

(271*1)‘5fctdw11(—w)rwulill [/dtnf(—t“)s;’bu]
x B(1 +2.1,,1 +Zt“)(n—w—2tu)‘]

:foldx{g‘, (—l)l(l!)fl[r+(1 —Jc)zs”]/(n—lYl

l=n

+(=1)"(n) [r+x(1-x)Ts,]"

x[In(r+x(1=x)¥s,) - w(1+n)]), (A.4)

for r=3a’Amg, s, = 2s10°(3p,a); and the denvatives of (A.4) with respect to the s,,,
one finds in the small-a expansion of F(p; Am3, a) terms proportional to a*' and
a®lna, 1=0,1,2 .. with factors that are polynomial in Amj and p, for both types
of terms, with for the first ones in addition non-polynomial contributions from the
logarithm 1n (A.4). This calculation can easily be extended to the general one-loop
graph, with an analogous result.

If instead of lattice regularnization a sharp-momentum-cutoff one (1.e. factors
6(A? — k?) to the propagators) 1s used, in the large-A expansion also odd powers of
A~ " appear [18), precluding the existence of an LEL to describe large-A behaviour.
This effect 1s an “IR” one stemming from the sharpness of this cutoff [19].
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Appendix B
REMARKS ON DIMENSIONAL INTEGRATION ON THE HYPERCUBIC LATTICE

Dimensional integration of Feynman graphs in the continuum can be treated
rigorously by keeping the Lorentz-invariant scalar products of momenta fixed, since
the Gram determinant condition plays no rdle. On the hypercubic lattice n
(4 + e)-dimensional space, » momentum vectors p,...p, give rise to an infinite

number of vanables invariant under the lattice-symmetry operations, e.g. ("; ')

polynomials X, p,, p,,.. ( ": ’ ) polynomuals X, p,, p,, Py, P, etc. A rigorous discussion
would thus require the consideration of functions of an infinite number of varniables,
which we shall not attempt here. The reason 1s that what will be needed 1n sects. 3
and 4 are only VFs with all momenta zero, or differentiated at all momenta zero,
and these expressions are unambiguous (in perturbation theory) once the manner of
dimensional extrapolation from the integers 1s fixed by the usual convention.
Namely, upon using for the propagators

4+ ~1 o
2672 (1- cos(kua)) +Am3| = %azf drexp| — (1 + 3a% Am3)]
p=1 0
4+¢
x I1] exp[tcos(kua)], (B.1)
pn=1

the integrand of the proper-time integrations factorizes, e.g. it 1s a (4 + ¢)th power in
the case of all external momenta zero. As an example, consider the “bubble” graph
analyzed 1n appendix A, but in 4 + ¢ dimensions at momentum zero. It yields

F(0;Am3, ¢, a) =%a”fw du uexp[— (4+e+ %azAmé)u]IO(u)H‘
0

= Am(cy(e) +a’Amie,(e) + -+ -)
+a (dy(e)+a*Amid,(e)+ -+ ), (B.2)
again, e.g. by splitting the integration region, in conformity with (2.4).
Alternatively, one may take the € extra dimensions in the continuum instead of on
the lattice. This gives little conceptual relief at momenta non-zero, and at momenta

zero (or differentiated there) gives slight numerical modification of the coefficients,
e.g. (B.2) changes to

F(0; Amj, e, a) =%a’ffm du uexp[— (4+ %azAsz)u]lo(u)A(Zwu)‘F/z,
0

with an expansion as 1n (B.2) but with changed coefficients. Using this picture would
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require that we list more terms 1n e.g. (2.5) because of the different symmetry. For
this reason we used the earlier symmetric picture. The final result, in the form of the
Lhs. in (4.4) or (5.1) at e =0, 1s the same, as is immediately verified e.g. in the
example (4.5).

Appendix C

PDEs AND RENORMALIZATION

Changing in (2.5) the ¢ normahzation, gga™%, a, and Am} 1n such a way that L,
remains unchanged leads to the Zinn-Justin PDE [1]

_ ~ , 0 e
+1(gpa *, e)Amy———2ny(gpa *, ¢)

0 _
—_ .———+ akE’ —_—
PR (gpa™s¢) d(gga™®) d Aw}

XI(py.. Dans g5, Amy, e,a) = 0(a® "),

(C.1)
with (abbreviating gga™* = g)
B(g.e)=¢[g '+3/0g0(Z,(2.6)Z,(2.¢) %) . (C.2a)
7(g.e)=1B(g.€)d/98In Z,(g, ¢) (C.2b)
7(g.¢)= —B(5.€)3/9zIn(Z,(5.£) Z,(g.¢) ") (C.2¢)

These parametric functions have ¢ = 0 limits since the VFs 1n (C.1) have. Integrating
(C.1) at e = 0 yields

Zy(g,ap)"T(py... P, gu( 8. an), Ami(m?, g, ap).0, a)
=Frm(pl...p2n;g,mz,u)+0(azln a), (C.3)
where, with p(g) from (1.4),
go(g.an)=p "(p(g)—Inap)=Y (1") '[—In(ap)B(g)d/dg]'s.

=0

(C 4a)
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za<g,au>=exp[—zf;“‘ )dg'ﬁ(g'r‘v(g')}, (C.4b)
Am;(mz,g,au)=m2exp[ég“( ’dg'mg')“ﬁ(g’)]. (C.dc)

Eq. (C.3) with (C.4a—c) describes “mass-independent” renormalization in the sense
of ’t Hooft [10] and Weinberg [20] though in Zinn-Justin convention [1], which
yields, in terms of the functions n (2.3),

©
Fren(pl ~-Pans 85 m27 Au')z Z (—1np‘)kF6k(pl - Pan> 8> mz)' (CS)
k=0
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